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Abstract
Emotion regulation looks into methods and strategies
that humans use in order to control and balance their
possible extreme levels of emotions. One important
challenge in building a computational model of emo-
tions is the mainly non-quantitative nature of this prob-
lem. In this paper, we investigate a Fuzzy logic ap-
proach as a possible framework for providing the re-
quired qualitative and quantitative description of such
models. In our proposed fuzzy computational model
which was constructed based on Gross theory for emo-
tion regulation, beside the fuzzy structure, it includes
a learning module that enhances the model adaptivity
to environmental changes through learning some rele-
vant aspects such as patterns of events’ sequences. The
results of the simulation experiments were compared
against a formerly presented non-fuzzy implementation.
We observed that the agents in our proposed model
managed to cope better with changes in the environment
and exhibited smoother regulation behavior. Moreover,
our model showed further consistency with the inferen-
tial rules of Gross theory.

Introduction
According to recent research findings, emotions pose a vital
component in the human cognitive activities [Gross, 2006].
They have deep impacts on the memory functions, decision
making and judgments [Forgas, 1995]. In addition, Some
neurological studies such as [Damasio, 1994] showed that
those suffering from complications in expressing/balancing
their emotions, often perform poorly in making decisions.
This leads to serious difficulties in establishing effective re-
lationships with other members of their communities, which
consequently endanger their social roles. Furthermore, some
psychologists were able to track these negative impacts
in several forms of depression and even psychopathology
[Gross, 2006].

Emotion regulation strategies address the potential risk of
having inappropriate level of emotions. Gross in [Gross,
2001] states that “Emotion regulation includes all the con-
scious and non-conscious strategies we use to increase,
maintain, or decrease one or more components of an emo-
tional response.” In other words, they are aimed at making
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“changes in emotion latency, rise time, magnitude, duration
and offset of responses in behavioral, experiential or physi-
ological domains” [Gross, 2006].

This article proposes a fuzzy logic computational model
for emotion regulation strategies based on Gross theory. In
the next section, we review some of the recent computational
models of emotions and briefly discuss Gross emotion reg-
ulation strategies. Section 3 introduces our fuzzy approach
for emotion regulation problem and highlights its benefits
and distinctions from a non-fuzzy model. Next, a descrip-
tion about the conducted simulation experiments is given,
followed by discussion and conclusion sections.

Emotions
Computational models of emotion
Affective computing in general and computational models
of emotion in particular, have recently managed to attract
many researchers from a wide spectrum of science fields.
These models have several applications in Psychology, Bi-
ology and Neuroscience at which such models are used to
test and improve formalization of the underlying hypothe-
sis. With regards to robotics and computer gaming fields,
many applications for these models can be named. Addi-
tionally, these models can make significant improvements to
HCI applications, such as increasing the believability of vir-
tual agents by exhibiting a maximal degree of human-like
behavior.

CoMERG is the abbreviation for Cognitive Model for
Emotion Regulation based on Gross. It was developed by
Bosse et al. [Bosse, Pontier, and Treur, 2010]. This model
includes some differential equations combined with inferen-
tial rules, and it aimed at simulating the dynamics of Gross
emotion regulation process model. An enhanced version of
CoMERG was suggested in [Soleimani and Kobti, 2012],
which focuses on improving the realism and agent’s adapta-
tion capabilities to the environmental changes. The results
from our proposed fuzzy model were bench-marked against
the results obtained from this non-fuzzy implementation.

FLAME [El Nasr, 2000] is another OCC based appraisal
model, which uses the principles of fuzzy logic to describe
the process model of emotion. FLAME consists of several
learning algorithms used for agent’s adaptation purposes.
Some of the concepts and formulas of FLAME were adopted
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Figure 1: Emotion regulation process

in parts of our proposed emotion regulation model.

