
Overwatch: An Educational Testbed for Multi-Robot Experimentation

D. Michael Franklin and Lynne E. Parker
Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville
dfrankl7@utk.edu and parker@eecs.utk.edu

Abstract

Educators who wish to engage their students in multi-
agent experimentation and learning need an inexpensive
multi-robot system that leverages existing equipment
and open-source software. This paper proposes Over-
watch as an inexpensive educational tool for teaching
and experimenting in multi-robot systems. The interac-
tion of multiple agents within a single environment is an
important area of study. It is vital that agents within the
environment perceive other agents as intelligent, acting
within the environment as cooperative teammates or as
competitive members of another team. To do so, the
system must meet three goals: first, to allow multiple
robots to communicate and coordinate; second, to lo-
calize within a shared global coordinate system; third,
to recognize their teammates and other teams. The cost
and scale of such experimental platforms places them
outside the reach of many educational institutions or
limits the number of agents that are interacting within
the system (Liu and Winfield 2011). The goal of Over-
watch is to create an experimental platform for multi-
agent systems that is comprised of much smaller, albeit
less capable, robots, many of which are prevalent in
academic institutions already. Making use of available
open-source libraries and utilizing lower cost robots,
such as Scribblers, allows for experiments with many
agents. This enables Overwatch to fit into the budget
limitations of an academic setting. The Overwatch plat-
form provides the Scribblers with global localization ca-
pabilities. This paper presents the system in detail and
includes experiments to show its ability to localize, in-
teract with other agents, and coordinate behaviors with
these other agents. Additionally, the details to setup this
system are also included.

Introduction
With the rise of larger and more complicated multi-agent
systems comes the need for experimental testbeds that can
test such systems. Existing solutions for large scale multi-
agent interaction often involve great expense. In order to
place these systems within budget for an educational envi-
ronment Overwatch was created. Overwatch, a name derived
from the military term for the overseeing command group,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is a near real-time multi-agent coordination system that al-
lows simple, limited robots to behave intelligently and in-
teractively. The Overwatch toolkit, provided here, offers a
practical solution using standard computational resources,
inexpensive Scribbler robots, and open-source software.

Similar to the E-2 Hawkeye and UAVs utilized in modern
combat and rescue operations, Overwatch takes the high-
ground as an overhead camera that can observe the entire
operation space and can identify and track the individual
agents within this space, communicating independently with
each one. The system can, by knowing each agent’s identi-
fication, work with multi-agent teams as well. This system
provides sensor-limited robots (i.e., those without internal
navigation or localization capabilities) the functionality of
sensor-capable robots within this defined area. These multi-
ple agents, bearing markers and under the control of Over-
watch, can perform higher-level strategic interaction. This
high-level coordination is exhibited in the experiments doc-
umented here.

The paper is organized as follows: Related Work exam-
ines the foundational and comparable work, Methodology
examines the system implementation, Experimentation and
Results shares the proof-of-concept experiments and find-
ings, Conclusions summarizes the results of this work, the
Future Work lists the on-going objectives, and the Toolkit
links to the software, videos and samples.

Related Work
The Institute for Personal Robotics in Education (IPRE)
(IPRE 2007) is instrumental in developing the educational
usages for the Scribbler robots, shown in Figure 1. They
have developed curricula that utilize the Scribbler robots
when mated with the Fluke board. Their research is one of
the reasons that there are so many of these robots out in
the academic arena. They have focused on students work-
ing one-on-one with a single robot for educational purposes.
Overwatch takes these same robots and expands them into an
experimental platform for multi-agent interactive systems.

In (Liu and Winfield 2011), the researchers propose a
mostly hardware-based approach to creating a swarm of
inexpensive robots (using the e-puck (EPFL 2011) robots
(about $1100US)). Their system relies on additional hard-
ware running on the robots and an expensive vision tracking
system (the Vicon system (Vicon 2011), that starts around

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

551

$50kUS). These systems are out of the price range of most
academic settings.

