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Abstract

We compare three approaches to learning numerical param-
eters of Bayesian networks from continuous data streams:
(1) the EM algorithm applied to all data, (2) the EM algo-
rithm applied to data increments, and (3) the online EM al-
gorithm. Our results show that learning from all data at each
step, whenever feasible, leads to the highest parameter ac-
curacy and model classification accuracy. When facing com-
putational limitations, incremental learning approaches are a
reasonable alternative. Of these, online EM is reasonably fast,
and similar to the incremental EM algorithm in terms of ac-
curacy. For small data sets, incremental EM seems to lead
to better accuracy. When the data size gets large, online EM
tends to be more accurate.

Introduction
An increasing number of domains involve continuous col-
lection of massive amounts of data. World Wide Web-
based systems, for example, often generate records for ev-
ery user transaction. Real-time monitoring systems obtain
sensor readings in fraction of a second increment. A cor-
porate call center may deal with hundreds or even thou-
sands of new cases daily. There exist systems that special-
ize in continuous data streams and that operate in real-
time, for example those mentioned in (Tucker et al. 2003;
Olesen, Lauritzen, and Jensen 1992). They all need to learn
from the incoming massive amounts of data and systemati-
cally update whatever they know about the system that they
are monitoring.

There are two fundamental approaches to processing con-
tinuous data streams, which we will call batch learning and
incremental learning. In the batch learning approach, we re-
peatedly add new records to the accumulated data and learn
anew from the entire data set. When the number of data
records becomes very large, this approach may be compu-
tationally prohibitive. In addition, it requires storing and ef-
ficiently retrieving the entire data set, which may not be fea-
sible. In the incremental learning approach, we assume that
the model learned in the previous step summarizes all the
data collected up to that step and use the newly acquired data
to refine the model. Incremental learning approach can be

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

divided into two types: incremental batch learning and on-
line learning. The incremental batch learning or mini-batch
learning updates the model by processing the incoming data
in chunks, i.e., group of records. The online learning updates
the model by processing records one at the time as they ar-
rive.

Our work is in the context of Bayesian network models
(Pearl 1988), which have become increasingly popular in
modeling and learning tasks. The most flexible algorithm for
learning Bayesian network parameters is the EM (Expecta-
tion Maximization) algorithm (Dempster, Laird, and Rubin
1977; Lauritzen 1995). While there are several variants of
the EM algorithm, two are most notable: the basic EM al-
gorithm (Dempster, Laird, and Rubin 1977) and the online
EM algorithm (Sato and Ishii 2000; Liang and Klein 2009;
Cappe 2010).

The most common mode of operation of the basic EM al-
gorithm is batch learning, i.e., learning from an entire data
set. The basic EM algorithm can be also applied to incre-
mental batch learning, in which case the existing set of pa-
rameters, learned previously from a database of cases, is as-
signed a level of reliability, expressed by a number called the
equivalent sample size. Equivalent sample size expresses the
number of data records that have been used to learn the exist-
ing parameters. While updating the existing parameters, the
EM algorithm weights the new cases against the existing pa-
rameters according to the relative sizes of the data sets. The
computational complexity of the incremental batch learning
depends primarily on the size of the set of additional records,
i.e., the mini-batch. The on-line EM algorithm is a modifi-
cation of the basic EM algorithm that allows for process-
ing new data into the existing model one record at a time.
Its complexity at each time step, both in terms of computa-
tion time and memory use, is thus minimal. We should state
clearly here that it is based on different principles than incre-
mental EM, so the two algorithms are not equivalent when
the increment is equal to one record.

