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Abstract

One of the major challenges in bioinformatics is se-
lecting the appropriate genes for a given problem, and
moreover, choosing the best gene selection technique
for this task. Many such techniques have been devel-
oped, each with its own characteristics and complexi-
ties. Recently, some works have addressed this by intro-
ducing ensemble gene selection, which is the process of
performing multiple runs of gene selection and aggre-
gating the results into a single final list. The question is,
will ensemble gene selection improve the results over
those obtained when using single gene selection tech-
niques (e.g., filter-based gene selection techniques on
their own without any ensemble approach)? We com-
pare how five filter-based feature (gene) selection tech-
niques work with and without a data diversity ensem-
ble approach (using a single feature selection technique
on multiple sampled datasets created from an original
one) when used for building models to label cancer-
ous cells (or predict cancer treatment response) based
on gene expression levels. Eleven bioinformatics (gene
microarray) datasets are employed, along with four fea-
ture subset sizes and five learners. Our results show that
the techniques Fold Change Ratio and Information Gain
will produce better classification results when an en-
semble approach is applied, while Probability Ratio and
Signal-to-Noise will, in general, perform better without
the ensemble approach. For the Area Under the ROC
(Receiver Operating Characteristics) Curve ranker, the
classification results are similar with or without the en-
semble approach. This is, to our knowledge, the first pa-
per to comprehensively examine the difference between
the ensemble and single approaches for gene selection
in the biomedical and bioinformatics domains.

Introduction
Gene expression profiles are an important tool in discover-
ing patterns in the biomedical and bioinformatics domains.
However, one significant challenge with these datasets is
high dimensionality, the problem of having a very large
number of features (genes) for each sample or instance. One
method for combating this issue is through the use of gene
selection techniques.
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Gene selection is a specific application of feature selec-
tion, a data pre-processing technique from the field of data
mining. The goal of gene selection is to choose an optimum
subset of the full gene set and only use the gene subset in
subsequent analysis. This is achieved by identifying the ir-
relevant and redundant genes and removing them from con-
sideration, leaving only the optimum subset. The benefits
of gene selection include reduced computation time, poten-
tially improved classification, and a set of genes which can
be further examined using laboratory techniques to deter-
mine if they are potentially of interest. Many gene selection
techniques exist, which provides many options for practi-
tioners but can also make it difficult to choose the appropri-
ate technique for a given situation.

One option to improve the results of some gene selection
techniques is to apply an ensemble approach to the process
of gene selection. Ensemble gene selection is the process of
performing multiple runs of gene selection and then aggre-
gating those results in to a single feature subset. There are
a number of benefits of ensemble feature selection includ-
ing: more stable feature lists (the chosen features are more
likely to remain valid when changes to the data occur) and
comparable or superior classification results compared to the
results from the single gene selection approach (e.g., using a
single gene selection technique alone without an ensemble).

Despite the increased focus on ensemble gene selection
in recent years, there is still the question of whether or not
a gene selection technique will be improved through the
use of the ensemble approach. This is an important fact to
consider due to the increased computation time associated
with ensemble techniques (multiple runs of gene selection
vs. a single run of gene selection). Our paper is a thor-
ough study of the effects of the ensemble approach on five
gene (feature) selection techniques, when used to identify
cancerous cells (or predict patient response to cancer treat-
ment) on eleven biomedical datasets (specifically, gene mi-
croarray datasets). All five techniques were tested using both
the ensemble and single gene selection approaches. We also
used four feature subset sizes and five classifiers (learners)
to build the models. Our results show that Information Gain
and Fold Change Ratio favor the ensemble gene selection
approach and that the Signal-to-Noise and Probability Ratio
techniques favor the single gene selection approach. The fi-
nal technique Area Under the ROC curve does, in general,
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favor single selection but in three of the five learners ensem-
ble gene selection outperforms single gene selection 50% of
the time; thus, the proper choice will depend on the specifics
of the experiment.

This paper is organized as follows. The Related Works
section contains some background information regarding
our topic. The Methodology section contains the process of
our experiments. The Results section describes what we ob-
served during our experiments. Lastly, the Conclusion sec-
tion presents our findings and future work.

