
A Simulated Annealing Clustering Algorithm Based
on Center Perturbation Using Gaussian Mutation

Stephen Merendino and M. Emre Celebi
Department of Computer Science,

Louisiana State University in Shreveport,
Shreveport, LA, USA
ecelebi@lsus.edu

Abstract
Clustering, the unsupervised classification of objects into
groups, is a widely used technique in exploratory data anal-
ysis. The clustering problem is a very complex one, and a
popular heuristic for solving it is the Simulated Annealing
(SA) algorithm. SA is an approximation algorithm that in-
volves generating a neighborhood solution by perturbing the
current solution in a small, yet meaningful way. This new so-
lution is accepted with a probability of 1 if it is quantitatively
better than the current solution, and accepted according to
the Metropolis criterion otherwise. Cluster quality is mea-
sured using the Sum of Squared Error (SSE) criterion. This
paper presents an SA algorithm that uses a new type of per-
turbation to generate solutions. Whereas most SA clustering
algorithms perturb data point memberships directly, our al-
gorithm perturbs a randomly chosen center using Gaussian
mutation, and then reassigns data points in a nearest neighbor
fashion. Experimental results on a diverse collection of data
sets demonstrate that our algorithm has comparable effective-
ness to other SA algorithms, while being much faster due to
its simplicity.

1 Introduction
Clustering is one of the most important tasks in exploratory
data analysis (Jain, Murty, and Flynn 1999). In a general
sense, the purpose of clustering is to group a set of data
points so that the points in any cluster are more similar to
each other than to the points in other clusters. Clustering has
been used in numerous fields including as statistics, eco-
nomics, physics, psychology, biology, pattern recognition,
engineering, and marketing (Brown and Huntley 1992).

The dissimilarity between data points and the quality of
the clustering is commonly quantified using the squared Eu-
clidean distance. The problem of clustering n data points
into k clusters is solved by minimizing the following objec-
tive function (Selim and Alsultan 1991):

J(W,Z) =

n∑
i=1

k∑
j=1

wijd
2
ij (1)

subject to
k∑

j=1

wij = 1, 1 ≤ i ≤ n (2)

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

wij =

{
1 if point i is assigned to cluster j,
0 otherwise,

1 ≤ i ≤ n, 1 ≤ j ≤ k
where dij denotes the Euclidean distance between point i
and the center of cluster j, and wij ∈ {0, 1} ensures that
points remain exclusive to their respective clusters.

Clustering algorithms can be roughly divided into two
categories: hierarchical and partitional. Hierarchical algo-
rithms find nested clusters either in a divisive or agglomer-
ative fashion. Partitional algorithms, on the other hand, find
all clusters simultaneously and do not impose a hierarchical
structure. Most hierarchical algorithms have quadratic or su-
perquadratic asymptotic time complexity (Jain, Murty, and
Flynn 1999) and thus are not suitable for processing large
data sets, while partitional algorithms often have linear or
loglinear complexity. In this paper, we are concerned with
hard-partitional clustering algorithms, where each data point
belongs to one and only one cluster. Eq. (3) shows a general
formulation of the clustering problem.

General Clustering Problem (3)
Let
X be the set of points to be clustered,
P be the set of all possible clusterings of X ,
J : P → R be an internal clustering criterion;

Then
Minimize J(p)

Subject To
p ∈ P

Clustering is a combinatorial optimization problem. These
are typically NP-hard problems (Aloise et al. 2009) con-
cerned with finding the optima of functions of discrete vari-
ables (Aarts and van Laarhoven 1989). There are two ways
to solve a combinatorial optimization problem: optimization
algorithms and approximation algorithms (Rutenbar 1989).
Optimization algorithms return the globally optimum solu-
tion, whereas approximation algorithms (also called “heuris-
tics”) return a solution that is “close” to the global optimum
(Aarts and van Laarhoven 1989; Rutenbar 1989). In theory,
optimization algorithms seem to be the better choice because
they return the best solution, but in practice they can be

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

456

quite difficult to design and implement, and they are usually
problem specific. More importantly, they can be extremely
slow on large-scale problems. Approximation algorithms, on
the other hand, are often easier to implement, more generic,
and faster. SA is a popular approximation algorithm that has
been applied to a variety of optimization problems including
clustering.

