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Abstract

Probabilistic conditional logics offer a rich and well-founded
framework for designing expert systems. The factorization of
their maximum entropy models has several interesting appli-
cations. In this paper a general factorization is derived pro-
viding a more rigorous proof than in previous work. It yields
an approach to extend Iterative Scaling variants to determinis-
tic knowledge bases. Subsequently the connection to Markov
Random Fields is revisited.

1 Introduction
Probabilistic logics (Nilsson 1986) combine logic and prob-
ability theory. For designing expert systems in particular
probabilistic conditional logics (Kern-Isberner 2001) are in-
teresting, as they allow the definition of intuitive conditional
formulas like (Flies |Bird)[0.9] expressing that the probabil-
ity that a bird can fly is 90%. To obtain a complete proba-
bility distribution over logical atoms, such conditionals can
be regarded as constraints for an entropy maximization prob-
lem (Paris 1994). We call the distribution satisfying a knowl-
edge baseR and maximizing entropy the ME-model ofR.

In practice, ME optimization problems are often solved
by introducing lagrange multipliers for the constraints. As
noted in (Fisseler 2010), the solution is necessarily a Markov
Random Field (MRF), that is, it has the form P(ω) =
1
Z exp(

∑
i λi · fi(ω)) = 1

Z

∏
i exp(λi · fi(ω)), where λi

denotes a lagrange multiplier corresponding to the i-th con-
straint function fi. This ’factorization’ has several interest-
ing applications, as it can be used for the design of learning
(Kern-Isberner 2001) and inference algorithms (Finthammer
and Beierle 2012). One can show that if a factorization ex-
ists that satisfies linear constraints it is necessarily the unique
ME-model (Darroch and Ratcliff 1972) satisfying these con-
straints. However, existence of lagrange multipliers and
hence existence of the factorization is not self-explanatory.
In previous work the existence of a factorization has been
investigated only for positive ME-models of propositional
languages thoroughly.

We close this foundational gap. The most important ba-
sics are explained in Section 2. In Section 3 we show that for
each ’regular’ knowledge base under each ’linear semantics’
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the ME-model factorizes. Besides propositional languages
and their usual semantics, the result in particular covers re-
lational languages under ’grounding’ (Fisseler 2010) and
’aggregating’ semantics (Kern-Isberner and Thimm 2010).
Furthermore, the proof yields an approach to extend Iter-
ative Scaling (Darroch and Ratcliff 1972) variants like the
highly optimized implementation presented in (Finthammer
and Beierle 2012) to non-positive ME-models. As noted in
(Fisseler 2010) the factorization of ME-models corresponds
to the factorization of MRFs. We show how the correspond-
ing minimal Markov network can be constructed for differ-
ent languages and semantics. The Markov network is of
great practical interest, as it can be used to decompose the
ME-model into easier computable local distributions.

2 Languages and Semantics
We consider logical languages LA built up over alphabets
A = (Const,Var,Rel,Op) partitioned into a finite set Const
of constants, a set Var of variables, a finite set Rel of re-
lation symbols and a set of logical operators Op. A re-
lation symbol of arity zero is called a proposition. For
ease of notation we abbreviate conjunction by juxtaposition,
fg := f ∧ g, and negation by an overbar, f := ¬f in the
following. We can extend LA to a probabilistic conditional
language (LA|LA) := {(g|f)[x] | f, g ∈ LA, x ∈ [0, 1]}
(Nilsson 1986; Lukasiewicz 1999). A (conditional) knowl-
edge baseR ⊆ (LA|LA) is a set of conditionals.

Example 2.1. Consider the alphabet
({a, b}, {X,Y }, {F,A K}, {∧,¬}). F(X) has the in-
tended meaning ’X is famous’, A(X)’ expresses X is
an actor’ and K(X,Y ) expresses ’X knows Y ’. Then
(F(X) |A(X))[0.7] is a conditional. It can be regarded as
implicitly universally quantified. Intuitively it expresses a
degree of belief. If we learn about someone, she is an actor,
we suppose she is famous with about 70%.