Related Works
Due to the high dimensionality (large number of genes) of
DNA microarray datasets, dimensionality reduction tech-
niques are a necessary preprocessing step. A study per-
formed by Inza et al. (Inza et al. 2004) found that classifi-
cation performed on reduced feature subsets derived from
the original DNA microarray datasets outperformed classifi-
cation using the whole feature set in a majority of cases, and
that feature selection drastically reduced computation time.
However, the large degree of high dimensionality causes
a number of feature selection techniques to be infeasible
in terms of computational time (Somorjai, Dolenko, and
Baumgartner 2003). Therefore, a majority of the work on
feature selection has been using univariate feature rankers.

However, univariate feature ranking techniques are very
well suited for work in bioinformatics. There are a num-
ber of reasons why these techniques are ideal for this prob-
lem, including: the output of the techniques (a ranked list of
features) is intuitive and easy to understand; the ranking of
genes makes it easy for researchers to further validate the re-
sults through laboratory techniques; and the relatively small
computational time when compared to other types of feature
selection techniques (such as filter-based subset evaluation,
wrapper approaches, etc.) (Saeys, Inza, and Larraaga 2007).

The use of ensembles for feature selection is a rela-
tive new concept. Originally, ensembles were used to de-
velop models for decision making. It has been shown that
these ensemble learners are competitive with other learners
and in some cases are superior even in the biomedical do-
main (Dittman et al. 2011). Now, there have been studies in
applying the ensemble concept to the process of feature se-
lection (Haury, Gestraud, and Vert 2011). Current research
has shown that not only do models built with feature subsets
created using ensemble methods have comparable (or better)
classification performance (when compared to models built
using a single feature selection method), but the feature sub-
sets themselves are more robust and can be appropriately
applied to other data from the same problem (Awada et al.
2012).

Methodology
Datasets
Table 1 contains the list of datasets used in our experiment
along with their characteristics. The datasets are all DNA
microarray datasets acquired from a number of different
real world bioinformatics, genetics, and medical projects.

Table 1: Details of the Datasets
Name

Total # # of Average
of Instances Attributes AUC

colon 62 2001 0.79413
ovarian mat 66 6001 0.78958

prostate 136 12601 0.78225
Brain Tumor 90 27680 0.72096

lungcancer-ontario 39 2881 0.71968
ECML Pancreas 90 27680 0.67226

mulligan-r-pd 126 22284 0.65265
breast-cancer 97 24482 0.60085
mulligan-r-nr 169 22284 0.59308
DLBCL-NIH 240 7400 0.58527

CNS 60 7130 0.51893

As some of the gene selection techniques used in this pa-
per require that there be only two classes, we can only
use datasets with two classes (in particular, either cancer-
ous/noncancerous or, in the case of the mulligan-r-pd and
mulligan-r-nr datasets, relapse/no relapse following cancer
treatment). The datasets in Table 1 show a large variety
of different characteristics such as number of total instances
(samples or patients) and number of features. The final col-
umn, Average AUC (the Area under the ROC Curve, where
the ROC Curve itself is a plot of True Positive Rate versus
False Positive Rate, and thus the AUC shows how the model
balances these two values), refers to the classification per-
formance on these datasets when building models without
feature selection. This is used to show that in addition to
having many thousands of features, these datasets are no-
table for being difficult to model (such that models do not
perform well), which suggests that they may also be diffi-
cult to select good features from. The values were calculated
using a set of six different classification models: 5 Near-
est Neighbor, Multilayer Perceptron, Naı̈ve Bayes, Support
Vector Machine, C4.5 D, and C4.5 N using the Weka data
mining tool set (Witten and Frank 2011) and using five-fold
cross-validation (see the Cross-Validation section for the de-
tails on cross-validation). The 5 Nearest Neighbor, Multi-
layer Perceptron, Naı̈ve Bayes, and Support Vector Machine
are decribed in the Classification section of this paper. C4.5
is a decision tree learner which uses information gain to se-
lect features for splitting the tree at each level. C4.5 D refers
to using the C4.5 learner with the default values and C4.5 N
refers to using a C4.5 variant with Laplace smoothing and
no pruning. The reason for using these difficult datasets is
because with the more difficult datasets, it is necessary to
use techniques such as feature selection in order to improve
the results of classification.