SA is based on the physical annealing process in which
a material is heated up in a heating bath allowing the atoms
to move freely. After being heated, the material is cooled
carefully and slowly so that the atoms can settle into a good
crystal or low-energy state (Rutenbar 1989). SA’s origins
date back to 1953 (Metropolis et al. 1953), when a group
of researchers led by Nicholas Metropolis developed an al-
gorithm to model this physical annealing process (Aarts and
van Laarhoven 1989). The pseudocode of the Metropolis al-
gorithm is given in Algo. 1 (Metropolis et al. 1953). Here,
KB and t denote the Boltzmann constant and temperature of
the solid, respectively.

Algorithm 1 The Metropolis Algorithm
1: Select an initial state i ∈ S;
2: Generate a new state by applying a small randomly gen-

erated perturbation
3: Calculate the change in energy ∆E
4: if ∆E < 0 then
5: The new state is accepted as the starting point for the

next move
6: else if ∆E > 0 then
7: The new state is accepted with probability

exp(−KB∆E/t)
8: end if

To implement the SA algorithm, four things must be de-
fined (Aarts and van Laarhoven 1989; Rutenbar 1989):
• Configurations/Solutions: This is a model for what an

acceptable solution to the problem is. It is comparable to
the “state” of the solid in the Metropolis algorithm.

• Perturbation Method: This is the method that slightly
changes the current solution in a small, yet meaningful
way, usually by way of a swap or permutation, to generate
a neighborhood solution to the current solution. This is
comparable to the atoms moving freely in the Metropolis
algorithm.

• Cost Function: A function that quantifies the quality of a
solution. The result is comparable to the “energy” of the
solid in the Metropolis Algorithm.

• Cooling Schedule: The cooling schedule consists of
many components. Its purpose is to determine the initial
temperature, determine when and by how much the tem-
perature should be lowered, and when the annealing pro-
cess is done.
In physical annealing, temperature has a real meaning, but

in SA temperature functions as a control parameter (Aarts
and van Laarhoven 1989; Rutenbar 1989). The purpose of
the temperature is to control the probability that cost in-
creasing moves are accepted. When starting the algorithm,

the temperature should be high enough so that the proba-
bility of acceptance is close to 1. The temperature param-
eter is decreased in a monotonic fashion so that the prob-
ability of acceptance eventually reaches zero as the algo-
rithm progresses. At each temperature, the system must be
allowed to reach “thermal equilibrium”. This means that at
each temperature enough perturbations must be made to get
a good sampling of the neighborhood for that temperature.
This helps ensure that by the time the algorithm reaches the
final stages it has escaped all local minima and is close to a
globally optimum solution. After termination, the final con-
figuration is taken as the solution to the problem. The con-
ventional SA algorithm is given in Algo. 1 (Klein and Dubes
1989).

There are two main approaches to implementing the cool-
ing schedule. The standard way is to implement a cooling
schedule that consists of an initial temperature, final tem-
perature, a monotone decreasing function to decrement the
temperature, as well as the number of iterations per tempera-
ture. This is the multi Markov chain (MMC) approach to the
cooling schedule, where each Markov chain corresponds to
a certain temperature. The alternative is the single Markov
chain (SMC) approach, which has a significantly simpler,
yet effective cooling schedule. Instead of stepping through
multiple Markov chains, a single temperature parameter is
set at the beginning of execution and used throughout the en-
tire course of the algorithm. The main parameter that must
be tuned in an SMC cooling schedule is the number of iter-
ations per temperature.

