
Improving Decision Diagrams for Decision Theoretic Planning

Jean-Christophe Magnan and Pierre-Henri Wuillemin
Laboratoire d’Informatique de Paris VI

firstname.lastname@lip6.fr

Abstract

In the domain of decision theoretic planning, the factored
framework (FMDP) has produced optimized algorithms using
Decision Trees (SVI, SPI) and Algebraic Decision Diagrams
(SPUDD). However, the state-of-the-art SPUDD algorithm re-
quires i) the problem to be specified with binary variables and
ii) the data structures to share a common order on variables.
In this article, we propose a new algorithm within the fac-
tored framework that eliminates both these requirements. We
compare our approach to the SPUDD algorithm. Experimen-
tal results show that our algorithm allows significant gains in
time, illustrating a better trade-off between theoretical com-
plexity of algorithms and size of representation.

Introduction
In Decision Theoretic Planning, Markov Decision Process
(MDP) is an important modeling tools. This framework mod-
els a decision problem as sets of states and actions, prob-
abilistic transitions from state to state under actions and
rewards triggered by specific states on certain transitions.
Two main algorithms, value iteration (VI) and policy itera-
tion (PI), exploit this representation and enable to efficiently
solve planning problems. Indeed, these algorithms have a
linear complexity in regard of the state space size (Puterman
1994).

Unfortunately, state spaces for realistic problems are of-
ten too large to find out optimal solutions in reasonable
time. To deal with that issue, some promising solutions have
emerged around the concept of abstraction : considering and
treating similar states together leads to a reduction in the
complexity of the state space enumeration. Several variants
of MDPs use that approach, for instance hierarchical MDPs
(Guestrin 2002) or Factored MDPs (FMDPs: Boutilier, Dean,
and Hanks 1999).

FMDPs rely on the description of the system by a set of
variables. Each state of the system is represented by a unique
instantiation of those variables. The different inputs of the
model are then factored: probability distributions with dy-
namic Bayesian networks (dBNs: Dean and Kanazawa 1989)
and rewards with additive decomposition. However, condi-
tional probability tables used in a dBN can still grow expo-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nentially. Furthermore, the whole enumeration of the state
space during VI and PI remains an issue.

Boutilier, Dearden, and Goldszmidt proposed a solution
to those problems using decision trees to represent condi-
tional probability tables, and reward functions. Such com-
pact representation of each function allows to design effi-
cient algorithms that avoid the exhaustive enumeration of
all states: based on VI and PI, Structured Value Iteration
(SVI) and Structured Policy Iteration (SPI) significantly im-
prove the experimental time and space complexity. To fur-
ther improve these complexities, Hoey et al. proposed an-
other and more compact graphical representation : Algebraic
Decision Diagrams (ADD). ADDs are a reduced version of
decision trees where isomorphic subgraphs are merged to-
gether (Bryant 1986). From there, research in this domain
has mainly focused on gains obtained by approximations :
approximated ADDs (St-aubin, Hoey, and Boutilier 2000),
basis functions (Guestrin, Parr, and Venkataraman 2003),
etc.

However ADDs hold some drawbacks. First, all the vari-
ables in the model have to be binary. Variables with three or
more values have to be decomposed in binary variables to
be inserted in ADDs. This recasting artificially increases the
state space. The second drawback is that ADDs compactness
strongly depends on their inherent order on variables. Find-
ing an order on variables that would produce an optimally
compacted ADD is NP-hard (Friedman and Supowit 1990).
Moreover, the algorithm for operations on two ADDs (for
instance addition, multiplication or maximization) requires
that orders on those ADDs are the same. As a consequence,
a global order on variables is needed for the algorithm and
can be largely sub-optimal for certain ADDs, leading to an
artificial increase in the complexity for these operations.

The purpose of this paper is to propose new ways to adress
those issues. Its main contributions are i) to propose a more
efficient data structure to represent functions of multi-valued
variables, and ii) to present a new algorithm for operations
on two decision diagrams without imposing a common or-
der on both diagrams. This article is organized as follows:
Section 2 covers MDPs and the use of compact representa-
tion to find optimal policy. ADDs and the limitations they
brought will be tackle there, as well as the new model we
propose to use instead. Section 3 presents the new algorithm
for the operation on two decision diagrams. Finally, the ex-

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

621

perimentations in Section 4 illustrate the efficiency of these
improvements.