The question that we pose in this paper is which of the
three approaches is best in practice when learning Bayesian
network parameters from continuous data streams. We fo-
cus on the impact of choice of each of the learning schemes
on (1) computational complexity of learning (speed), (2) ac-
curacy of the learned parameters, and (3) the model’s ul-
timate accuracy. We pose the third question in the context
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of classification tasks, which is a common application of
Bayesian networks. While there exists literature that is re-
lated to this question, no comprehensive comparison has
been made so far in the context of Bayesian networks. Some
papers focus on the comparison of batch learning to in-
cremental learning,e.g., (Carbonara and Borrowman 1998;
Wilson and Martinez 2003). They all agree on the obvious
truth that the online learning is computationally more effi-
cient than batch learning but they show experimentally that
it also achieves accuracy that is similar to that of the batch
learning. Cappe (2010), who compares batch EM to online
EM, suggests that the decision to select between the two
algorithms depends on the size of the data set. His exper-
iments indicate that when the size of the data is less than
1,000 records, EM is preferred over online EM. Holmes and
Kirkby (2004) study how mini-batch size affects the perfor-
mance of incremental learning in terms of classification ac-
curacy and speed. They demonstrate that larger chunk sizes
lead to higher classification accuracy.

In this paper, we describe an experiment, in which we
use several real data sets from the UCI Machine Learning
Repository (Frank and Asuncion 2010) to create gold stan-
dard Bayesian network models. We subsequently use these
models to generate continuous streams of data. We learn
the parameters from these streams of data with three ap-
proaches: batch learning, incremental batch learning, and
online learning. We measure the time taken by the learning
procedure, compare the accuracy of the learned parameters
to the original (gold standard) parameters that have gener-
ated the data, and test the diagnostic accuracy of the learned
models.

Our results show that the batch learning approach leads
consistently to the best parameter accuracy and classification
accuracy but may take orders of magnitude longer run times
than incremental learning. The incremental batch learning
approach uses the least computation time but its perfor-
mance is typically inferior to both batch learning and online
learning. The online learning performs typically worse than
batch learning but requires only a modest computational and
storage effort.

Bayesian networks

Bayesian networks (Pearl 1988) are probabilistic mod-
els that represent joint probability distributions over finite
sets of random variables. The structure of the graph of
a Bayesian network represents direct probabilistic depen-
dences (or, strictly speaking, independences) among vari-
ables. The interaction among every variableXi and its direct
predecessors Pa(Xi) is characterized numerically by a con-
ditional probability table (CPT) representing the conditional
probability distributions over the states of Xi given all pos-
sible combinations of states of Pa(Xi). Variables without
predecessors are specified by prior probability distributions
over their states.

The joint probability distribution over the set of variables
X = {X1, . . . , Xn} represented by a Bayesian network can
be obtained by taking the product of all prior and conditional

probability distributions:

Pr(X) = Pr(X1, . . . , Xn) =
n∏
i=1

Pr(Xi|Pa(Xi)) .

The most important computation performed in Bayesian net-
works is known as belief updating and amounts to com-
puting the probability distribution over variables of interest
given observations of other variables (the evidence). For ex-
ample, we can use a medical diagnostics model to compute
the posterior probability distribution over the modeled dis-
eases given observations of same symptoms.

Bayesian networks have been widely used in classifica-
tion tasks (Friedman, Geiger, and Goldszmidt 1997). Clas-
sification is the task of predicting the class to which an in-
stance belongs based on values described by the attributes of
that instance.

The EM algorithm
The Expectation-Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977) is a widely used method of comput-
ing maximum likelihood estimates given incomplete data.
One application of the EM algorithm is in learning param-
eters of Bayesian networks. The EM algorithm consists of
two steps: (1) the expectation step (E-step) that uses the
current parameters to compute the expected values of the
missing data, and (2) the maximization step (M-step), dur-
ing which the maximum likelihood of the parameters are es-
timates based on the expected values from the E-step. The
EM process repeats until it converges to the maximum like-
lihood or it reaches a pre-defined improvement threshold.

In the basic EM algorithm, during each iteration, we per-
form the E-step to calculate the expected sufficient statis-
tics across all observation. Then, we do the M-step once at
the end to re-estimate the parameters using sufficient statis-
tics from the E-step. Following (Cappe 2010), we describe
the basic EM algorithm as follows: Given n observations,
Y1, . . . , Yn, and an initial parameter guess θ0, do, for k ≥ 1.

E-step: Sn,k =
1

n

n∑
t=1

Eθk−1
[s(Xt, Yt)|Yt]

M-step: θk = θ̄ (Sn,k) .

We define Xt as a random variable corresponding to a
variable Yt.