Algorithm 2 Conventional SA Algorithm
1: Choose initial temperature t0.
2: Choose final temperature tf .
3: Choose temperature function f , such that f is monoton-

ically decreasing.
4: Choose initial random configuration of clusters.
5: repeat
6: repeat
7: perturb configuration i with cost Ci to configu-

ration j with cost Cj ,
8: if (∆Cij = Cj − Ci) ≤ 0 then
9: accept configuration j

10: else
11: accept configuration j with probability

exp (−∆Cij/tr)
12: end if
13: until quasi-equilibrium at tr is reached
14: tr+1 = f(tr).
15: until tr+1 ≤ tf indicating that the system is frozen

There are two types of decisions that must be made
when implementing an SA algorithm: generic choices and
problem specific choices (Dowsland and Thompson 2012).
Generic choices concern setting the parameters of the cool-
ing schedule, whereas problem specific choices focus on the
cost function, neighborhood structure, and perturbation op-
erator.

This paper presents a new type of SA algorithm for clus-

457

tering. This algorithm differs from other SA clustering al-
gorithms in how it solves the partitional clustering problem
by a specific choice of perturbation method. The rest of the
paper is organized as follows. Related work is presented in
Section 2. The proposed algorithm is detailed in Section 3.
Experimental results are given in Section 4. Finally, conclu-
sions are given in Section 5.

2 Related Work
There are several SA based approaches to the clustering
problem. These SA algorithms usually differ in one or more
of the categories listed in Section 1. In most cases, the solu-
tion space and the cost function will be the same, but the per-
turbation method and the cooling schedule will differ drasti-
cally.

Klein and Dubes (Klein and Dubes 1989) presented an SA
algorithm (K & D), where the perturbation operator changes
the membership of a single randomly chosen point to a
different, randomly chosen cluster. This is a small enough
move to ensure that the new solution is in the neighborhood
of the current solution. The cooling schedule parameters are
set automatically by measuring the initial cost and variance
at a high temperature. The only value that must be set man-
ually is ε, and its value should be close to zero. The cooling
schedule values that are needed are given below:

Markov chain length - the number of accepted moves at
one temperature;
t0 - the initial value of the temperature;
tr+1 = f(tr) - the decrement rule;
tf - the final value of the control temperature;
δ - a number close to zero that controls the rate of cooling;
ε - a number close to zero that controls the freezing point.

The notation Ci(tr) refers to the cost of configuration
i when the temperature is tr. The term C(tr) is the aver-
age cost over n accepted moves (n: number of data points)
achieved after the chain has reached equilibrium, that is:

C(tr) =
1

n

n∑
i=1

Ci(tr) (4)

C2(tr) approximates the second moment of cost. It is the
same as C(tk), but the cost is squared before summation.

C2(tr) =
1

n

n∑
i=1

C2
i (tr) (5)

The sample variance of cost is defined as:

σ2(tr) = C2(tr)− [C(tr)]2 (6)

The initial value of the temperature is given by:

t0 = σ(∞) (7)

where C2(∞) and C(∞) are computed from an initial
Markov chain at a very high value of t. The decrement rule

f is established as follows:

tr+1 = tr

(
1 +

ln(1 + δ) · tr
3σ(tr)

)−1

(8)

The final value of the control parameter tf is taken to be the
first value that satisfies the following equation:

σ2(tf)

tf (C(t0)− C(tf))
< ε (9)

Brown and Huntley (Brown and Huntley 1992; 1995)
present an algorithm (B & H), where the perturbation op-
erator transfers a randomly chosen point i from its present
cluster to another randomly chosen cluster. Most SA algo-
rithms cycle through every point and transfer them with a
certain probability, but this algorithm transfers a randomly
chosen point with probability of 1 in the exact same way as
the K & D algorithm. The B & H algorithm differs from the
K & D algorithm by the methods and mathematical formulae
used to determine the initial temperature, final temperature,
and Markov chain length. The algorithm also accounts for
tracking empty clusters versus non-empty clusters, opting to
place the randomly chosen point i in an empty cluster prefer-
ably, but only if empty clusters exist. The cooling schedule
parameters are calculated based on run-time statistics gath-
ered from a fixed number of trial perturbations in a similar
fashion to the K & D algorithm. The total number of pertur-
bations tried in any run is MaxIt multiplied by NumTemp,
where MaxIt is a fixed multiple of the number of objects to
be clustered and NumTemp is a user-defined constant. α is
the decrement factor that is used to determine the new tem-
perature, i.e., tr+1 = αtr. The initial temperature is given
by:

t0 =
µ+

log

(
m+

χm+ − (1− χ)(MaxIt−m+)