Factored Markov Decision Processes
We assume that our planning problem can be modeled by a
fully-observable MDP. Let S and A be respectively the set
of states and the set of actions. The conditional probabil-
ity P(s|a, s ′) represents the probability of reaching state s ′
when action a is performed in state s. In order to simplify the
presentation, the reward is formalized as a real-value func-
tion R(s) depending only on the current state s.

A stationary policy π : S → A defines the action a to
execute when system reaches the state s. Assuming that the
objective is to find an optimal policy over an infinite time
horizon, we can compare two policies upon the expected to-
tal discounted reward defined on every state:

Vπ(s) = R(s) + γ
∑
s ′∈S

P(s, π(s), s ′) · Vπ(s ′) (1)

where γ is used to discount future rewards. Vπ is called the
value function for policy π. An optimal policy π∗ is a policy
that verifies: ∀π,∀s ∈ S, Vπ∗(s) ≥ Vπ(s).

To find the optimal policy, VI algorithm consists in con-
verging toward optimal value function by iterative updating:

V0(s) = R(s)

Vn+1(s) = R(s) + γ ·max
a∈A

∑
s ′∈S

P(s ′|a, s) · Vn(s ′) (2)

At each iteration of the algorithm, Vn has to be updated
for every state s ∈ S. The linear complexity of each itera-
tion is an issue because S happens to be large even for sim-
ple problems. A solution is to enhance the compactness of
functions P(.|s, a), R and V with graphical and factored rep-
resentations using discrete variables.

Let Xi be a multi-valued variable taking its values over a
finite discrete domainDXi

. Whenever Xi is instantiated (i.e.
set to a given value in DXi

), it will be noted xi.

Definition (Decomposability of state space).
A state space S is decomposable if and only if there exists

a set of discrete and finite variables X = {X1, . . . , Xn} that
unequivocally characterizes S.

Each state s ∈ S is then an instantiation of those variables
(s = {x1, . . . , xn}).

When S is decomposable, transition probabilities, value
function and rewards are expressed as functions of
{X1, . . . , Xn} and, as a consequence, can be compactly rep-
resented by function graphs.

Let f be a function over the variables X1, . . . , Xn. We de-
note f|Xi=b the restriction of f on Xi = b. The support of f
is the set of variables that f really depends on, i.e.,

support(f) = {Xi |∃u, v ∈ DXi
s.t. f|Xi=u 6= f|Xi=v}

Note that ∀Xi, support(f|Xi=b) ⊆ support(f) \ {Xi}.
Indeed the support of the restriction discards all non relevant
variables and not only the variable Xi.

Definition (Function Graph).
Let f be a function over {X1, . . . , Xn}. A directed acyclic

graph (DAG) Gf(N,A) is a function graph of f
• if f constant then Gf has a unique node r ∈ N, r.val = f
• if f non constant thenGf has a unique node r ∈ Nwithout

parent. Moreover,
– r.var ∈ support(f)
– ∀u ∈ Dr.var, ∃!nu ∈ N such that:
◦ (r, nu) ∈ A
◦ subgraph(nu) = Gf|r.var=u

Note that in a function graph, if a node n is terminal (i.e.
without children) thenn is bound to a constant value (n.val)
else n is associated to a variable (n.var).

For any node n of Gf, subgraph(n) is a function graph
for the restriction of f defined by the instantiation of every
variables crossed on the path from the root to n. We note
f|n this restriction. Note that several path may lead to the
same subgraph, characterizing the fact that several restric-
tions may be equal. For instance, in Figure 1(c),

f|terminal node 2 = f|X=0,Y=2 = f|X=1,Y=1 = 2

DX = {0, 1}
DY = {0, 1, 2}
DZ = {0, 1}

f(X, Y, Z) = X+ Y

support(f) = {X, Y}

(a)

X

Y Y

0 1 2 1 2 3

0

0 01

1

2 1 2

(b)

X

Y Y

0 1 2 3

0

0 1 2

1

0 1 2

(c)

Figure 1: Two function graphs for the same function.

As shown in Figure 1, there may be several function
graphs for one function. But they all share a same property
of compactness: no irrelevant variable can appear in a func-
tion graph due to the use of support(.). Thus, two states
that share the same value for represented function but differ
on an irrelevant variable will be viewed as a single abstract
state by that representation.