Emotion regulation strategies
Gross identifies two categories of strategies that can be used
in the regulation process. They are antecedent-focused and
response-focused strategies. Antecedent-focused are those
strategies that can be used for the regulation process be-
fore an emotional response has fully activated. Response-
focused, on the other hand, are those strategies that can be
used for the regulation process once certain emotional re-
sponses have already appeared as a result of an event or in-
ternal state.

The first antecedent-focused regulation strategy in Gross
theory is situation selection. This strategy is aimed at se-
lecting a situation among available options that best meets
with the desired level of a certain emotional response of the
person. Situation modification is the second strategy in this
category and it does not try to change the world but rather to
alter some controllable aspects of the situation. In attention
deployment strategy, we try to focus on positive and distract
ourselves from negative aspects of the current situation. In
cognitive change, the person tries to look at undesired events
from a different perspective in order to change the negative
cognitive meaning of them. As of the response-focused cat-
egory, response modulation is an important strategy that can
be applied after the manifestation of the emotion.

For brevity, we do not elaborate more on Gross theory,
and interested readers are referred to [Gross, 2006; 2001].

Proposed computational model
In order to build a computational model for emotion regu-
lation based on Gross informal process model, we propose
a regulation architecture described in Figure 1. As it can
be seen from the diagram, we consider three major compo-
nents involved in the regulation process. The first module,
Event Evaluation is the component that perceives external

Table 1: Events desirability and corresponding emotions

Emotion generation rule Emotion

Occurrence of an unconfirmed undesirable event Fear

Occurrence of a dis-confirmed undesirable event Relief

Occurrence of a desirable event Joy

Action performed by the agent and disapproved by standards Shame

Action performed by the agent and is approved by standards Pride

Compound emotion; sadness + reproach Anger

events and calculates the desirability of each event based on
the goals and the internal emotional state of the agent.

The output from Event evaluation unit, i.e., the event’s de-
sirability value will be passed to the Emotion Elicitation unit
at which the triggered emotions along with their intensities
will be specified using a set of inferential rules and quan-
tifying formulas. These inferential rules are, in fact, map-
ping functions from event desirability measures and expec-
tations to certain emotion types. Furthermore, these emo-
tional states will influence the mood of the agent. In addi-
tion, emotional responses will experience some decay over
time. Finally, a hyper emotional response will undergo a
regulation process based on Gross process model. A possi-
ble regulation process takes place at the Strategy Selection
unit.

The detailed explanation for the mechanisms of all these
processes follows in the next section.

The detailed model
Event desirability measure The function of the Event
evaluation unit can be explained in two steps. In the first
step, we determine the set of goals affected by the external
event along with the degree of impact on each goal. In the
second step, the desirability of the event is calculated based
on the degree of influence computed in the previous step and
the importance of the involved goals.

Triggered emotions and their intensities Once, the de-
sirability measure of an event is specified, it will be for-
warded to the Emotion Elicitation unit at which the changes
in the emotional states of the agent is determined. Here,
event expectations will be included in the calculations.
These expectations are derived from the learning module
which is explained later in this article. We adopt the emotion
generation rules proposed by OCC model [Ortony, 1988]
and formulated by Price et al. [Price and Barrell, 1985]
in order to measure the emotional state changes as well as
computing the intensities of elicited emotions. These rules
are based on the relationships between emotions, events’ de-
sirability and expectations. Table 1 reflects partially some
of these rules along with the corresponding generated emo-
tions. Table 2 contains some of Price’s equations used to
compute the intensities of the generated emotions.