A possible world assigns a truth value to each (ground)
atom over A, or just to a subset that is obtained by ground-
ing a conditional knowledge base. This set of ground atoms
is denoted by B and is called the interpretation base of A.
Let ΩB denote the set of all possible worlds over B. An atom
a is satisfied by ω ∈ ΩB iff it is evaluated to true. The def-
inition is extended to complex formulas in LA in the usual
way. We denote the classical satisfaction relation between
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possible worlds and formulas in LA w.r.t. B by |=B. For a
formula f ∈ LA let Mod(f) := {ω ∈ ΩB |ω |=B f} denote
the set of its classical models. Probabilistic semantics can be
defined by considering probability distributions over possi-
ble worlds. Let P : ΩB → [0, 1] be a probability distribution
assigning a degree of belief to each possible world. P is ex-
tended to the power set 2ΩB via P(W ) :=

∑
ω∈W P(ω) for

all W ⊆ ΩB. Let PB denote the set of all such probability
distributions over ΩB.

A conditional semantics S defines which P ∈ PB satisfy
a certain conditional. For propositional languages usually
the definition of conditional probability is used. That is, for
two propositional formulas g, f we define P |=S (g|f)[x]
iff P(Mod(gf)) = x · P(Mod(f)) (e.g. (Paris 1994)).
We call this semantics the standard semantics. For rela-
tional languages several other semantics have been consid-
ered. As a detailed discussion would go beyond the scope
of this paper, we only sketch the ideas and refer to the lit-
erature for a more detailed discussion. Grounding seman-
tics (Fisseler 2010) interprete conditionals by interpreting
all their ground instances. Therefore a grounding operator
gr : (LA|LA) → 2(LA|LA) is introduced mapping condi-
tionals to the set of its ground instances. The number of in-
stances can be restricted by variable restrictions likeX 6= Y .
Example 2.2. In Example 2.1, gr maps (F(X) |A(X))[0.7]
to (F(a) |A(a))[0.7] and (F(b) |A(b))[0.7]. In general, a
distribution P satisfies a relational conditional (g|f)[x] un-
der grounding semantics iff P satisfies all ground instances
under standard semantics, i.e., iff P(Mod(ggrfgr)) = x ·
P(Mod(fgr)) for all (ggr | fgr)[x] ∈ gr((g | f)[x]).

Another interesting semantics for relational languages is
the aggregating semantics (Kern-Isberner and Thimm 2010).
Instead of regarding a conditional containing variables as a
hard template for the probability of each ground instance,
their conditional probabilities just have to ’aggregate’ to the
stated probability (Kern-Isberner and Thimm 2010).

In general, a conditional is satisfied by a probability dis-
tribution under a given semantics if a certain equation over
probabilities of possible worlds is satisfied. Usually these
equations can be transformed into a normal form fc(P) = 0.
Let (LA|LA) be a conditional language over an alphabet
A along with an interpretation base B. We say a satisfac-
tion relation |=S⊆ PB × (LA|LA) defines a conditional
semantics S (with respect to B) iff for each conditional
c ∈ (LA|LA) there is a kc-dimensional constraint function
fc : PB → Rkc such that for all P ∈ PB, c ∈ (LA|LA)
it holds P |=S c iff fc(P) = 0. By f [i] we denote the i-th
component of a multi-dimensional function f . The dimen-
sion kc of the image of the constraint function is usually 1,
only for grounding semantics it can be greater. Then it corre-
sponds to the number of ground instances of the conditional
c. All introduced semantics use constraint functions with a
similar structure.
Definition 2.3. S is called linearly structured iff for each
conditional c ∈ (LA|LA), there are kc-dimensional func-
tions Vc : ΩB → Nkc0 and Fc : ΩB → Nkc0 such that
fc(P) =

∑
ω∈ΩB

P(ω) · (Vc(ω) · (1 − x) − Fc(ω) · x).

The functions Vc and Fc basically indicate whether a
world verifies or falsifies a conditional, see (Potyka 2012)
for details. The introduced standard semantics and ag-
gregating semantics are linearly structured (Potyka 2012).
Grounding semantics basically map a relational conditional
language to a propositional language over ground atoms and
use the standard semantics. Therefore they are also linearly
structured.

For a conditional c ∈ (LA|LA) let ModS(c) :=

{P ∈ PB | fc(~P) = 0} denote the set of its prob-
abilistic models under a given conditional semantics S.
For a knowledge base R ⊆ (LA|LA) let ModS(R) :=⋂
c∈RModS(c). We are interested in the best probabil-

ity distribution in ModS(R). An appropriate selection cri-
terion is the principle of maximum entropy (Paris 1994;
Kern-Isberner 2001). One important computational problem
in this framework is the task of computing an ME-Model of
R, i.e., a model P ∈ ModS(R) maximizing the entropy
H(P) := −

∑
ω∈ΩB

P(ω) · logP(ω). For linearly struc-
tured semantics there is always a unique solution if R is
consistent.