Gene Selection Techniques
In this paper we use five univariate or filter-based feature
(gene) selection techniques: Area Under the ROC Curve
(ROC) (Dittman et al. 2011), Probability Ratio (PR) (For-
man 2003), Fold Change Ratio (FCR) (Jeffery, Higgins,
and Culhane 2006), Signal-to-Noise (S2N), and Information
Gain (IG) (Hall and Holmes 2003). The filter approach uses
only the raw dataset to decide which features are to be used
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Figure 1: Ensemble: Data Diversity

to create the best classifier. Since no classifier is used, filter
methods must rely on statistical measures. Filters can ei-
ther be rankers or subset evaluators, depending on whether
they examine features one at a time or in groups. The reason
we chose filter based gene ranking techniques is because of
the relatively low computation time compared to other tech-
niques (filter-based subset evaluation, wrapper, etc.) and the
output of these techniques, a ranked lists of genes, is quite
intuitive and can be easily validated through various labora-
tory techniques.

The five techniques can be placed into three categories:
Threshold-Based Feature Selection (TBFS), First Order
Statistics (FOS) based feature selection, and Information
Gain. In TBFS, each attribute is evaluated against the class,
independent of all other features in the dataset. After nor-
malizing each attribute to have a range between 0 and 1,
simple classifiers are built for each threshold value t ∈ [0, 1]
according to two different classification rules (whether in-
stances with values above the threshold are considered posi-
tive or negative class examples). The normalized values are
treated as posterior probabilities: however, no real classifiers
are being built. The ROC and PR techniques fall under this
category. ROC begins with the Receiver Operating Charac-
teristic curve, which is a graphical representation of the trade
off between the rate of detection (true positive rate) and false
alarms (false positive rate) for a particular gene across all
thresholds. In order to get a single metric we calculate the
area under the curve with the larger the value, between zero
and one, the more predictive power the gene has. The PR
metric is a simple metric which the ratio of the true positive
rate and the false positive rate.

FOS techniques are ranking techniques which focus on
first order statistics such as mean and standard deviation to
calculate the predictive power of these genes. S2N and FCR
are both members of this family of techniques. S2N is a
simple calculation of the ratio of the difference between the
mean of the gene’s value in the positive class and the mean
of its value in the negative class to the sum of the standard
deviations of the values in the positive and negative classes.

FCR is the ratio of the mean of the gene’s value in the posi-
tive class to the mean of the its value in the negative class

The last technique is IG, which is a commonly used tech-
nique for ranking features or genes. IG determines the sig-
nificance of a feature based on the amount by which the en-
tropy of the class decreases when considering that feature.

All of the above feature ranking techniques, with or with-
out ensemble gene selection (described in the next section),
produce a ranked list of features from best to worst. How-
ever, for building a classification model, a specific subset
of features must be chosen. In this paper, we chose subset
sizes of 10, 25, 50, and 100. This represents a wide range of
possible subsets while significantly reducing the number of
features compared with the original datasets.

Ensemble Gene Selection
As the goal of our work is to determine if ensemble ap-
proaches will improve the classification results of feature
rankers, we must perform both single and ensemble gene
selection. Single gene selection refers to applying the gene
selection technique with no ensemble approach and using
the single run for finding the gene subset. Ensemble gene
selection uses multiple runs of gene selection whose results
are then aggregated into a single result which is used to find
the gene subset.