One of the largest and most complete examples of a simi-
lar system is that used in Robocup Soccer (Robocup 2012).
Here the organizers use various sizes of robots (the SSL be-
ing closest to Scribbler size). They use two cameras to cover
their large arena. The RoboCup SSL Vision system is spec-
ified only by protocols, so the robots and cameras vary in
cost. A sample budget for a team, (Stevens Institute of Tech-
nology 2010), shows a cost of approximately $500US per
robot and $950 per camera. This state-of-the-art system is
solid and widely used, but it is more expensive and requires
more custom building and coding.

For comparison, the Overwatch system utilizes standard
HD webcams (around $100US) and Scribbler robots (from
$100US to $200US).

Methodology
The Overwatch system seeks to create a multi-faceted
testbed for experimentation in multi-agent systems that is
modular and multi-tiered, offering flexibility and interoper-
ability.

Robots
The agents in this scenario are Scribbler robots (Parallax
2012). The Scribbler, from Parallax, Inc., is a sensor-limited
robot having three light sensors and two line-following
sensors mounted on the bottom. This configuration is en-
hanced with the addition of the IPRE board (IPRE 2007) that
mounts directly on the serial port of the Scribbler. This board
provides IR sensors, a color camera, and a Bluetooth-over-
serial connection to wirelessly connect to the Scribblers. The
Scribblers have a limited ability to store programming in-
formation, so it is not practical for them to run their own
independent code or manage their own inter-agent commu-
nication.

While there are several sensors on the robot, it does not
have the ability to localize. It cannot return its x, y, z co-
ordinates in real-space nor its θ heading. Because of this,
it must rely on blind-reckoning (a poor approximation of
dead-reckoning due to a lack of wheel-encoders) or limited
guidance (e.g., the light from a flashlight or blob tracking)
to move about. This is not true navigation - the robot is un-
aware of its current location, its location within the world,
or its heading. Instead, this is reactive open-loop control,
like obstacle avoidance, rather than true navigation where
the robot is tracking along a map. In computer vision ap-
plications the limited view of the camera makes it chal-
lenging to track where the robot is, where other robots are,
and where goal positions are. The overhead of such sys-
tems weigh heavily on these computationally simple robots.
Externally-supplied information is needed to overcome this.
Additionally, the Scribblers cannot reliably track straight
lines (given the differential of the low-cost motors and a lack
of wheel-encoders) which is only exacerbated as the battery
runs down (see Failure Modes). The large thin plastic wheels
are prone to slip. These motors have trouble initiating mo-
tion when the input is below a certain power threshold, so

they require a surge to get started. All of these factors com-
bine to show that the Scribbler, while a nice and inexpensive
platform, cannot independently function as a reliable agent
in a more complicated multi-agent system.

Figure 1: Scribbler with Fluke and AR Marker

In the standard Scribbler applications the robot is often
connected to a single computer. For Overwatch, more than
one Scribbler needs to be connected at a time. This requires
understanding how the particular OS on the target computer
handles Bluetooth connections. Each Fluke has its own ID,
and as each system recognizes and connects to these boards
over Bluetooth, it is assigned a MAC address. This becomes
the system link to a communications port (e.g., “Com60” in
Windows, or “/dev/rfcomm14” in Linux). These communi-
cations ports become the channels across which Overwatch
communicates with each robot. The particulars of this setup
are found in the linking material (with a step-by-step guide)
at the end of this paper.

The Camera
Overwatch is enabled by having the high-ground view of
the arena, so an overhead camera is used. The camera de-
termines the size of the arena (based on its resolution and
field of view). For this toolkit a single overhead camera is
used, but the system could utilize multiple independent cam-
eras and merge their perceived worlds into one larger world
to allow for an increased arena size while maintaining the
same resolution. The camera used for these experiments was
the Microsoft HD (720p) webcam (Figure 2). The webcam
is not fixed and can be relocated to an overheard position,
an angled position, or even a point-of-view (POV) position
without compromising the performance of Overwatch.