The online EM algorithm performs the E-step and follows
it by the M-step after each observation. In the E-step, the
online EM algorithm uses stochastic approximation instead
of sufficient statistics (Cappe 2010).

Sn = Sn−1 + γn

(
Eθ̄(Sn−1) [s(Xn, Yn)|Yn]− Sn−1

)
.

Updating the model after each observation may lead to a
poor approximation, which the online EM algorithm avoids
by interpolating between Sn−1 and the expectation values.
The value that weights between a previous value and an ex-
pected value is a positive step size called γn. We use the
generalized version of the online EM algorithm, proposed
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by Cappe (2010), in the following way. Given S0, θ0 and a
sequence of step sizes (γn)n≥1, do, for n ≥ 1.

E-step: Sn = (1− γn)Sn−1 + γnEθn−1
[s(Xn, Yn)|Yn]

M-step: θn = θ̄(Sn) .

We have to select a step size γn for the online EM. To
guarantee convergence, the γn needs to decrease to zero. We
use the assumption often used in the stochastic approxima-
tion literature that

∑
n γn = ∞,

∑
n γ

2
n < ∞. If we use

γn = 1/nα, then the range of values for 0.5 < α ≤ 1 is
valid (smaller α means larger the update). Cappe suggests
that the most robust value of α is 0.6 and in our work we
have followed this suggestion.

For continuous data streams, in which the data become
very large over time, the EM can take a very long time to
converge. In Liang and Klein (2009) experiments, one data
set needs 100 iterations of the EM algorithm in order to
reach a reasonable accuracy. This problem is due to the na-
ture of the EM algorithm — it has to process all data be-
fore updating parameters in the M-step. When the data set
is large, computing sufficient statistics for all data for the
purpose of making just one update may be wasteful.

Empirical Evaluation
In our experiments, we selected seven data sets from the
UCI Machine Learning Repository in order to create gold
standard Bayesian network models. We subsequently used
these models to generate large data sets (each containing
1,000,000 records) to simulate continuous data streams in
our experiments. We re-learned Bayesian network parame-
ters from these data streams using (1) batch learning, (2) in-
cremental batch learning, and (3) online learning.

We implemented the EM and the online EM algorithms
in C++. We performed our tests on a Windows 7 computer
with 8 GB of memory, and an Intel Core i5-3317U processor
running at 1.70 GHz.

The Data
We selected seven data sets from the UCI Machine Learning
Repository (Frank and Asuncion 2010): Adult, Australian
Credit, Bank Marketing, Chess (King-Rook vs. King-Pawn),
Letter, Mushroom and Nursery using the following selecting
criteria:

• The data include a known class variable so that we could
test the accuracy of the learned models on a real problem.

• The data set contains a reasonably large number of
records. We used the EM algorithm for learning parame-
ters in the gold standard models. The EM algorithm learns
parameters more accurately from large data sets and this
increased the quality of our initial models. In addition, be-
cause we check the accuracy of the models on the original
data, the larger the data set, the more reliable our results.

• The majority of the attribute types should be discrete in
order to reduce the need for discretization, which would
be a confounding factor in our experiments.

• The data set does not contain too many missing values
(no more than 1/3 of the data set). Missing values require
special treatment in structure learning algorithms, which
would be an additional confounding factor in our experi-
ments.

• The selected data sets have a wide range in the number
of attributes (8–36), so that we obtain models of different
size for testing.

We decided to use real data sets rather than synthetic data
sets because we wanted our experiments to be as close as
possible to real world applications. We listed all selected
data sets in Table 1.

Table 1: Data sets used in our experiments. #I denotes the
number of records, #A denotes the number of attributes,
#CV denotes the number of class variables, #FP denotes the
number of free parameters, and MV indicates presence of
missing values.