Regulation process People usually have a basic idea
about their current emotional status as well as the target level
of emotions that they are looking for or would be able to
tolerate in a certain situation with regards to the related cir-
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Table 2: Intensity computing rules [Price and Barrell, 1985]

Emotion Degree of intensity

Fear = (2 ∗ expectation2)− desirability
Joy = (1.7 ∗ expectation0.5) + (−0.7 ∗ desirability)

Relief = Fear ∗ desirability
Sadness = (2 ∗ expectation2)− desirability

Figure 2: Emotional response for any emotion expressed us-
ing five fuzzy sets

cumstances. These “quantities” are usually being expressed
in a fuzzy way without full certainties which makes it hard
to quantify them accurately. This fact inspired us to build a
computational model for this problem based on a fuzzy logic
approach. Hence, using fuzzy logic principles and the fuzzy
partial membership concept, expressions such as slightly an-
gry, very happy or extremely sad can be easily converted into
their equivalent fuzzy sets. (see Figure 2)

In a regulation process, the agent in a certain situation,
will have an estimation of its target emotional response level
with regards to the circumstances of that situation. For ex-
ample, in a situation of regulating extremely angry emo-
tional state, if the agent can tolerate being up to slightly
angry state, then the required amount of regulation would
be:
d = ExtremlyAngry − SlightlyAngry
In fact, the target level of SlightlyAngry will work as a

threshold that once it is reached, it can be considered as the
end of the regulation process.

Strategy selection in the regulation process Humans of-
ten target a relatively high level for positive emotions such
as pride and joy whereas, they aim lower levels for negative
emotions such as anxiety and fear. Emotion regulation pro-
cess is, in fact, nothing rather than a trial to direct the current
emotional response level, ERL towards it’s aimed at level,
ERLT . Therefore, the regulation process is an optimization
problem as follows:
d = ERL− ERLT
therefore we have,
arg
s
mind(s), s ∈ STRATEGY set

The target here is to find and apply a regulation strat-
egy that would minimize d at each time step. On the other

hand, changes in ERL come from two sources. The first is
through the regulation process and the second is the normal
decay factor over time, hence:
4ERL = freg(s) + fdecay(t)

In order to calculate freg(s), we would need to declare a
set of variables corresponding to Gross regulation strategies.
Hence, we assume that each strategy k has an emotional
value of vk. Each emotional component vk contributes to
the emotion response level ERL based on its corresponding
weight of wk. Therefore:
freg(s) = f(v) =

∑
n∈s

vn.wn

With regards to fdecay , we argue that there exist a regular
time-driven decay for any emotional state even with the ab-
sence of conscious regulation strategies. It can be stated that
this normal decay is some type of unconscious regulation
process.

Therefore, we would have:
ERLnew = (1−D) ∗ ERL+ 1/a ∗

∑
n

(wn ∗ vn)

The above equation shows the new emotion response level
at the end of each time step after applying some regulation
strategies on the previous ERL along with the implication
of the decay factor.

Here, the emotional contribution for each strategy vn in
the total ERL can be formulated as below:
4vn = −βn ∗ d ∗ 4t, v = vn +4vn
βn is an adaptation factor which indicates the flexibility

of the agent toward applying strategy n in a certain condi-
tion. This factor in fact, is related to several psychological,
physiological, social, etc., aspects of the agent such as the
personality traits and mood of the agent. Considering the
fact that the emphasis in our model is to study the fuzzy na-
ture of emotions, we refrain from performing a sophisticated
analysis to calculate the exact values for βn’s and instead,
we pass some pre-determined values for them to the model.

Impact of events In order to make the model more real-
istic, we consider a dynamic environment in which differ-
ent events occur in the system during the regulation process.
The agent will evaluate each event and assign a desirability
degree to it. The evaluation process is based on the the im-
pact of the event on the set of goals of the agent as well as
the importance of each goal. The fuzzy modeling for this
evaluation process is as follows:

We use fuzzy sets to express the degree of impact that an
event can have on an agent’s goal. Hence, the fuzzy variable
Impact can be one of the following fuzzy sets:

Impact = {HighlyNegative, SlightlyNegative,
NoImpact, SlightlyPositive,HighlyPositive}

Furthermore, the importance of each goal is measured
with Importance fuzzy variable which can take values from
three other fuzzy sets as below:

Importance = {ExtremlyImportant,
SlightlyImportant,NotImportant}

In addition, Level is the fuzzy variable used to measure
the intensity for a certain emotion. For example, if the cur-
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rent emotion is sadness, Level will take a value from the
following fuzzy sets: (see Figure 2)

Level = {NotSad, SlightlySad,ModeraetlySad,
HighlySad, ExtremelySad}

Desirability, is the fuzzy variable that we use to express
the desirability level of the perceived event. Similarly, it can
take any of the following values:

Desirability = {HighlyUndesired, SlightlyUndesired,
Neutral, SlightlyDesired, HighlyDesired}

Therefore, using fuzzy rules, the problem of determining
the desirability of an event based on its impact on the agent’s
goals and goals’ importance can be formalized as below:
IF Impact(G1, E) is A1

AND Impact(G2, E) is A2

...
AND Impact(Gk, E) is Ak

THEN Impact(G1, E) is C

where k is the number of relevant goals. Ai, Bi and C are
fuzzy sets as elaborated above. This rule reads as follows: if
event E affects goal G1 to the extent of A1 and affects goal
G2 to the extentA2, etc., and that the importance of goalG1

is B1 and for goal G2 is B2, etc., then event E will have a
desirability equal to C.

In order to quantify C, we use the approach taken in
[El Nasr, 2000] based on Mamdani model [Mamdani and
Assilian, 1975] which applies centroid defuzzification of the
fuzzy rules. Hence, using the supmin composition rule be-
tween the fuzzy variables of Impact, Importance and Desir-
ability, we would be able to compute the matching degree
between the input and the antecedent of each fuzzy rule. For
example, consider the following set of n rules:
IF x is Ai THEN y is Ci
...
IF x is An THEN y is Cn
Here, x and y are input and output variables respectively.

Ai and Ci are fuzzy sets and i is the ith rule. If the input
x is a fuzzy set Á, represented by a membership function
µÁ(x) (e.g. degree of desirability), a special case of Á is a
singleton, which represents a crisp (non-fuzzy) value. Con-
sidering the definition of the supmin composition between
a fuzzy set C ∈ z(X) and a fuzzy relation R ∈ z(X × Y )
which is defined as:
C oR(y) = supmin

x∈X
{C(x), R(x, y)} for all y ∈ Y

We can calculate the matching degree wi between the in-
put µÁ(x) and the rule antecedent µAi

(x) using the equation
below:
supmin
x∈X

{µÁ(x), µAi(x)}

which can be rewritten as:
sup
x

(µÁ(x) ∧ µAi
(x))

The ∧ operator calculates the minimum of the member-
ship functions and then we apply the sup operator to get the
maximum over all x′s. The matching degree influences the
inference result of each rule as follows:
µCí

(y) = wi ∧ µCi
(y)

Here,Cí is the value of variable y inferred by the ith fuzzy
rule. The inference results of all fuzzy rules in the Mamdani
model are then combined using the max operator ∨ as fol-
lows:

µcomb(y) = µĆ1(y) ∨ µĆ2(y) ∨ ... ∨ µĆk
(y)

We use the following formula based on the center of area
(COA) defuzzication rule in order to defuzzify the above
combined fuzzy conclusion:

yfinal =
∫
µcomb(y)ydy∫
µcomb(y)dy

The result of above defuzzication process, yfinal will re-
turn a number that is the measure of the input event’s desir-
ability. This value along with the event expectation measure
will be used to determine the corresponding emotion inten-
sity of the event based on the rules of table 2.

In order to enable the agent to make a good estimation for
event expectation measure, we let it learn patterns of events.
Next section describes briefly the function of the learning
component in our model.

Learning patterns of events (events expectation)
Mechanisms for expectations obtained through learning can
have a major influence on emotional dynamics [LeDoux,
1996]. In our model, the agent is capable of learning pat-
terns of events and thus can expect the next event through a
probabilistic approach.