Functions graphs give a compact and efficient way to rep-
resent the whole state space. Furthermore, dedicated algo-
rithms for operations (addition, multiplication, maximiza-
tion) on function graphs enable to create composed func-
tions without an explicit enumeration of all states.

Function Graphs in MDPs
The optimal policy search using VI algorithm can be re-

formulated using function graphs. Indeed, let V , R and Pa
be respectively the function graphs for the value function,
the reward, and the probabilistic transitions for each action
a ∈ A. The update will be done exactly like in equation
2. The only differences are the data structures and the dedi-
cated operations used at each iteration :

V0 = R and Vn+1 = R+ γ ·max
a∈A

∑
s ′∈S

Pa · Vn

In a factored MDP (FMDP: Boutilier, Dearden, and Gold-
szmidt 1995), the state space is decomposable. Besides, the
assumption of some conditional independences allow to fac-
torize the probability distribution: Pa(s ′|s) = ΠiPa(X ′i|s).

622

The first data structure used as function graph for opti-
mal policy search was the decision tree (as in Figure 1(b)).
SVI and SPI rely on such data structure and on the specific
algorithm for operations on it (Boutilier, Dean, and Hanks
1999).

As shown in Figures 1(b), decision trees may contain sev-
eral isomorphic subgraphs. Indeed due to the tree structure,
those subgraphs can not be merged. That duplication unnec-
essarily increases the graph size.

Rather than tree, Hoey et al. proposed then to use Alge-
braic Decision Diagrams (Bahar et al. 1993) as function
graphs (as in Figure 1(c)). ADDs are a generalization of Bi-
nary Decision Diagrams (BDDs: Bryant 1986) used to repre-
sent real functions of boolean variables (f : Bn→R). Their
particularities are that they are reduced and ordered.
Definition (Reduced Function Graph).

Gf is reduced ⇐⇒ ∀ nodes n 6= n ′, f|n 6= f|n ′
When a function graph is reduced, two isomorphic sub-

graphs are necessarily merged together.
Definition (Ordered Function Graph).

A function graph Gf is ordered ⇔ ∃ �Gf
complete order

on support(f), s.t. ∀ nodes n1, n2 non terminal of Gf,

n2 ∈ desc(n1) ⇒ n1.var �Gf
n2.var

When a function graph is ordered, the algorithm for re-
ducing it is polynomial.

Bryant describes the algorithm for the operations on
BDDs. The ADDs algorithm relies on the same principle. In
SPUDD, Hoey et al. proposes a version of VI algorithm using
ADDs as data structure.

However, ADDs represent only functions of boolean vari-
ables. As a consequence, all multi-valued variables have
to be encoded with binary variables. A first issue is raised
by such an encoding ; the state space size is artificially
increased. Indeed to code a variable with n values, one
needs dlog2ne binary variables. Those dlog2ne variables
will generates d2log2ne possibles states. Which means that
d2log2ne − n states are artificially created and have no real
existence. Yet the algorithms (VI, PI, etc.) will search an op-
timal policy for those states.

In this article, we investigate the use of Multi-valued De-
cision Diagrams (MDDs: Srinivasan et al. 1990). MDDs sim-
ply generalize the concept of ADDs to multi-valued variables
(see for instance, Figure 1(c) where Y is ternary). The artifi-
cial increase in variables is then avoided, reducing therefore
both graph compactness and computation time.

We also propose to add a default arc mechanism : wher-
ever a majority of arcs are pointing to the same node, those
arcs are replaced by a default arc. This had the advantage of
simplifying the graph and easing the computations. For in-
stance, in the MDD of Figure 4(a), four default arcs (dashed
lines) replace fourteen arcs.

As already evoked, the second drawback of ADDs (and
of any reduced and ordered function graphs, i.e. MDDs) is
that their compactness strongly depends on the inherent vari-
able order. However, the current algorithm for operations on
ADDs impose that they share the same order. As a conse-
quence, that common order may not be the optimal one for

each of them or for the result of the operation. Taken that an
operation between two ADDsD1 andD2 is inO(|D1|·|D2|),
this common order tends to arbitrarly increase the computa-
tion complexity.

In the next section, we describe a new algorithm of combi-
nation on MDDs that will not impose such a common order.

Operations on Decision Diagrams
Let G1, G2 and G be three reduced and ordered function
graphs (BDDs, ADDs or MDDs) such that G = G1 � G2
(� being either addition, or multiplication or maximization).
We’re looking for an algorithm that build G from G1 and
G2, without imposing that orders �1 from G1 and �2 from
G2 are the same. First, we will shortly present the state-
of-the-art algorithm with common order (for further details,
please refer to (Bryant 1986)).