Dataset #I #A #CV #FP MV
Adult 48842 14 2 3762 Yes
Australian Credit 690 14 2 388 No
Bank Marketing 45211 16 2 1180 No
Chess 3196 36 2 972 No
Letter 20000 16 26 25279 No
Mushroom 8124 22 2 4786 Yes
Nursery 12960 8 5 645 No

Experiments
To learn the gold standard Bayesian networks, we ap-
plied the standard Bayesian learning algorithm proposed
by Cooper and Herskovits (1992). The Bayesian learning
algorithm does not handle missing values and continuous
variables. We first discretized continuous attributes using
equal frequency discretization with 5 intervals, removed all
records with missing values, and used the Bayesian learning
algorithm to learn the model structure. Finally, we used the
entire data sets (i.e., including the records with missing val-
ues) to learn the models’ numerical parameters. The models
constructed in this way were our gold standard models.

We used the gold standard models to generate data sets of
1,000,000 records each (no missing values). We used these
records to simulate data streams in our experiments. We used
the structures of the gold standard models as skeletal models
for learning parameters.

In our experiments, we compared the following three
algorithms for parameter learning from continuous data
streams:

1. The basic EM algorithm applied at each step to the entire
data set. We referred to it as the batch learning approach.
We started running the batch learning procedure at 10,000
records. Then we invoked the batch learning algorithm
after every 10,000 records. We used uniform priors and
equivalent sample size of 1 for all runs.

2. The batch incremental learning approach means that the
learning happens after each k new instances and these new
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records serve to refine the existing model. In our exper-
iments, we set k = 10, 000. In the first step (the first
10,000 records), we used uniform priors and equivalent
sample size of 1. In each subsequent step, we used the
existing model as the base model and run the EM algo-
rithm with the equivalent sample size parameter equal to
the number of data records that had been used to learn the
existing model. For example, when processing the records
between 30,000 and 40,000, we set the equivalent sample
size to 30,000 (the existing model had been learned from
the previous 30,000 records). The basic EM thus com-
bines the new parameters with the existing parameters,
according to the relative size of the data sets.

3. The online learning approach updates the network pa-
rameters each time a new record becomes available. We
ran the online EM algorithm until it reached 1,000,000
records. According to Cappe (2010), to get better perfor-
mance in parameter learning, it is better not to perform
the maximization step for the first 20 records. Following
his idea, we started the maximization step only after the
first 20 records had been processed. We used the learning
rate α = 0.6 for all runs.

We measured the CPU time consumed by each of the al-
gorithms. We measured the accuracy of parameters in the
learned model by comparing them to the parameters in the
gold standard models. We tested the classification accuracy
of the learned Bayesian network models on the original data
sets from the UCI Machine Learning Repository.

Results
Due to space constraints, we present all results in tabular
format along with a handful of representative graphs.

Speed Figure 1 show the difference between incremen-
tal learning and batch learning grows larger as the number
of records increases. The larger the number of attributes in
a Bayesian networks, the larger the saving in computation
time. We report the run time of each algorithm processing
the last 10,000 records (i.e., from 990,000 to 1,000,000) in
Table 2. The batch incremental learning approach and the
online learning approach use constant amount of time for
each run and spend less computation time than the batch
learning approach. Times on the order of a second are prac-
tically negligible in a system employed in practice — data
usually come at a lower speed.

Parameter accuracy We measure the accuracy of each
algorithm by calculating the Hellinger distance (Koko-
lakis and Nanopoulos 2001) between the parameters in the
learned models and the original parameters in the gold stan-
dard models. The Hellinger distance between two probabil-
ity distributions P and G is computed using the following
equation:

DH(P,G) =

√∑
i

(
√
pi −

√
gi)2 .

It is similar to the Kullback-Leibler divergence (Kullback
and Leibler 1951), widely used in the Bayesian network

Figure 1: Adult data set computation time. Time taken by the
batch algorithm is linear in the number of records, we omit
its run time after 100,000 records in order to show the details
for the incremental batch EM and the online EM algorithms

Table 2: Computation time required to process the
1,000,000th record shown in seconds. Please note that the
incremental batch learning and the online learning algo-
rithms process the last 10,000 records (i.e., from 990,000
to 1,000,000).