In this work we use the data diversity approach of en-
semble feature selection. The data diversity approach (Fig-
ure 1) applies a single feature selection technique on multi-
ple sampled datasets created from an original dataset. The
sampled datasets are created through the use of bootstrap-
ping with replacement (choosing random instances to create
a new dataset where after each choice the instance is not re-
moved from consideration in subsequent choices). This step
creates diversity within the data being used for feature selec-
tion. The resulting feature lists are aggregated into a single
final list (Awada et al. 2012). The reason why we chose data
diversity over other ensemble approaches is that it only uses
a single feature selection technique instead of an ensemble
of different feature selection techniques. This allows us to
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directly compare the difference between the feature selec-
tion techniques when used with data diversity and when used
as a single run of feature selection, without the additional
bias of combining different feature selection techniques with
each other. In this paper we use each of the five gene selec-
tion techniques separately on fifty sampled datasets. While
smaller numbers of iterations may be appropriate, we chose
fifty iterations so that the number of iterations is sufficiently
large enough to not be a mitigating factor with the results.
The resulting ranked gene lists are aggregated through the
commonly used aggregation technique: mean aggregation.
Mean aggregation takes the mean rank of the gene across
the lists as the final ranks and ranks the features based on
this aggregated rank. In addition to the computational sim-
plicity of the technique, mean aggregation has shown that it
can outperform techniques which are designed with bioin-
formatics in mind (Wald, Khoshgoftaar, and Dittman 2012).

Classification
We used five different classifiers (learners) to create induc-
tive models from the features (genes) chosen by both the
single gene selection techniques and the ensemble gene se-
lection techniques. These models are used to evaluate the
predictive power of the genes chosen by applying them to
a set of learners with varied properties. The five learners
work as follows: 5 Nearest Neighbor (5-NN) (Witten and
Frank 2011) classifies instances by finding the five closest
instances to the test instance and comparing the total weight
of the instances from each class (using 1/Distance as the
weighting factor). Multilayer Perceptron (MLP) (Haykin
1998) builds an artificial neural network with three nodes in
its single hidden layer, with 10% of the data being held aside
for validating when to stop the backpropagation procedure.
Naive Bayes (Witten and Frank 2011) uses Bayes’ Theo-
rem to determine the posterior probability of membership
in a given class based on the values of the various features,
assuming that all of the features are independent of one an-
other. Support Vector Machines (SVM) (Witten and Frank
2011) find a maximal-margin hyperplane which cuts through
the space of instances (such that instances on one side are in
one class and the other side are in the other class), choosing
the plane which preserves the greatest distance between each
of the classes. For this study, we set SVM’s complexity pa-
rameter c to 5.0 and its buildLogisticModels parameter to
“true” to provide proper probability estimates. Logistic Re-
gression (Dittman et al. 2011) is a statistical technique that
builds a logistic regression model to decide the class mem-
bership of future instances. All five learners use the built-in
implementations in the Weka machine learning toolkit (Hall
and Holmes 2003), using the default parameter values unless
noted in the preceding descriptions.

Cross-Validation
Cross-validation refers to a technique used to allow for the
training and testing of inductive models without resorting to
using the same dataset. The process of cross-validation is
that the dataset will be split as evenly as possible into a pre-
determined number of subsets or folds. The models (includ-
ing feature ranking) are then built on the first n − 1 folds

where n is the total number of folds. The model is then
tested on the final fold and the results are collected. The fi-
nal step is to change which fold is the testing fold and repeat
the training and testing process until each fold has been the
test fold exactly once. In this paper we use five-fold cross-
validation. Additionally, we perform four runs of the five-
fold cross validation so as to reduce any bias due to a lucky
or unlucky split. It should be noted that the feature rank-
ing process was performed inside the cross-validation step:
that is, for each run and each “training set” within the cross-
validation procedure, both the data diversity algorithm and
single feature selection were performed for all five rankers,
and ten different ranked lists (for each of five rankers, one
list aggregated from the data diversity lists and one taken
from the single feature selection) were created. These were
then used in conjunction with the four different feature sub-
set sizes and five learners to build models which were tested
on the test fold. In total we built (11 datasets × 4 runs ×
5-fold cross-validation× 5 gene rankers× (50 iterations for
the ensemble gene selection and 1 run for single single se-
lection) = 56,100 ranked feature lists (not counting the lists
created through aggregation). In terms of inductive models
we built (11 datasets × 4 runs × 5-fold cross-validation ×
5 gene rankers × 2 gene selection approaches (with or with-
out ensemble)× 4 feature subset sizes× 5 learners) = 8,800
models.