) (10)

where
m+ : the number of cost increases in MaxIt trial random
perturbations
u+ : the average cost increase in MaxIt trial random per-
turbations
χ : the acceptance ratio, a real value in (0, 1)

The final temperature is given by:

tf = −βµ
+

log ε
(11)

where 0 < ε < 1 and 0 < β < 1. This represents the algo-
rithm accepting a cost increase of −βµ+ with probability ε
at the final temperature tf . Given NumTemp, t0, and tf , the
calculation of α is straightforward:

α =

(
tf
t0

)1/NumTemp

(12)

With sufficiently large NumTemp and MaxIt and suffi-
ciently small (1 − χ), β, and ε, the annealing schedule en-
sures slow, steady convergence to a near global optimum

458

solution. The authors recommend values of NumTemp =
200, MaxIt = 4n, χ = 0.75, β = 0.125, and ε =
0.00000000001.

Bandyopadhyay et al. presented an SA algorithm called
SAKM (Bandyopadhyay, Maulik, and Pakhira 2001). In-
stead of opting for a completely random perturbation
method, the SAKM algorithm uses the distance between
each data point and its nearest center to calculate the transfer
probability of the point. The farther away a data point is from
its current cluster center, the more likely it is transferred to
another cluster. Data point xi in cluster Cj is transferred to
cluster Ĉ with probability:

exp

(
−|dî − dij |

tr

)
(13)

where dî and dij represent the distances of xi to the cen-
ters of clusters Ĉ and Cj , respectively. The SAKM algorithm
is advantageous over other SA based clustering algorithms
because the same set of parameter values can be used on
a myriad of data sets. The temperature values are a non-
increasing sequence such that t0 ≥ t1 ≥ · · · ≥ tr = 0.
While the use of a logarithmic cooling schedule of the form
tr = t0/ log (1 + r) is optimal (Geman and Geman 1984),
the SAKM uses a faster geometric schedule, which is iden-
tical to that of B & H. The values of t0 and α are recom-
mended to be set to 100 and 0.95, respectively, and these
values are applicable to every data set given in Section 4.

The last related algorithm presented is the SACM algo-
rithm (Boguś, Massone, and Masulli 1999; 2002). In con-
trast to the aforementioned SA algorithms, the SACM algo-
rithm generates a completely random solution at every step.
This means that the new solution is not related to the current
solution in any way. The reason that this algorithm is listed
as related work is because of the idea behind the SACM per-
turbation method. Most SA algorithms will perturb the cur-
rent solution by transferring points in some fashion to other
clusters. SACM perturbs the current solution by generating
new centers, and then assigning each point to the cluster with
the closest center. Due to the unstructured nature of its per-
turbation method, SACM is not a “true” SA algorithm, but
the underlying idea is worth experimenting with. Since the
SACM algorithm is not compared against the other methods
discussed, its cooling schedule parameters will not be de-
tailed. It does follow a very standard SA format in both its
main structure and cooling schedule.

3 Proposed Algorithm
The proposed algorithm is an SA clustering algorithm based
on center perturbation using Gaussian mutation, hereafter
referred to as the SAGM algorithm. The basic structure of
the SAGM algorithm is the same as the standard SA algo-
rithm given in Algo. 1.

Where SAGM differs, like most others, is in how it per-
turbs the current solution to generate a neighbor solution.
In most SA based clustering algorithms, the points are be-
ing transferred from one cluster to another based on some
perturbation criteria. The SAGM algorithm perturbs the cur-
rent solution by altering a randomly chosen center in a con-
trolled manner. As opposed to SACM’s completely random

generation of new centers, the use of Gaussian mutation to
slightly alter an existing center complies with the neighbor-
hood structure that is required by a true SA algorithm.