Operations with Common Order Constraint
Let � be the common order imposed on G1, G2 and G for
the operation. The algorithm of combination relies on simul-
taneous depth-first explorations of both G1 and G2. Each
step of the algorithm is a recursive call to a same function.
This function takes two node n1 ∈ G1 and n2 ∈ G2, start-
ing from the root of both graphs. First, it determines how
they should be explored :

1. if n1 and n2 are both terminal, then n1.val � n2.val is
computed,

2. if only one node is non-terminal, then exploration is only
done on this node,

3. if both nodes are non-terminal then

a. if n1.var = n2.var, the exploration is done simulta-
neously on both nodes,

b. if n1.var � n2.var (resp. n2.var � n1.var), then
the exploration is done only on n1 (resp. n2).

Exploration consists in calling the function again on each
child of the visited node n (one for each value of n.var,
n being either n1, or n2). The called node from the other
diagram remains unchanged, unless it is simultaneously ex-
plored. In which case, it is its child selected by the current
value of n.var that is called upon.

When exploration on every children is over, or a value
has been computed, a node nG is inserted in G. If a value
was computed, it is bound to that terminal node. Otherwise,
variable associated to n is bound to nG. The children of nG
are the resulting nodes from the explorations on n children.
This procedure ensures that every variables will be in the
correct order in G.

Due to the assumption of a common order, the algorithm
is quite simple. Its complexity is clearly in O(|G1|.|G2|)
when bothG1 andG2 are trees. For BDDs, ADDs and MDDs,
a pruning mechanism is needed in order to keep this com-
plexity (see below for more details).

Building an Order for Resulting Decision Diagram
When removing the common order constraint, we have to
deal with different orders: �1 for G1, �2 for G2 and �G

623

for G = G1 � G2. The question about how to build the
order �G immediately raises.

With the objective of still performing a deep-first recur-
sive and simultaneous exploration on G1 and G2, one has to
analyze a new case at each step: let n1 ∈ G1 and n2 ∈ G2
be the considered nodes at any step. It may now happen that
n1.var �1 n2.var and n2.var �2 n1.var. In that case,
the questions are which variable will precedes the other in
�G and in which order do we perform exploration on n1
and n2.

Definition (Retrograde Variable).
Let �1 and �2 be two orders on a set of variables X. A

variable Xr ∈ X is said to be retrograde in �2 w.r.t. �1 if ∃
Xp ∈ X s.t. Xr �1 Xp and Xp �2 Xr.
Corollary. Xp is retrograde in �1 w.r.t �2 because of Xr
(at least).

We note the set of retrograde variables:
<1,2 = {Xi ∈ X,Xi retrograde in �2 w.r.t. �1}.
D<1,2

is the domain of that set. The size of that domain
is |D<1,2

| =
∏

Xr∈<1,2

|Xr|.

Note that in general <1,2 6= <2,1 and |D<1,2
| 6= |D<2,1

|.
Whenever <1,2 6= ∅, our algorithm will have to select for
�G to be compatible with �1 or �2. We propose to arbi-
trarily privilege �1 (see below for a discussion about that
choice).
�G will then have the following properties: (i) �G ex-

tends �1 and (ii) �G extends �2\<1,2
. These two proper-

ties are sufficient to build �G from �1 and �2.

Exploration and construction
Now that G is ordered by �G, its construction upon explo-
ration of G1 and G2 can be performed. As for the algorithm
with common order constraint, exploration will be recursive
and simultaneous on both decision diagrams.

Since �G extends �1, the set of retrograde variables that
may be encountered is <1,2.

By definition, for all Xr ∈ <1,2, there exists at least one
variable Xp ∈ X which verifies that Xr �G Xp but Xp �2
Xr. Note that occurrences of Xp preceeding Xr only happen
in G2.

Lemma. During any recursive algorithm to build G, any
exploration on variable Xr must have begun before any ex-
ploration on variable Xp.

Proof. Exploration is performed by recursive calls and a re-
sulting node is created at the end of each call. That node has
precedence over all the nodes recursively created during that
call.

Then, in order to verify that Xr �G Xp, any needed re-
cursive call on Xr must have begun before any recursive call
on nodes bound to Xp starts.