3 Factorization of ME-Models
Let d = 2|B|. We assume the possible worlds are ordered in
a fixed sequence ω1, . . . , ωd ∈ ΩB so that we can identify
each P ∈ PB with a point (P(ωi))1≤i≤d ∈ Rd. We use
the usual terminology and operators defined for Rd in the
following. For a knowledge base R let R= := {(g|f)[x] ∈
R |x ∈ {0, 1}} be the subset of deterministic conditionals
and let R≈ := R \ R=. R= enforces zero probabilities for
a subset of worlds NR ⊆ ΩB (Potyka 2012).

We call R regular if there is a positive distribution over
ΩB \ NR satisfying the constraints expressed by R≈ with
respect to S. For consistent non-regular knowledge bases no
finite factors might exist. We remark that regularity can be
checked by means of linear algebra.
Proposition 3.1. LetR ⊆ (LA|LA) be a regular knowledge
base interpreted by a linearly structured semantics S with
respect to an interpretation base B over A. Let PME ∈ PB
be the ME-model of R subject to S. Let 00 := 1 and for
c ∈ R let h[i]

c (ω) := V[i]
c (ω) · (1−x)−F[i]

c (ω) ·x. Then for
each c ∈ R≈ with kc-dimensional constraint function there
are kc positive numbers ac,i ∈ R+

0 , 1 ≤ i ≤ kc such that

PME(ω) =
1

Z

∏
c∈R≈

∏
1≤i≤kc

a
h[i]
c (ω)
c,i

∏
c∈R=

∏
1≤i≤kc

0| h
[i]
c (ω)|.

Proof. It holds for all c = (g|f)[x] ∈ R= and for all ω ∈ ΩB
that if x = 0 and Vc(ω) 6= 0 then PME(ω) = 0, see (Potyka
2012), Lemma 4.2. Symmetrically, if x = 1 and Fc(ω) 6= 0
then PME(ω) = 0. Let NR = {ω ∈ ΩB | ∃ c = (g|f)[x] ∈
R= : ∃ 1 ≤ i ≤ kc : h[i]

c (ω) 6= 0} denote the set of worlds
verifying a 0-conditional or falsifying a 1-conditional. Let
P ′ be the ME-optimal distribution over Ω+

B := ΩB \ NR
satisfying R≈. Then for all ω ∈ Ω+

B it holds PME(ω) =
P ′(ω) and for all ω ∈ NR it holds PME(ω) = 0, see (Potyka
2012), Proposition 4.3.
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As R is regular, there is a positive distribution over Ω+
B

satisfying R≈. Since S is linearly structured, it induces lin-
ear constraints and therefore the Open-mindedness Princi-
ple (Paris 1994) implies that the ME-optimal distribution P ′
over Ω+

B is positive and therefore a local maximum in the in-
terior of PB. If the (constant) gradients {∇f [i]

c | c ∈ R, 1 ≤
i ≤ kc} of the constraint functions are linearly indepen-
dent, the lagrange multiplier rule (McShane 1973) guaran-
tees the existence of lagrange multipliers. If they are not
independent, there are multipliers for an independent sub-
set and the multipliers for the remaining constraint functions
can be set to zero. We introduce a multiplier λ0 correspond-
ing to the normalizing constraint

∑
ω∈Ω+

B
P ′(ω)−1 = 0 and

multipliers λc,i for the constraint components f ic . Comput-
ing the partial derivative of H(P ′) w.r.t. P ′(ω) we obtain
− logP ′(ω)− 1 = λ0 +

∑
c∈R≈

∑
1≤i≤kc

λc,i · h[i]
c (ω).

Reordering the terms and applying the exponential func-
tion to both sides we obtain with Z := exp(1 + λ0)

P ′(ω) =
1

Z

∏
c∈R≈

∏
1≤i≤kc

exp(−λc,i · h[i]
c (ω)). (1)

As explained above, we can construct the ME-model from
P ′ by defining P(ω) := P ′(ω) for ω ∈ Ω+

B and P(ω) := 0
for ω ∈ NR. We extend the factorization in equation (1) ap-
propriately. Consider N(ω) :=

∏
c∈R=

∏
1≤i≤kc 0| h

[i]
c (ω)|.