Before applying Gaussian mutation, the attributes of the
data set are normalized to the [0, 1] interval using linear scal-
ing (min-max normalization) (Milligan and Cooper 1988).
This normalization allows the same mutation factor to be
applied to each attribute regardless of their original range.
After normalization, Gaussian mutation is applied, that is a
normally distributed random value is added to each attribute
of the target center. After the perturbation, all points are then
assigned to the nearest cluster center. If the new solution has
a lower Sum of Squared Error (SSE), than the current solu-
tion, then it is accepted with a probability of 1, otherwise it
is accepted according to the Metropolis criterion. The pseu-

Algorithm 3 Perturbation Operator for SAGM
1: Let C be the set of clusters in the current solution.
2: Let c be a center from a randomly chosen cluster from

the set C.
3: Let δ be a mutation factor that is close to zero.
4: Let G be a Gaussian random number generator.
5: for Each Attribute i of c do
6: Set i = i+ δG;
7: end for
8: Reassign all points to the closest cluster whose center

measures the lowest squared Euclidean distance.
9: Calculate the new SSE.

docode for the perturbation operator of the SAGM algorithm
is given in Algo. 3. The other main component of the SAGM
algorithm is the cooling schedule. As discussed in Section 1,
an SA algorithm can implement one of two different types
of cooling schedules: the multi Markov chain (MMC) cool-
ing schedule and the single Markov chain (SMC) cooling
schedule. The proposed SAGM algorithm is implemented
using both schedules separately.

The MMC SAGM algorithm cooling schedule involves
the following parameters:

• Markov chain length: number of perturbations at a given
temperature

• t0: initial temperature

• tr+1 = f(tr): temperature function

• tf : final temperature

In contrast, the SMC SAGM algorithm cooling schedule
involves only two parameters: the Markov chain length and
t0.

The temperature function for the MMC cooling schedule
is the same as that of SAKM. The basic structures of the
SMC and MMC SAGM algorithms differ due to their differ-
ent cooling schedules. The pseudocode for the SMC proce-
dure is given in Algo. 3.

4 Experimental Results
In this section, experimental results are provided for both
variants of the SAGM algorithm as well as the algorithms

459

Algorithm 4 Modified SA Algorithm with Single Markov
Chain Cooling Schedule

1: Choose the number of iterations R.
2: Choose acceptance temperature t0.
3: Choose initial random configuration of clusters.
4: Let r = 0.
5: repeat
6: perturb configuration i with cost Ci to configuration
j with cost Cj ,

7: if (∆Cij = Cj − Ci) ≤ 0 then
8: accept configuration j
9: else

10: accept configuration j with probability
exp (−∆Cij/t0)

11: end if
12: r = r + 1
13: until r ≥ R

discussed in Section 2. Ten data sets from the UCI Machine
Learning Repository (Frank and Asuncion 2013) were used.
The data set descriptions are given in Table 1. Note that de-
spite the fact that each algorithm has its own set of cooling
schedule parameters, these parameter values were kept un-
changed across the data sets. In other words, no algorithm
was given unfair advantage by tuning its parameters. For the
MMC SAGM algorithm, the initial temperature, final tem-
perature, α, and number of iterations were set to 9, 4, 0.95,
and 4n (n: # points), respectively. As for the SMC SAGM
algorithm, the acceptance temperature and number of itera-
tions were set to 9 and 10n, respectively. The experiments
were conducted on an Intel CoreTM i7-930 2.80GHz ma-
chine.

In order to ensure fairness, every algorithm was initial-
ized with the same set of randomly generated initial cluster
centers. Tables 2 and 3 give the final SSE and CPU time
measurements of the algorithms, respectively.

It can be seen that both SAGM algorithms provide solu-
tions comparable to the other SA algorithms, but the SMC
SAGM algorithm generally converges significantly faster
than the other algorithms. The SMC SAGM method outper-
formed every other method on the Yeast data set. The only
other SA algorithm that rivals the speed of SMC SAGM is
the SAKM algorithm.