Data set Incremental Batch Batch Online
Adult 0.55 84.22 1.18
Australian Credit 0.55 78.66 0.66
Bank Marketing 0.73 112.41 0.94
Chess 1.93 276.55 1.89
Letter 1.03 157.72 4.99
Mushroom 1.61 165.47 1.86
Nursery 0.36 51.72 0.48

community, in the sense of amplifying large absolute differ-
ences in small probabilities, under-appreciated by Euclidean
distance. At the same time, it is free of a disturbing property
of the latter of being undefined for zero probabilities.

We show the final average Hellinger distance for all data
sets in Table 3. Because the shape of the distance curves
as a function of the number of records seems quite regular,
we also added a second number that indicates the slope of
the curve at the last 100,000 records. When equal to 0.01,
for example, it leads to an absolute reduction of Hellinger
distance of 0.01 per 100,000 records.

In six of the seven cases, the batch learning approach re-
sulted in the smallest Hellinger distance, i.e., the highest ac-
curacy of retrieving the original parameters from data. The
online learning performed best only on the Mushroom data
set. This result differs somewhat from the results obtained
by Liang and Klein (2009), who observed that online EM is
often more accurate than batch EM on unsupervised tasks.
The slopes of the curves (the second number in the table) in-
dicate that each of the algorithms leads to an improvement in
accuracy over time. However, this improvement is typically
smaller for the incremental batch algorithm.

We show a typical plot of Hellinger distance as a func-

630



Figure 2: Average Hellinger distance as a function of the
number of records in the data stream for the Adult data set

Table 3: Final Hellinger distance
Data set Incremental Batch Batch Online
Adult 0.07971 0.01806 0.08759

-0.00014 -0.00091 -0.00202
Australian Credit 0.02750 0.00527 0.01805

-0.00012 -0.00018 -0.00003
Bank Marketing 0.05650 0.00690 0.04494

-0.00011 -0.00043 -0.00188
Chess 0.03140 0.00777 0.03744

-0.00003 +0.00010 -0.00077
Letter 0.13554 0.06567 0.17683

-0.00006 -0.00133 -0.00329
Mushroom 0.09207 0.04195 0.03096

-0.00005 -0.00036 -0.00100
Nursery 0.02957 0.01371 0.04725

-0.00005 -0.00128 -0.00244

tion of the number of records for the Adult data set (Figure
2). Hellinger distance for both batch EM and online EM de-
creases with the number of records. Interestingly, incremen-
tal batch learning typically seems to reach a plateau beyond
which it hardly improves the accuracy of parameters.

Classification accuracy In testing the classification accu-
racy of the learned models on the original UCI Machine
Learning Repository data sets, we used the simplest possi-
ble criterion, which is that the model guesses the most likely
class to be the correct class for each record. Table 4 shows
the final accuracy for all data sets. While the difference in
accuracy is minimal, the batch learning approach resulted
in the best classification accuracy on all data except for the
Nursery data set. We show two typical plots of model’s clas-
sification accuracy as a function of the number of records in
Figures 3 and 4.

Discussion
Our paper addresses the problem of learning Bayesian net-
work parameters from continuous data streams. We have de-
scribed an experiment that focuses on a comparison of three
approaches: (1) batch learning, (2) incremental batch learn-
ing, and (3) online learning, in terms of the computational

Figure 3: Classification accuracy as a function of the number
of records for the Letter data set

Figure 4: Classification accuracy as a function of the number
of records for the Adult data set

efficiency, the resulting accuracy of parameters, and the re-
sulting classification accuracy.

Our results indicate that while batch learning, i.e., the ba-
sic EM algorithm, makes the largest computational demands
and requires access to the entire data set, i.e., makes high
demands on storage, it also offers the highest resulting pa-
rameter accuracy. Online EM requires less computation time
and no storage while achieving similar results to incremen-
tal EM algorithm in terms of accuracy. Incremental EM has
better accuracy when the data sets is small.