If ω ∈ NR then, by definition of NR, there is a c ∈ R=

such that h[i]
c (ω) 6= 0 for some 1 ≤ i ≤ kc. Therefore the

exponent of a 0-factor is greater than zero and N(ω) = 0.
Otherwise, if ω ∈ ΩB \ NR, then always h[i]

c (ω) = 0 holds.
Hence N(ω) =

∏
c∈R=

∏
1≤i≤kc 00 = 1 by definition.

Hence we can extend the factorization of the reduced solu-
tion in equation (1) to the complete solution over ΩB by mul-
tiplying the factor N(ω). For c ∈ R≈ with kc-dimensional
constraint function we define ac,i := exp(−λc,i) for 1 ≤
i ≤ kc. Then it holds PME(ω) = P ′(ω) · N(ω) =
1
Z

∏
c∈R≈

∏
1≤i≤kc a

h[i]
c (ω)
c,i

∏
c∈R=

∏
1≤i≤kc 0| h

[i]
c (ω)|.

As exp(x) > 0 for all x ∈ R all factors ac,i are positive.

For f ∈ LA let 1{f} : ΩB → {0, 1} denote the indica-
tor function that maps a world ω to 1 if ω |=B f, and to 0

otherwise. By inserting the specific values for V[i]
c and F[i]

c
from (Potyka 2012) for the introduced linearly structured se-
mantics, we obtain the positive factorizations shown in Ta-
ble 1. Thereby c = (g|f)[x] is supposed to be a conditional
in the corresponding language and ω ∈ ΩB a classical in-
terpretation of this language. For aggregating semantics the
factor ac is indeed independent of the ground instance index
i, because just a single constraint function is induced for all
ground instances (Potyka 2012).

Application to Iterative Scaling Algorithms
Given some linear constraints, Iterative Scaling algorithms
(Darroch and Ratcliff 1972) compute the ME-optimal dis-
tribution over a set of elementary events Ω, given that the

Standard semantics
1

Z

∏
(g|f)[x]∈R≈

a
1{gf}(ω)·(1−x)−1{gf}(ω)·x
c

Grounding semantics
1

Z

∏
c∈R≈

∏
(gi | fi)[x]∈gr(c)

a
1{gifi}(ω)·(1−x)−1{gifi}(ω)·x
c,i

Aggregating semantics
1

Z

∏
c∈R≈

∏
(gi | fi)[x]∈gr(c)

a
1{gifi}(ω)·(1−x)−1{gifi}(ω)·x
c

Table 1: Factorization of linearly structured semantics.

solution is positive. In our domain, we use the notation
IS(Ω,R,S) = P∗, to express that the Iterative Scaling algo-
rithm IS computes the ME-optimal probability distribution
P∗ over a set of worlds Ω satisfying a knowledge base R
interpreted by a linearly structured semantics S. Usually
IS introduces a factor for each (ground) conditional from R
and initializes it with 1. Then the factors are successively
’scaled’ until all constraints are satisfied. If the constraints
are consistent and P∗ is positive, IS will converge towards
P∗. We can extend such algorithms to include deterministic
conditionals using the following scheme:

1. Compute Ω+
B .

2. P ′ := IS(Ω+
B ,R≈,S).

3. Define P(ω) := P ′(ω) for ω ∈ Ω+
B and P(ω) := 0 for

ω ∈ NR.

Corollary 3.2. Given thatR is regular, the procedure above
computes the ME-model PME ofR, i.e., P = PME.

Proof. As argued before, since R is regular, the solution
over Ω+

B with respect to R≈ and S is positive and there-
fore can be computed by IS. P = PME follows just like in
Proposition 3.1.

Connection to Markov Random Fields
In this section we presuppose some familiarity with Markov
Random Fields (MRFs) (Koller and Friedman 2009). Ba-
sically an MRF is a joint distribution P over a set of ran-
dom variables X = {X1, · · · , Xn} that factorizes as fol-
lows: PΦ(X) = 1

Z

∏
φ∈Φ φ(X|Dφ), where each factor

φ : Dφ → R, Dφ ⊆ X, depends only on a subset Dφ of
X and X|Dφ denotes the restriction of X to Dφ.