The rapid cooling schedule of SMC SAGM makes it
preferable to MMC SAGM, because the overall runtime is
reduced while converging to a comparable quality solution.
This is why the initial and final temperatures are so close in
the MMC SAGM algorithm.

The SAGM algorithm is not without its drawbacks. First,
the quality of the final solution is dependent on the initial
cluster centers. This “cluster center initialization” problem
is common to many partitional clustering algorithms and
can be addressed using a variety of methods, see for exam-
ple (Celebi and Kingravi 2012; Celebi, Kingravi, and Vela
2013). Second, as the cluster centers themselves are being
perturbed, if an outlier is given as an initial center, it will
be very difficult to adjust this center via Gaussian mutation.

This problem can be addressed by using either outlier prun-
ing (Zhang and Leung 2003) or an outlier insensitive initial-
ization method such as the one described in (Al Hasan et al.
2009).

Table 1: Descriptions of the Data Sets (n: # points, d: # at-
tributes, k: # classes)

ID Data Set n d k

1 Ecoli 336 7 8
2 Glass 214 9 6
3 Ionosphere 351 34 2
4 Iris Bezdek 150 4 3
5 Landsat 6,435 36 6
6 Letter Recognition 20,000 16 26
7 Image Segmentation 2,310 19 7
8 Vehicle Silhouettes 846 18 4
9 Wine Quality 6,497 11 7
10 Yeast 1,484 8 10

Table 2: Final SSE for Each SA Clustering Algorithm
ID K & D SAKM B & H SAGM

(MMC)
SAGM
(SMC)

1 17.472 17.436 17.437 17.449 17.435
2 18.260 18.241 18.241 18.246 18.241
3 628.89 628.89 628.89 628.93 628.90
4 6.9822 6.9822 6.9822 6.9822 6.9822
5 1742.62 1741.59 1741.59 1742.84 1744.61
6 4104.35 2747.18 2756.86 2767.12 2763.35
7 387.168 386.974 386.974 387.540 388.084
8 223.537 223.494 223.494 223.986 223.952
9 48.970 48.954 48.954 48.954 49.001
10 69.110 69.011 68.854 64.188 59.168

Table 3: CPU Time for Each SA Clustering Algorithm (‘m’:
minute, ‘s’: second)

ID K & D SAKM B & H SAGM
(MMC)

SAGM
(SMC)

1 15s 3s 3s 1s 1s
2 4s 2s 1s 0s 0s
3 20s 7s 7s 4s 1s
4 2s 1s 0s 0s 0s
5 3,247m

36s
6m35s 145m57s 125m36s 21m55s

6 20,909m
17s

23m35s 1,167m
23s

2,701m
19s

470m58s

7 164m1s 1m10s 9m7s 6m44s 1m15s
8 7m18s 15s 45s 28s 4s
9 3s 2s 1s 0s 0s
10 15m37s 22s 1m50s 1m24s 15s

5 Conclusions
This paper presented a new SA based partitional clustering
algorithm called SAGM. This algorithm differs from most

460

existing SA based partitional clustering algorithms in how
it perturbs the current solution to generate a neighborhood
solution. Instead of swapping data points between clusters,
the SAGM algorithm uses Gaussian mutation to perturb a
randomly chosen cluster center in a controlled manner. This
new method of generating a neighborhood solution leads to
dramatically reduced run-times while maintaining conver-
gence to high quality clustering solutions.

Robust clustering ability, simplicity, and speed combined
help make the SAGM algorithm a very attractive alternative
to the state-of-the-art SA clustering algorithms. Although
the algorithm does have some drawbacks, these can be over-
come and similar problems exist with other algorithms as
well.

6 Acknowledgments
This publication was made possible by a grant from the Na-
tional Science Foundation (1117457). The authors are grate-
ful to the anonymous reviewers for their insightful sugges-
tions and constructive comments that improved the quality
and presentation of this paper.