This lemma implies that our algorithm will have to possi-
bly anticipate an exploration on Xr whenever an exploration
on Xp is required in G2. This has a consequence in term of
complexity that will be analyzed below.

An anticipated exploration of Xr on a node n2 consists in
performing a normal exploration on an artificially inserted
node nr such that nr.var = Xr and all its children are n2.

The end of this section technically characterizes the spe-
cific situation where this anticipation is required. Table 1
presents the core function for the exploration and the dif-
ferent cases it has to deal with.

Let (n1, n2) be the visited nodes at current step of our
algorithm. If subgraph(n2) contains Xr1, the algorithm
possibly have to anticipate an exploration on Xr. On the con-
trary, if subgraph(n2) does not contain Xr, the algorithm
can normally perform the exploration on n2.

An exploration on Xp in G2 is required if and only if
n2.var = Xp and n2.var �G n1.var. Before that, ex-
ploration goes on normally. In particular, Xr can be crossed
in G1. It is then normally explored regardless its presence in
G2.

Assume that exploration on Xp is required and that Xr
possibly have to be anticipated. Two cases can occur :
Case (a). If Xr ∈ current explored path on G1 then Xr has
already been instantiated. Hence no anticipated exploration
on Xr is needed.
Case (b). If Xr /∈ current explored path on G1 then Xr has
not yet been explored. Hence the anticipated exploration of
Xr is needed before exploring Xp on G2.

A
r1

n1

� B

n2

r2

(a)

A

n1

� B

n2

r2

(b)

Figure 2: In case (a), no anticipated exploration is needed:
Xr is already being explored on r1. In case (b), anticipated
exploration is needed: Xr has not been crossed. Current vis-
ited nodes are (n1, n2). r1.var = r2.var = Xr.

Note that both cases imply that during the explorations in
G2, a node bound to Xr will be crossed. The algorithm will
then immediately skips onto the child selected by the current
value of Xr.

Pruning and complexity
In the algorithm with common order constraint, several ex-
plorations of a same pair of subgraphs always lead to the
same resulting structure. Paths that brought to their root do
not alter the result. As a consequence, once a pair of nodes
has been visited, the resulting node is stored in a table along
with this pair as a key. Pruning consists then in looking for
the pair of nodes in the table, and taking the result. This
guarantees a complexity in O(|G1| · |G2|), since every pair
of nodes are visited only once.

In the new algorithm, pruning can’t be done so easily.
Suppose that for the current nodes (n1, n2), n2.var = Xp
and Xr ∈ subgraph(n2). As evoked just above, when a
node bound to Xr is encountered in G2, exploration will au-
tomatically jump onto the child selected by the current value

1More precisely, Xr ∈ support(subgraph(n2))

624

PROCEDURE Explore(n1, n2, FixedVars) :
CASE: n1.isTerminal and n2.isTerminal

RETURN Terminal(n1.val � n2.val)
CASE: n2 non terminal and ∃nr, nr ∈ n2.Descendants

and nr.var ∈ <1,2
∀ modalitym ∈ Dnr.var :

nm = Explore(n1,n2, FixedVars ∪ {nr.var = m});
RETURN NonTerminal(nr.var, children = {nm}m∈Dnr.var);

CASE: n1.var �G n2.var or n2.isTerminal
∀ modalitym ∈ Dn1.var :

nm = Explore(n1.child(m), n2, FixedVars ∪ {nr.var = m});
RETURN NonTerminal(n1.var, children = {nm}m∈Dn1.var);

CASE: n2.var �1�2
n1.var or n1.isTerminal

If ∃m, n2.var = m ∈ FixedVars
RETURN Explore(n1, n2.child(m), FixedVars);

Else

∀ modalitym ∈ Dn2.var :

nm = Explore(n1, n2.child(m), FixedVars);
RETURN NonTerminal(n2.var, children = {nm}m∈Dn2.var);

CASE: n1.var = n2.var
∀ modalitym ∈ Dn1.var :

nm = Explore(n1.child(m), n2.child(m), FixedVars);
RETURN NonTerminal(n1.var, children = {nm}m∈Dn1.var);

END PROCEDURE

Table 1: Operation between MDD without common order.

of Xr: only a part of subgraph(n2) is then explored. The
consequence is that subgraph(n2) has to be re-explored
for each value of Xr.