Learning about what events to expect, given a set of al-
ready occurred events, poses a crucial information for the
agent. As discussed before, the type of triggered emotions
and their intensities rely strongly on the event’s expectations
through the event appraisals process.

Considering the dynamic nature of the interactions be-
tween the agent and its environment, we use a probabilis-
tic approach in order to enable the agent to identify possi-
ble patterns for event sequences. These patterns are formed
based on the frequency with which an event v1 is observed
to happen while a set of previous events v2, v3, etc., has al-
ready occurred. In our model, we consider patterns of three
consecutive events.

A table data structure is used to count the number of iter-
ations for each event pattern. The conditional probability of
p(e3 | e1, e2) indicates the probability for event e3 to hap-
pen, assuming that events e1 and e2 have just taken place.
The first time that a pattern is observed, a corresponding en-
try for the event’s pattern will be created, and the count is
set to 1. This flag will be incremented for each future ob-
servation. These count flags can be used to compute the
conditional probability for a new event Z to occur, given
that events X and Y have already occurred. Therefore, The
expected probability for event Z is:

P (Z | X,Y ) = C[X,Y,Z]∑
i C[X,Y,i]

In case that the number of observations is low, only one
previous event can be considered in the conditioned proba-
bility, hence:

P (Z | Y ) =
∑

i C[i,Y,Z]∑
j

∑
i C[i,Y,j]
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Table 3: List of agent’s goals

Goal Importance
G1 HighlyImportant
G2 SlightlyImportant
G3 HighlyImportant

Table 4: List of events’ occurrence time along with their
impact on each goal

t Impact on G1 Impact on G2 Impact on G3
20 HighlyPositive NoImpact HighlyPositive
30 HighlyNegative SlightlyPositive SlightlyPositive
45 HighlyPositive SlightlyNegative SlightlyNegative
50 HighlyNegative HighlyPositive HighlyNegative
80 HighlyPositive HighlyPositive NoImpact

However, if the priori for event Y occurring right before
event Z was never been observed, then we can use uncondi-
tional prior based on the mean probability for all events to
calculate the probability of event Z as follows:

P (Z) =
∑

i,j C[i,j,Z]∑
i,j,k C[i,j,k]

These probabilities will enable the agent to determine how
likely an event is to happen, given the set of previous events.

Simulation experiments and discussion
In order to evaluate and compare the performance of our pro-
posed model with a non-fuzzy approach, as well as its con-
sistency with Gross theory, a set of simulation experiments
were conducted. In these experiments, emotional values are
measured in a range of [0 - 2], initial ERL and ERLT are
parameters passed to the system and agent is an individual
who tries to regulate his/her extreme emotional response.

Here, we elaborate on two of those experiments. In the
first experiment, a learning agent tries to regulate its hyper
fear emotional response. In the second scenario, we monitor
the regulation behavior of another agent which is incapable
of learning while all other parameters of the system are kept
similar to experiment1. Furthermore, the environment of the
agent is dynamic with several events occurring during the
simulation. Tables 3 and 4 list the set of agent’s goals and
the events that occur in the system respectively. Figure 4
reflects the computed desirability of these events.

Experiment 1: learning agent
In this scenario, the agent is capable of identifying possible
patterns of events that occur in the system and consequently,
event expectation is an important factor in calculating the in-
tensity of elicited emotions as elaborated before. Hence, we
expect to see a smoother impact for the events on the reg-
ulation process. Figure 3 shows the ERL regulation trend
for our proposed model against the non-fuzzy implementa-
tion adopted in [Soleimani and Kobti, 2012]. Based on this
graph, we observe that until time-step=20, both models had
a very similar behavior since there was no active event in the

Figure 3: Trend of ERL for a fuzzy-based learning agent

system and both started the regulation with a similar adapta-
tion factor of β = 0.05.