References
Aarts, E., and van Laarhoven, P. 1989. Simulated Annealing:
An Introduction. Statistica Neerlandica 43(1):31–52.
Al Hasan, M.; Chaoji, V.; Salem, S.; and Zaki, M. 2009. Ro-
bust Partitional Clustering by Outlier and Density Insensi-
tive Seeding. Pattern Recognition Letters 30(11):994–1002.
Aloise, D.; Deshpande, A.; Hansen, P.; and Popat, P. 2009.
NP-Hardness of Euclidean Sum-of-Squares Clustering. Ma-
chine Learning 75(2):245–248.
Bandyopadhyay, S.; Maulik, U.; and Pakhira, M. K. 2001.
Clustering Using Simulated Annealing with Probabilistic
Redistribution. International Journal of Pattern Recognition
and Artificial Intelligence 15(2):269–285.
Boguś, P.; Massone, A. M.; and Masulli, F. 1999. A Sim-
ulated Annealing C-Means Clustering Algorithm. In Pro-
ceedings of the 3rd ICSC Symposia on Intelligent Industrial
Automation and Soft Computing.
Boguś, P.; Massone, A. M.; and Masulli, F. 2002. Sim-
ulated Annealing C-means Clustering Algorithm Conver-
gence Proof. Proceedings of the 6th International Confer-
ence on Neural Network and Soft Computing 590–595.
Brown, D. E., and Huntley, C. L. 1992. A Practical Applica-
tion of Simulated Annealing to Clustering. Pattern Recog-
nition 25(4):401–412.
Brown, D. E., and Huntley, C. L. 1995. Fundamentals of
Cluster Analysis Using Simulated Annealing. In Kalivas,
J. H., ed., Adaption of Simulated Annealing to Chemical Op-
timization Problems. Elsevier. 133–154.
Celebi, M. E., and Kingravi, H. 2012. Deterministic Initial-
ization of the K-Means Algorithm Using Hierarchical Clus-
tering. International Journal of Pattern Recognition and Ar-
tificial Intelligence 26(7):1250018.
Celebi, M. E.; Kingravi, H.; and Vela, P. A. 2013. A Com-
parative Study of Efficient Initialization Methods for the K-

Means Clustering Algorithm. Expert Systems with Applica-
tions 40(1):200–210.
Dowsland, K. A., and Thompson, J. M. 2012. Simulated
Annealing. In Rozenberg, G.; Bäck, T.; and Kok, J., eds.,
Handbook of Natural Computing. Springer. 1623–1655.
Frank, A., and Asuncion, A. 2013. UCI Machine Learn-
ing Repository. http://archive.ics.uci.edu/ml. University of
California, Irvine, School of Information and Computer Sci-
ences.
Geman, S., and Geman, D. 1984. Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of Im-
ages. IEEE Transactions on Pattern Analysis and Machine
Intelligence 6(6):721–741.
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data
Clustering: A Review. ACM Computing Surveys 31(3):264–
323.
Klein, R. W., and Dubes, R. C. 1989. Experiments in Projec-
tion and Clustering by Simulated Annealing. Pattern Recog-
nition 22(2):213–220.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.;
Teller, A. H.; and Teller, E. 1953. Equations of State Calcu-
lations by Fast Computing Machines. Journal of Chemical
Physics 21(6):1087–1092.
Milligan, G., and Cooper, M. C. 1988. A Study of Standard-
ization of Variables in Cluster Analysis. Journal of Classifi-
cation 5(2):181–204.
Rutenbar, R. A. 1989. Simulated Annealing Algorithms: An
Overview. IEEE Circuits and Devices Magazine 5(1):19–
26.
Selim, S. Z., and Alsultan, K. 1991. A Simulated Annealing
Algorithm for the Clustering Problem. Pattern Recognition
24(10):1003–1008.
Zhang, J. S., and Leung, Y.-W. 2003. Robust Clustering
by Pruning Outliers. IEEE Trans. on Systems, Man, and
Cybernetics – Part B 33(6):983–999.

461