Figure 2: MS HD Webcam

In choosing a camera the effective resolution of the optics
must be considered. Any camera can be used, but it must
provide images with sufficient detail to recognize the mark-
ers on the agents.

552

Marker Recognition
There are many methods for marker recognition. The most
common, by far, is ARToolkit (ARToolkit 2008). This
toolkit is built upon the required OpenCV platform (which
supplies the computer vision framework for interacting with
the graphics hardware). Together, these two pieces of soft-
ware allow the computer to interpret video, check for AR
markers, and draw graphics on those markers. The origi-
nal ARToolkit is no longer being developed (by the original
creators) and has been supplanted by ARToolkit Plus. This
newer version is a significant improvement over the original
but it is less compatible across platforms. As a result, Over-
watch is designed around ARToolkit so that it is maximally
compatible. There are other AR packages available that may
be of interest to educators specializing in other languages.
The first is PyARTK, which works in Python. This toolkit
was intended to be a port of ARToolkit that would work na-
tively in Python. The next is OpenCV AR. This toolkit is
a native set of AR tools inside of OpenCV. For those inter-
ested in mobile development, there are also a few other lite
versions of AR, like Aruco and Augment. While these may
add functionality or expandability to Overwatch, they do not
have the processing power and communications ability to
control multiple robots and coordinate the communications
necessary for the system.

Computing Environment
The computing environment also presents challenges to the
system. The robots have a software platform, called Myro,
that simplifies communications and commands with the
Scribblers. The Myro software is written in Python, though
it has also been ported to C++ (Hoare et al. 2011). The AR-
Toolkit software is written natively in C, while the interac-
tion with the arrays of robots and arrays of marker patterns
is better facilitated in C++ (especially when considering
these elements as objects in a multi-threaded environment).
The computing environment must also be robust enough to
support programming with multiple threads, large memory
transactions, high-throughput algorithmic calculations, and
high-speed graphics capabilities. Another consideration is
the operating system. As mentioned previously, Windows
greatly simplifies the coordination of multiple Bluetooth-
enabled Scribblers, but both it and Linux (and the MacOS)
provide solid connections. With all of these considerations
in mind, the goal was to have Overwatch be available with-
out constraint, so it will work in Python, C, or C++, in Win-
dows, Linux, or on the Mac. The code requires slight alter-
ation in the device names of the robots (e.g., from “COM60”
to “/dev/rfcomm14”), but is portable across platforms.

Overwatch System
Overwatch creates an arena that is defined by the resolution
and field of view of an overhead camera. In our implemen-
tation the camera is mounted to the ceiling at a height of 9ft
in the lab. This gives a field of view of about 15ft by 12ft
and thus defines our arena. For these experiments the mark-
ers were produced from the ARToolkit. The augmented re-
ality tools provide marker recognition and can be used to

determine the marker’s (and thus, the agent’s) position in a
relative camera space. The system creates an array of robot
objects. Because of this, any student familiar with coding in
Myro for a single robot can now simply loop through the
robot array to talk to all of them. This provides an easy tran-
sition to multi-robot systems.

In Overwatch the target and goal information for the
world is calculated centrally. Specific move commands are
then sent to each Scribbler. This shifts the sensor-limited
robot into simulating a sensor-capable robot. While this im-
plementation is centralized, the system can work passively
in a decentralized mode by only providing information that
each agent could normally have. The system works as fol-
lows: first, the system creates a data structure that holds the
robot objects. Second, it creates a data structure that holds
the various marker patterns that will identify the robots, tar-
gets, and other objects within the arena. Third, Overwatch
uses ARToolkit to recognize markers by searching the cur-
rent video frame for large black squares. Any such square
will get the attention of ARToolkit. Once the target is ac-
quired, it is inspected for the predetermined patterns and is
matched on the greatest matching likelihood (Figure 1 shows
such a marker). Recognized markers are entered into the vis-
ible marker array. Once all markers within the frame have
been located, this array is returned to the code for process-
ing. This processing is integral to Overwatch. Fourth, each
marker is compared with its target marker to determine lo-
cation and orientation. Fifth, the markers (i.e., the robots)
are checked for collisions with targets or other markers and
the traffic is directed according to the current overall goal
(i.e., strategy) of the system. This also establishes commu-
nications within the teams or across teams through the Over-
watch central command. This communication ability pro-
vides functionality, such as organizing the agents to avoid
collisions with teammates based on priorities, changing the
target being sought, or implementing a new strategy based
on the current information from the environment.