Results
This section contains the results from our experiment com-
paring the classification performance of five filter-based
gene selection techniques with and without the use of an
ensemble approach for feature selection. The performance
was compared by evaluating both ensemble feature selection
and single feature selection on eleven biomedical and bioin-
formatics datasets with the ensemble approach using fifty
iterations. Tables 2 through 6 contain the results of our ex-
periment, with each table representing one of the five learn-
ers. Each entry is the average AUC (Area Under the ROC
Curve) value across the eleven datasets when holding static
the learner, gene selection technique, feature subset size, and
whether or not we use an ensemble approach (labeled En-
semble in the tables) or not (labeled Single in the tables).
The top performing value for each selection technique using
the same subset size is in boldface.

When looking across all of the learners, we find that each
ranker will clearly prefer either the ensemble approach or
single feature selection. The rankers IG and FCR both are
improved by the application of the ensemble techniques.
ROC, PR and S2N will all favor the single feature selection
approach rather than the ensemble approach.

Upon looking at each of the individual learners we find
that there are some exceptions to the above trends. With the
ROC ranker, for three of the learners (MLP, Naı̈ve Bayes,
and SVM) the ensemble technique will outperform the sin-
gle feature selection approach in 50% of the cases. This
allows us to state that the decision of whether or not to ap-
ply the ensemble approach is left to the practitioner. In PR,
the single feature selection approach will either outperform
the ensemble approach or match it except in Naı̈ve Bayes
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Table 2: Average Classification Results of the 5 Gene Selection Techniques Using 5-NN
Subset ROC PR S2N FCR IG
Size Ensemble Single Ensemble Single Ensemble Single Ensemble Single Ensemble Single
10 0.73791 0.74500 0.71820 0.71723 0.72398 0.74481 0.65119 0.63631 0.74263 0.73069
25 0.74676 0.75559 0.72235 0.72101 0.72865 0.75609 0.66857 0.66125 0.76466 0.75177
50 0.76672 0.76161 0.72015 0.72089 0.74016 0.75454 0.65784 0.67841 0.76649 0.76357
100 0.75872 0.76504 0.72970 0.73402 0.74284 0.75600 0.68517 0.67015 0.76037 0.76561

Table 3: Average Classification Results of the 5 Gene Selection Techniques Logistic Regression
Subset ROC PR S2N FCR IG
Size Ensemble Single Ensemble Single Ensemble Single Ensemble Single Ensemble Single
10 0.74362 0.74470 0.71074 0.71930 0.71380 0.74907 0.65354 0.63420 0.73252 0.71730
25 0.71080 0.70292 0.69736 0.72280 0.71209 0.70055 0.66011 0.65565 0.72591 0.71598
50 0.69947 0.70259 0.67930 0.71477 0.69675 0.70463 0.66999 0.67289 0.69573 0.68960
100 0.68938 0.69405 0.66863 0.69204 0.69663 0.70243 0.67860 0.67548 0.68994 0.68828

Table 4: Average Classification Results of the 5 Gene Selection Techniques Using MLP
Subset ROC PR S2N FCR IG
Size Ensemble Single Ensemble Single Ensemble Single Ensemble Single Ensemble Single
10 0.75155 0.75277 0.73795 0.74561 0.73597 0.75396 0.66495 0.63405 0.75838 0.74888
25 0.76375 0.75789 0.73856 0.73989 0.75211 0.75671 0.66641 0.66857 0.76995 0.76815
50 0.76318 0.75539 0.73792 0.74387 0.75546 0.76138 0.67267 0.67273 0.76803 0.76507
100 0.75884 0.75967 0.73904 0.74030 0.75649 0.76500 0.67270 0.68656 0.77038 0.76642