Once a positive event occurred at step=20, the ERL in
both approaches experienced a sharp decline in favor of the
regulation toward its target level, (i.e., ERLT ). However, in
the non-fuzzy model, due to regulation optimism emerged as
a result of the strong positive event, the ERL experienced
a huge sudden drop of the ERL much below its aimed at
level, while in our approach, the change in ERL was less
and controlled due to the role of event expectations, which
prevents excessive optimism.

At step=30, the occurrence of a slightly negative event
caused the regulation in our proposed model to slow down
and stabilize with a mild down trend, while it stopped com-
pletely in the non-fuzzy model. At step=45, a mild positive
event managed to slightly speed up the regulation trend for
both systems. This situation did not last for long due to the
occurrence of a strong negative event at step=50.

Here, we observe a moderate up trend for ERL in our
model which takes it to around 1.2 in 30 time-steps. This
is up by 0.2 from its minimum value reached right before
step=50. This increase seems realistic considering the high
intensity of the event. On the other hand, this event caused
the regulation process to stop completely once again in the
non-fuzzy model. This is due to the lack of adaptivity to en-
vironmental changes in that approach as elaborated before.

The occurrence of a very strong positive event at step=80,
manages the regulation process in our model to make ERL
touches its aimed at value at step∼=90, and stays at that level
until the end of the simulation. It can be seen that, this strong
positive event caused the non-fuzzy model to experience an-
other raid of excessive optimism, and although it made the
ERL touches its aimed at level at step∼= 120, but it suffered
from sharp jitters between steps 80 to 120. This experiment
shows that our model is more in line with one of the im-
portant Gross rules stating that “Emotion approaches norm
monotonically” [Gross, 2001].

Experiment 2: agent without learning capability
In order to be able to make a precise analysis of the role of
agent’s learning in the regulation process, the second experi-
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Figure 4: Desirability measure for occurred event

Figure 5: Trend of ERL for a non-learning agent

ment was purposefully designed with identical conditions to
experiment 1. Here, we expect to see less smooth and more
fragile regulation as a result of the absence of events’ expec-
tation and consequently larger implication for event’s desir-
ability measure. It is clear that the non-fuzzy model will
exhibit the same behavior as of experiment1, since learning
is not part of the corresponding model.

Figure 5 depicts the behavior of the regulation process in
this experiment. We first observe that the strong positive
event occurred at step=20 and caused the ERL to drop to
almost 1.1 in the previous experiment, made the ERL to
experience a sharper drop to around 0.9 due to event’s ele-
ment of surprise for the agent. Furthermore, it can be seen
that unlike learning agents, even mild negative events can
reverse the regulation process for this type of agents. This
scenario was the case for the slightly negative event that took
place at step=30. Moreover, it can be seen that the influence
of strong negative events similar to that occurred at step=50,
caused the slightly in-favor of regulation trend which started
at step=45, to be reversed dramatically to an opposite trend
which took the ERL to high levels above 1.4, eliminating
considerable amounts of the regulation gains obtained up to
that point. Finally, we observe that the system could not
reach and stabilize close to its aimed at value before step
∼= 105.

The results from these experiments are consistent with our
expectations of having a relatively fast and smooth regula-
tion for a learning agent and conversely, a relatively slow
and fragile regulation for a non-learning agent.

Conclusion
In this paper, we proposed a fuzzy computational model
for Gross emotion regulation theory. In this model, events
and events’ expectations play an important role in determin-
ing the elicited emotions and their intensities via desirability
measures of the events. We used several fuzzy sets to rep-
resent event’s desirability, agent’s goals importance and the
degree of impact that events have on the goals of the agent.
Fuzzy inferential rules and a defuzzification technique were
used to perform the necessary computations and derive the
final results.

We compared the results of our model to those obtained
from a previously presented non-fuzzy implementation for
this problem. Consistently with our expectations, our pro-
posed model managed to outperform the performance of the
non-fuzzy model by providing a more realistic and smoother
regulation process. Furthermore, the new model exhib-
ited more adaptivity to the environmental changes and also
showed more consistency with Gross theory.
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