Unnecessary explorations can still be pruned : once an
exploration is done for a value of the retrograde variable,
there’s no need to repeat this exploration. So the key used to
know if a subgraph has already been visited simply has to
be extended. It needs to indicate which value the retrograde
variable had when the exploration was performed.

The multiple explorations due to retrograde variables af-
fect the complexity of the algorithm. The increase in com-
plexity is by the size of the domain of the retrograde vari-
ables D<1,2

. Then complexity is now in O(|G1| · |G2| ·
|D<1,2

|).
But this worst case complexity has to be pondered.

Firstly our algorithm only re-explore subgraphs of G2 when
needed. Yet the given complexity is determined as if all the
re-explorations concerned the whole graph. Unfortunately,
a more accurate upper bound is difficult to obtain because
it would demand a topological analysis of the graphs. Sec-
ondly, G1 and G2 have now their own order. Then the size
of G1 and G2 can be smaller in this complexity than in the
complexity of the algorithm with common order. Thirdly,
�G is compatible either with �1 or with �2 (we arbitrar-
ily chose �1 for presentation purposes). As a consequence,
we have to deal either withD<1,2

or withD<2,1
. But since

|D<1,2
| 6= |D<2,1

|, another tradeoff can be found here.
This discussion is confirmed in the experiments described

in the next section.

Experiments and Observation
We have implemented MDD and SPUmDD (the implementa-
tion of our algorithm) using the aGrUM C++ library devel-

oped at LIP62. Since the standard implementation of SPUDD
uses an highly optimized library for ADD (but not for MDD),
we have coded our own version of SPUDD in order to com-
pare the algorithms on a time basis.

Meanwhile, size of computed diagrams is the most inter-
esting measure. Indeed, as seen before, the complexity of
operations depends on the size of the diagrams. The size of
the computed value function is particularly relevant: on each
iteration, value function is used to compute various other de-
cision diagrams that are themselves aggregated using Equa-
tion 2. Therefore, the size of value function is a good indi-
cator of the efficiency of representations.

No reordering is performed during execution in both algo-
rithms. For SPUDD, the common order on variables is fixed
and specified at the beginning. For SPUmDD, each MDD has
its own order. That order is chosen so that the overall com-
plexity to obtained the MDD is minimal (see previous sec-
tion).

Table 2 shows result of value iteration using SPUDD and
SPUmDD on various MDPs. State space size gives the total
number of states (including the ones induced by binarization
of multi-valued variables). Internal nodes gives the number
of non-terminal nodes inside the computed value functions
at last iteration (the number of terminal nodes is the same
for both methods). And time (in second) is the average time
to reach stopping criterion (ε was set to 10−5) over 30 runs.

We examine the efficiency of our algorithm on two stan-
dard problems: coffee robot and factory. The interest of cof-
fee robot planning problem is that it contains only binary
variables. It allows to see if SPUmDD remains efficient on
such cases. Results show that SPUmDD got same behavior
than SPUDD. Yet it is slightly slower, showing that on purely
and small binary problems ADDs are sufficient.

In factory, the interest resides in the mixed of binary and
ternary variables. The conversion of ternary variables in bi-
nary variables generates an increase in the number of vari-
ables as much as an increase in state space size. Results
shows clearly that advantage can be taken of by SPUmDD.

Notice that factory1 and factory2 only differ on one vari-
able that is not relevant for value function (it has no inci-
dence on other variable). Both factories got eventually the
same structure, showing clearly that MDD can eliminate non
relevant variables as ADDs does.

S

E

S

E

Figure 3: Maze examples: blocked cases are in dark gray.
Impossible states generated by binarization in light gray.

To examine the behavior on problems with multi-valued
variables, two mazes have been created. First maze (Figure
3) has 30 cases, 8 of them being blocked. It only requires

2Laboratoire d’Informatique de Paris VI

625

SPUDD SPUmDD SPUmDD in comparison with SPUDD

States Space Internal
Nodes

Time (in
s)

States Space Internal
Nodes

Time (in
s)

States
Space

Internal
Nodes

Time

Coffee Robot 64 21 2.06 64 21 2.19 100.0% 100.0% 106.3%
Factory 131 072 1 269 1 751.45 55 296 473 661.93 42.2% 37.3% 37.8%

Factory 0 524 288 2 131 2 447.92 221 184 733 1 596.51 42.2% 34.4% 65.2%
Factory 1 2 097 132 2 889 8 796.10 884 736 1 283 5 181.56 42.2% 44.4% 58.9%
Factory 2 4 194 304 2 889 8 916.83 1 769 472 1 283 5 986.89 42.2% 44.4% 67.1%
Factory 3 33 554 432 3 371 27 240.00 10 616 832 2 001 17 439.90 31.6% 59.3% 64.0%
Maze 5x6 64 34 2.51 30 6 0.86 46.9% 17.7% 34.3%
Maze 8x8 64 58 3.32 64 9 1.05 100.0% 15.5% 31.6%

Table 2: Results using SPUDD and SPUmDD. The last columns illustrate the improvements in space and time using SPUmDD.