The process of checking each marker for location and
orientation is complicated by the various coordinate sys-
tems. First, the robot and target markers are recognized in
the camera coordinate system (Figure 3). The orientation in
this space is ±180◦. Next, the robot’s localization informa-
tion has to be transformed into the marker coordinate system
(Figure 4). Here the angle to the target and the bearing angle
have to be calculated and corrected, as shown in Equations
1 - 5. Finally, to achieve any reasonable navigation within
the real world each of these markers has to be located in a
shared real-world coordinate system (Figure 5).

In this final space the angles are measured in a full circle,
360◦, as opposed to the split ±180◦ system of the camera
and marker coordinate system. This makes navigation iden-
tical for each marker, so they can now understand where they
are and where any other markers are. The robots can now
navigate to any marker. Overwatch calculates this quickly
(around 15Hz), so the system is able to correct robot ‘wan-
dering’ (where the motors are misaligned or aren’t cali-
brated), handle moving targets, and recover from collisions
that move the robot off its path.

553

Figure 3: Camera-Space Figure 4: Marker-Space Figure 5: Real-Space

θrt = tan−1

(
yrt
xrt

)
(1)

θr(corrected) = 2π + θr (2)

θbearing = θr(corrected) − θrt (3)

θbearing = θbearing mod 2π (4)

θbearing =

{
θ if θ < π
−(2π − θ) otherwise (5)

Experiments and Results
There are three claims that need to be tested. The first is
that Overwatch is accurate and consistent in localization and
navigation. The second is that it can control multiple robots
simultaneously and efficiently. The third is that Overwatch
can coordinate strategic behavior within a team of robots.
One additional goal is to show scalability and robustness
through each of these experiments.

The first experiment is navigation and localization using
Overwatch vs. blind-reckoning. In this experiment the blind-
reckoning robots are driven, at 100% velocity, forward for
6s, turned right for 0.45s, then forward for 3s, then another
right turn for 0.45s, then forward for 6s. This should result
in the three sides of a rectangle that ends back in line with
the target, displaced by about 110cm. The target zone was
determined in a way that favors the blind-reckoning: three
runs were made as directed, then the average finish point
was used as the target location. Once the target was placed
at this location, this experiment was run 7 times for each
control method.

The accuracy results show, in Figure 6, that the blind-
reckoning method averaged 435.86mm, with a σ of 149.23,
from the center of the target. The Overwatch runs averaged
only 83.14mm, with a σ of 7.06, from the center. It should
be noted, as indicated by the line in the graph, that the cen-
ter of the target is 76mm from the edge on average, so the
Overwatch navigation ended, as directed, at the edge of the
target. These results are a specific example shown by this
case to demonstrate this issue with blind-reckoning.

An examination of the traces shown in Figures 7 and 8
shows visually what the numbers state. These traces show

Figure 6: Final Distance to Target: Blind-Reckoning vs.
Overwatch

that the blind-reckoning pathways were inconsistent across
each run, whereas the Overwatch pathways were consistent.
Overwatch will be consistent to any given target without re-
spect to the number of waypoints because each target acqui-
sition and navigation is handled independently. Any accu-
mulated tracking error will thus be erased in seeking the next
target or waypoint. Seeking the target after one waypoint or
after ten waypoints will bring about the same results.