Note that the classical logical interpretation of a formula
depends only on the interpretation of a subset of atoms in
B. For a ground formula f let scope(f) be the set of ground
atoms contained in f. For a conditional c let scope(c) :=⋃

(gi | fi)[x]∈gr(c){scope(gifi)}, where gr(c) maps a proposi-
tional or ground conditionals c to {c}. Note that scope(c) is
indeed a set of scopes, each set corresponding to a ground
instance of c. Correspondingly, for a knowledge base R
let scope(R) :=

⋃
c∈R scope(c). Given an interpretation

base B and a knowledge base R over an alphabet A, the
induced graph GB,R is the undirected graph, whose nodes
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correspond to the ground atoms in B, and that contains
an edge between a1, a2 ∈ B if and only if there is a set
S ∈ scope(R) such that a1, a2 ∈ S, i.e., a1 and a2 both
appear in the scope of a ground conditional.
Example 3.3. We continue Example 2.1. Consider R =
{(F(X) |A(X))[0.7], (K(Y,X) |F(X))[0.9]} and let the
second conditional respect the instantiation restriction X 6=
Y . We obtain B = {F(a),F(b),A(a),A(b),K(a, b),K(b, a)}
by groundingR. The following figure shows GB,R:

K(a, b) F(b) A(b) K(b, a) F(a) A(a)

As Table 1 shows, for the introduced linearly structured
semantics the factorization of PME contains one factor for
each ground instance of a conditional in R. In particu-
lar, the value of each of these factors relies only on the
scope of the corresponding ground conditional. If we re-
gard PME as a joint distribution over random variables B, it
is just an MRF. For the introduced semantics it has the form
PME(B) = 1

Z

∏
c∈R≈

∏
(gi | fi)[x]∈gr(c) φc,i(scope(gifi)),

where (letting ac,i := ac for standard and aggregat-

ing semantics) φc,i(S) := a
1{gifi}(S)·(1−x)−1{gifi}(S)·x
c,i .

The induced graph is constructed by connecting each two
ground atoms that appear together in the scope of a factor
φ(scope(gifi)). One can show that in this way the minimal
Markov network for PME(B) is constructed, see (Koller and
Friedman 2009), Prop. 9.1. Combining both findings, we
obtain the following results.
Corollary 3.4. Let A be an alphabet containing arbitrary
logical connectives but no quantifiers. Let R ⊆ (LA|LA)
be a regular knowledge base interpreted by grounding or ag-
gregating semantics with respect to an interpretation base B
overA. Then the ME-modelPME is an MRF and the induced
graph GB,R is the minimal Markov network to PME.
Example 3.5. We continue Example 3.3. R is indeed reg-
ular. Therefore, using MRF notation, the ME-model can
be written as P(A(a),A(b),F(a),F(b),K(a, b),K(b, a)).
We assign a factor α1 to (F(a) |A(a))[0.7], α2 to
(F(b) |A(b))[0.7], β1 to (K(b, a) |F(a))[0.9] and β2 to
(K(a, b) |F(b))[0.9]. Then, for instance, P(1, 1, 1, 0, 0, 1) =
α0.3

1 · α−0.7
2 · β0.1

1 · β0
2 .

Corollary 3.6. Let A be a propositional alphabet. Let
R ⊆ (LA|LA) be a regular knowledge base interpreted by
standard semantics with respect to an interpretation base B
overA. Then the ME-modelPME is an MRF and the induced
graph GB,R is the minimal Markov network to PME.

Grounding and aggregating semantics are applied to
quantifier-free languages only. However, in principle one
can consider a quantified first-order language under stan-
dard semantics. Then Proposition 3.1 still guarantees that
the ME-model of regular knowledge bases is an MRF. But
the corresponding minimal Markov network will be much
more complex, because for quantified formulas there is not
one scope for the interpretation of each ground instance, but
a single big scope containing the scopes of all ground in-
stances.

4 Discussion
We revisited the factorization of ME-models and the con-
nection to Markov Random Fields. Proposition 3.1 guaran-
tees the existence of the factorization for regular knowledge
bases under arbitrary linearly structured semantics. In par-
ticular, as we saw in Corollary 3.2, the ME-model of regular
knowledge bases can be computed by Iterative Scaling vari-
ants even if deterministic conditionals are contained. The
restriction to regular knowledge bases is not a heavy draw-
back, as Examples for consistent knowledge bases that are
non-regular are usually pathological and do not appear in
practice.

As noted in (Fisseler 2010), the factorization of ME-
models establishes a connection to Markov Random Fields.
We showed how the corresponding minimal Markov net-
work can be constructed for the ME-model of regular knowl-
edge bases for different languages and semantics. This net-
work can be used to generate a junction tree or, more gen-
erally, a cluster graph that enables more efficient inference
techniques (Koller and Friedman 2009). A junction tree rep-
resentation, which has been derived in another way, has al-
ready been used profitably for propositional languages under
standard semantics (Rödder, Reucher, and Kulmann 2006).
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