X

Y Y Y Y

Up RightDown Left

4 1 3 2

15 3 4 42 1 6

5

6

6
6

2

(a)
X3

X2

X2

X1

X1 X1

Y3

Y3 Y3 Y3 Y3

Y2

Y2 Y2 Y2 Y2 Y2 Y2

Y1 Y1 Y1 Y1 Y1

Up RightDown Left

(b)

Figure 4: Maze Optimal Policy (a) with SPUmDD (dashed
line stands for default arc) and (b) with SPUDD (dashed line
from node X stands for x).

two multi-valued variables (X and Y) of 5 and 6 modalities
to represent its 30 possible states. However, its translation
in binary variables demands 3 variables on each axes. Those
variables generate a grid of 64 states where 34 are impossi-
ble. Second maze is a 8 by 8, and thus generates no impos-
sible states on translation into a binary problem.

Here again, SPUmDD shows itself better than SPUDD,
gaining both on time and size representation. Figure 4 shows
the simplification of the policy obtained for the first maze
with SPUmDD compared to SPUDD.

Conclusion
In this paper, we propose new improvements in the factored
framework for decision theoretic planning.

First, we investigate the use of multi-valued decision di-
agrams which avoids the transformations of multi-valued
variables into sets of binary variables. Such transformations
increase the diagram size and constrain the algorithm to deal
with states that are impossible for the modeled system. Our
extension to multi-valued decision diagrams allows compu-
tations on simpler structures.

We then propose a new algorithm for operations on such
decision diagrams that eliminates the second main drawback
of the state-of-the-art. Our algorithm does not force the di-
agrams to share a common order of variables. In spite of an
increase in worst case complexity, SPUmDD shows a signif-
icant gain in time and in size when compared to SPUDD.

With these improvements, the optimal policy search oper-
ates directly on the inputs of the problem (no binarization,
no reordering) and produces more readable solutions. This is
an opening for future works on incremental algorithms. Par-
ticularly, we will look further in dynamical reordering for
the policies and incremental learning of the model.

References
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.; Macii,
E.; Pardo, A.; and Somenzi, F. 1993. Algebraic decision diagrams
and their applications.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage. JAIR
11:1–94.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Exploiting
structure in policy construction. In IJCAI-95, pp.11041111.
Bryant, R. E. 1986. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers 35:677–691.
Dean, T., and Kanazawa, K. 1989. A model for reasoning about
persistence and causation. Comput. Intell. 5(3):142–150.
Friedman, S. J., and Supowit, K. J. 1990. Finding the optimal vari-
able ordering for binary decision diagrams. IEEE Trans. Comput.
39(5):710–713.
Guestrin, C.; Parr, R.; and Venkataraman, S. 2003. Efficient solu-
tion algorithms for factored mdps. Journal of Artificial Intelligence
Research 19:399–468.
Guestrin, C. 2002. Distributed planning in hierarchical factored
mdps. In In Proceedings of the Eighteenth Conference on Uncer-
tainty in Artificial Intelligence, 197–206.
Hoey, J.; St-aubin, R.; Hu, A.; and Boutilier, C. 1999. Spudd:
Stochastic planning using decision diagrams. In In Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence,
279–288. Morgan Kaufmann.
Puterman, M. L. 1994. Markov decision processes: Discrete
stochastic dynamic programming.
Srinivasan, A.; Kam, T.; Malik, S.; and Brayton, R. K. 1990. Al-
gorithms for discrete function manipulation. In ICCAD’90, 92–95.
St-aubin, R.; Hoey, J.; and Boutilier, C. 2000. Apricodd: Ap-
proximate policy construction using decision diagrams. In In Pro-
ceedings of Conference on Neural Information Processing Systems,
1089–1095.

626