Figure 7: Blind-Reckoning Traces

These experiments show at least two critical points:
first, they demonstrate the overall inconsistency of blind-
reckoning in sensor-limited robots (these runs were with
fresh batteries; the same trials with older batteries were even
less consistent); second, they show the difference that Over-
watch can make not only with accuracy (distance to target)

554

Figure 8: Overwatch Traces

but with consistency (σ of distances to target) and proper
path planning.

In the second experiment, multiple robots were tested on
multiple teams for scalability and reliability. In these ex-
periments, the system was running in C++ and Python, in
Windows and in Linux, on a Core2 T7200 laptop running
at 2GHz with 2GB RAM. To test the scalability, multiple
robots were run from one machine. For this experiment an
arena was constructed that enclosed two teams of 6 robots
each, for a total of 12 robots, running an obstacle avoidance
program.

Each of the robots was moving and being controlled in-
dependently by the system. In this scenario, the robots were
passing back their IR sensor data to Overwatch and it was in-
terpreting this sensor data and sending back steering instruc-
tions. These robots were not being tracked yet, just being
controlled to test the throughput of the system and the con-
trol methods. Further testing of this scenario showed that the
system works with up to 7 robots per machine on 3 separate
machines simultaneously for a total of 21 robots interacting
in the arena. From a reliability perspective each robot stayed
under system control, even when the robot itself was having
issues (see Failure Modes).

The video frame rate, the speed to recognize markers, and
the speed of communication form the limiting factors for
the cycles per second (Hz) of the system. On the computer
mentioned the system averages 14.86Hz with σ of 2.35. The
high was close to 25Hz, with the low around 12Hz. There
was also no noticeable signal depreciation with the Blue-
tooth communication saturation as the experiment scaled up
to 21 robots as the speed hovered around this same average.
The system runs almost identically in round-robin, where
each robot is given instruction one at a time, and in multi-
threaded operations. While multi-threaded performance may
be better over time, it is important to note that students and
researchers working with Overwatch do not have to program
in threads to use the system. The scalability of the system
is supported by no appreciable decline with 21 total robots
running.

The third experiment was designed to show that Over-
watch can coordinate the behavior of a team intelligently.
The scenario envisioned was one of a squad of 5 robots

where 3 of them are seekers and the other 2 are ‘on-station’
as defenders to block opponents. The 3 seekers are tasked
with finding the target and converging there. When the seek-
ers all arrive at the target the entire team should disperse.
Figures 9, 10 and 11 show the frames from the video of this
experiment. The initial starting positions of the robots are
shown in Figure 9. Figure 10 shows the traces of the robots
from the starting positions to the point at which the seekers
converge on the target. Finally, Figure 11, shows the traces
as the robots disperse. The seeker robots converged within
the target zone 92% of the time, and the orbiting defend-
ers stayed on station 96% of the time. This shows that these
simple robots can exhibit coordinated behavior.

Figure 9: 5-Robot Trial: Initial Position

Figure 10: 5-Robot Trial: Seek and Defend

Figure 11: 5-Robot Trial: Disperse

555

Failure Modes
In these experiments, and in general experience, there are
several failure modes that occur. First, Scribblers are prone
to motor and alignment wandering, general inconsistency
over the life of the battery, and the ‘kidnapped robot’ syn-
drome (where a robot moved by an outside force is unaware
of the change in its location or orientation). Overwatch helps
overcome these alignment and dislocation issues by using
fast tracking (around 15Hz) to re-localize the robot in its
new orientation and position - an important feature for users
who need their robots to perform with robustness and con-
sistency.

The Bluetooth connection can be problematic in syncing
up, but once it is connected it performs well. Most issues are
resolved by resetting the robot and/or clearing the channel.
A built-in re-sync could overcome this initial issue.

There are issues where the tracker loses the markers, but
it generally catches them again within a few frames. If this
occurs too close to the edge of the video frame the robot will
head off course and not be recoverable. To resolve this there
are a few implementations. First, the robot movements can
be stored with a small memory. When this robot’s marker is
lost it simply issues the reverse commands to bring the robot
back in-bounds. Second, the robot can plot a curving path
from its last known coordinates to the target coordinates. In
addition, there can be an issue when a robot covers the tar-
get’s marker. As a general guideline, this can be overcome
by using safety zones (stop short at a certain distance) to halt
the robots.