We advise to use batch learning applied to the entire data
set whenever computation time and memory space permit.
When the computation becomes too long or the complete
data set uses too much storage, we recommend switching
over to the online algorithm as a safer choice. It seems that
both the batch and the online EM algorithms make signif-
icant improvements in accuracy in the beginning. A possi-
ble hybrid strategy is to start with the batch EM algorithm
and transform it to the online EM algorithm when neces-
sary. An alternative strategy for all systems in which real-
time response is critical, is to use the online EM algorithm
during daily operations and the batch EM during mainte-
nance hours. This should ensure that the starting points of
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Table 4: Final classification accuracy
Data set Inc. Batch Batch Online Gold
Adult 84.19% 84.22% 84.21% 84.23%
Australian Credit 85.51% 85.51% 85.51% 85.51%
Bank Marketing 89.22% 89.55% 89.32% 89.55%
Chess 94.21% 94.21% 94.21% 94.21%
Letter 83.40% 86.95% 82.95% 87.09%
Mushroom 99.85% 99.90% 99.85% 99.90%
Nursery 94.61% 94.54% 94.54% 94.65%

the online algorithm for real-time operations is always the
best possible.

We observed that classification accuracy did not change
much with refinement of parameters. Our experiments have
confirmed an earlier finding of Onisko and Druzdzel (2013)
that Bayesian networks are quite insensitive to precision of
their numerical parameters.

There is a fundamental question that one needs to ask
when processing continuous streams of data: Does the sys-
tem generating the data remain constant over time? In our
work, we assumed tentatively that it does and, hence, we
learned from all accumulated records. Real systems, how-
ever, can evolve over time (e.g., (Łupińska-Dubicka and
Druzdzel 2012)). In all such cases, we need to assign more
recent parameters a higher weight. It may be natural in such
cases to discard older records altogether and, hence, avoid
the problem of excessive data storage or prohibitive compu-
tation. Our approach and results hold for all such cases. One
might treat the data sets in our experiment as belonging to
the sliding windows from which the parameters are learned.

Acknowledgments
We acknowledge the support from XDATA program of De-
fense Advanced Research Projects Agency (DARPA), ad-
ministered through Air Force Research Laboratory con-
tract FA8750-12-C-0332, the National Institute of Health
under grant number U01HL101066-01, and the Govern-
ment of the Kingdom of Thailand. Implementation of this
work is based on SMILE, a Bayesian inference engine de-
veloped at the Decision Systems Laboratory and available
at http://genie.sis.pitt.edu/. We would like to
express our thanks to the DSL members for their help. Spe-
cial thanks go to Mark Voortman for his help in implement-
ing the online EM algorithm. We thank anonymous review-
ers for valuable suggestions that improved the clarity of the
paper.

References
Cappe, O. 2010. Online Expectation-Maximisation. ArXiv
e-prints:1011.1745 1–20.
Carbonara, L., and Borrowman, A. 1998. A comparison
of batch and incremental supervised learning algorithms. In
Proceedings of the Second European Symposium on Princi-
ples of Data Mining and Knowledge Discovery, PKDD ’98,
264–272. London, UK, UK: Springer-Verlag.

Cooper, G. F., and Herskovits, E. 1992. A Bayesian method
for the induction of probabilistic networks from data. Ma-
chine Learning 9(4):309–347.
Dempster, A.; Laird, N.; and Rubin, D. 1977. Maximum
likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B 39(1):1–38.
Frank, A., and Asuncion, A. 2010. UCI Machine Learning
Repository. http://archive.ics.uci.edu/ml.
Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997.
Bayesian network classifiers. Machine Learning 29(2-
3):131–163.
Holmes G, Kirkby R, B. D. 2004. Batch incremen-
tal learning for mining data streams. Working paper,
Department of Computer Science, University of Waikato.
http://researchcommons.waikato.ac.nz/handle/10289/1749.
Kokolakis, G., and Nanopoulos, P. 2001. Bayesian multi-
variate micro-aggregation under the Hellinger’s distance cri-
terion. Research in Official Statistics 4(1):117–126.
Kullback, S., and Leibler, R. A. 1951. On information and
sufficiency. The Annals of Mathematical Statistics 22:79–
86.
Lauritzen, S. L. 1995. The EM algorithm for graphical asso-
ciation models with missing data. Computational Statistics
and Data Analysis 19(2):191–201.
Liang, P., and Klein, D. 2009. Online EM for unsuper-
vised models. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics, NAACL ’09, 611–619. Stroudsburg, PA, USA: Associ-
ation for Computational Linguistics.
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