Table 5: Average Classification Results of the 5 Gene Selection Techniques Using Naı̈ve Bayes
Subset ROC PR S2N FCR IG
Size Ensemble Single Ensemble Single Ensemble Single Ensemble Single Ensemble Single
10 0.74580 0.74925 0.72684 0.72544 0.72708 0.73911 0.63501 0.61468 0.74199 0.70902
25 0.75467 0.76117 0.71793 0.71710 0.72630 0.74275 0.64517 0.64119 0.76445 0.74106
50 0.74798 0.74772 0.69945 0.70162 0.71832 0.73715 0.64181 0.64916 0.75280 0.75684
100 0.74397 0.74097 0.69107 0.68814 0.69662 0.71355 0.64821 0.64118 0.74307 0.74767

Table 6: Average Classification Results of the 5 Gene Selection Techniques Using SVM
Subset ROC PR S2N FCR IG
Size Ensemble Single Ensemble Single Ensemble Single Ensemble Single Ensemble Single
10 0.75857 0.76112 0.74400 0.74806 0.74234 0.76281 0.66398 0.63333 0.76802 0.75511
25 0.77170 0.76465 0.74617 0.74631 0.75914 0.76229 0.69239 0.67812 0.78027 0.77298
50 0.76756 0.76031 0.74487 0.73629 0.75843 0.76470 0.69352 0.70455 0.77393 0.76411
100 0.75664 0.75783 0.74305 0.74162 0.75635 0.75846 0.69936 0.71081 0.76296 0.76019
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in which the ensemble approach does outperform the sin-
gle feature selection approach. S2N only has a single case
where the ensemble approach outperforms the single ap-
proach (using Logistic Regression and a feature subset size
of 25). FCR favor the ensemble approach in all learners
except for MLP in which it favors the single feature selec-
tion approach. Finally, IG only has two cases in which it
performs better when using the single feature selection ap-
proach (using a feature subset size of 50 and 100 when using
Naı̈ve Bayes).

Conclusion
Gene selection has become a necessary step for work-
ing with high dimensional bioinformatics or biomedical
datasets. The decision of which gene selection technique to
implement is an important but daunting task. In addition to
choosing which gene selection technique to apply, one must
also choose whether or not to apply an ensemble approach
(multiple runs of gene selection which are then aggregated
into a single list) along with the gene selection technique.
The question is: will the ensemble approach improve the
classification performance of the gene selection technique,
or will the gene selection technique achieve better classi-
fication performance without the addition of the ensemble
approach? This paper is a study of the classification perfor-
mance of five gene selection techniques where we applied
the techniques both with an ensemble approach (data diver-
sity where a single feature selection technique is applied to-
ward a number of sampled datasets derived from a single
dataset, then the resulting lists are aggregated into a single
list) as well as with single gene selection (a single single run
of gene selection) to determine how the ensemble approach
will affect the classification performance. In the process of
our experiments we used eleven biomedical (gene microar-
ray) datasets from the field of cancer research as well as five
learners and four feature subset sizes. In terms of the ensem-
ble approach we use fifty iterations of gene selection.

Our results show that each of the gene selection tech-
niques react to the inclusion of an ensemble approach dif-
ferently. The Information Gain and Fold Change Ratio tech-
niques, in a majority of cases, will be improved by the inclu-
sion of the ensemble approach. The Signal-to-Noise tech-
nique and the Probability Ratio techniques in a majority of
cases are negatively effected by the use of the ensemble ap-
proach. The final technique, Area Under the ROC Curve,
does in general favor the single feature selection approach
but for three of the five learners the ensemble approach will
outperform the single feature selection approach in 50% of
the cases. This allows us to recommend that for Informa-
tion Gain and Fold Change Ratio, the ensemble approach
should be used, while for Signal-to-Noise and Probability
Ratio, the single feature selection approach will work bet-
ter. As for Area Under the ROC Curve we believe that the
choice is relatively minor in terms of classification and the
decision falls to the practitioner. While there are exceptions
to the above trends we feel reasonably confident in our rec-
ommendations.

Future work in this area will focus on the addition of more
datasets. The inclusion of more datasets will allow us to fur-

ther test the trends discovered by our experiments. Addition-
ally, by including more datasets with a specific purpose (i.e.
patient response prediction) we can test these trends with a
more focused goal.
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