Conclusions
When selecting the robotic platform, the software, and the
computers, a conscious effort was made to find the lowest
common denominator. The system performs even better on
higher-performance computers. Newer versions of the soft-
ware promise faster marker recognition, increased accuracy,
and more intricate patterns in the markers. As a result, the
performance should improve with these upgrades.

Additionally, by only changing the actual robot connec-
tion and move commands (contained in functions in the
code), it could be easily reconfigured to work similarly with
other robots needing this kind of performance upgrade (e.g.,
e-puck (EPFL 2011), Scribbler2, Mindstorm NXT, BOE-
BOT, any other custom robots). For example, there is a new
version of the Scribbler, the Scribbler 2, that features an im-
proved processor and better sensors. While this newer ver-
sion has many improvements, it still does not have the abil-
ities that Overwatch provides. It will still work with Over-
watch (in fact, Parallax notes that it will still use the same
IPRE board used in these experiments).

These results show that, with Overwatch, it is possible to
take low-cost, sensor-limited robots and perform real-world
experiments with them wherein they act like higher func-
tioning, and more expensive, robots. This platform leverages
these small, prevalent robots into stand-in’s for the much
more expensive and less common robots in research today.
Overwatch thus offers researchers and educators a robust
and scalable tool to explore the space of multi-agent systems

within the constraints of their current budgets. In fact, if the
robots are already present, and a camera available, there is
no cost to implementing this system.

Additionally, it is noteworthy that Overwatch, because it
has total knowledge of all agents, communications, strate-
gies, etc., can then be constrained to simulate many differ-
ent environments. It could isolate the team communications
from each other so that they are not aware of the internal
processing of the other team’s actions or simulate a Master
Controller where all information, communication, and strat-
egy is centralized. Alternately, none of the agents could have
any internal information about any other agents. Many dif-
ferent paradigms can be configured and enforced within the
Overwatch system.

Future Work
For future work, this toolkit can be expanded in scale, mix-
ture of robots, and control strategies. It will be used as a
testbed for strategy implementation, multi-agent interaction,
and strategy inference and learning. This tool can be ex-
panded to reach a broader audience with the inclusion of
more marker-related technologies, testing with various ad-
ditional robot manufacturers, and with higher-performance
computational power.

Toolkit
The toolkit, with step-by-step installation instructions and
links, the hardware setup (with the detailed Bluetooth in-
structions and examples), and sample Overwatch control
software, along with the accompanying videos are located
at: http://dilab.eecs.utk.edu/Overwatch

References
ARToolkit, I. 2008. ARToolkit, University of Washington,
HITLab, http://www.hitl.washington.edu/artoolkit.
EPFL. 2011. Ecole Polytechnique Federale de Lausanne,
http://www.e-puck.org/index.php.
Hoare, J.; Edwards, R.; MacLennan, B.; and Parker, L. 2011.
Myro-C++: An Open Source C++ Library for CS Education
Using AI. Proceedings of the 24th International Confer-
ence of the Florida Artificial Intelligence Research Society
(FLAIRS 2011).
IPRE. 2007. Institute for Personal Robots in Education,
www.roboteducation.org.
Liu, W., and Winfield, A. F. 2011. Open-hardware e-puck
linux extension board for experimental swarm robotics re-
search. Microprocessors and Microsystems 35(1):60 – 67.
Parallax, I. 2012. Scribbler Robot, from Par-
allax, http://www.parallax.com/ScribblerFamily/tabid/825/
Default.aspx.
Robocup. 2012. Robocup Soccer Tournament,
http://www.robocup.org.
Stevens Institute of Technology. 2010. RoboCup Soccer
SSL: Platform Design Phase VI Final Report. Report for
Senior Design Project 1(1):1 – 110.
Vicon, I. 2011. Vicon Inc., http://www.vicon.com.

556

