
Learning Policies in Partially Observable MDPs
with Abstract Actions Using Value Iteration

Hamed Janzadeh and Manfred Huber
The University of Texas at Arlington

701 South Nedderman Drive
Arlington, Texas 76019

Abstract
While the use of abstraction and its benefit in terms of
transferring learned information to new tasks has been
studied extensively and successfully in MDPs, it has
not been studied in the context of Partially Observable
MDPs. This paper addresses the problem of transferring
skills from previous experiences in POMDP models us-
ing high-level actions (options). It shows that the opti-
mal value function remains piecewise-linear and convex
when policies are high-level actions, and shows how
value iteration algorithms can be modified to support
options. The results can be applied to all existing value
Iteration algorithms. Experiments show how adding op-
tions can speed up the learning process.

Introduction
Today, computers are playing a major role in solving every-
day problems and it is no longer possible to accomplish most
of our routine tasks without their aid. The way we solve our
real-life problems using computers is through first modeling
the problems in a mathematical form and second develop-
ing computer algorithms to solve the formalized problems.
Among the different mathematical models we have to for-
malize problems, Markov processes are very useful for plan-
ning or decision making under uncertainty. This makes it im-
portant to develop effective methods for mapping problems
into these models and for learning efficient solutions.

Partially Observable Markov Decision Processes
(POMDPs) provide a broader definition and a better
model of the uncertainties in the environment compared to
MDPs. As a result, POMDPs are usually better models for
formalizing real-world problems and there already exist a
number of learning algorithms for these models, including
Value Iteration (Smith and Simmons 2012), Policy Gradient
(Sutton et al. 2009), Bayesian Learning algorithms (Tous-
saint, Charlin, and Poupart 2008), etc. However, all of these
algorithms are still not effective for problems with more
than a few thousand states. On the other hand, real-world
problems usually require a huge (if not infinite) number of
states if directly modeled by Markov processes.

While developing faster algorithms can be effective for
addressing this issue, another approach is to re-evaluate the

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

methods we use to formalize our problems. Abstraction and
Transfer Learning (Taylor and Stone 2009) are interesting
topics in AI that take advantage of this concept and help
solving more complicated problems using the existing algo-
rithms through systematic down-scaling of the problem size
and reusing of the already learned skills.

Unfortunately, abstraction and transfer learning are not
well studied for POMDPs. In this paper, we show how trans-
ferring knowledge and abstraction is possible in POMDP
models through use of high-level actions (options) and we
present an algorithm to learn optimal policies for these mod-
els created from high-level actions. The learning algorithm
is based on the conventional value iteration algorithms for
POMDPs. Some variations of these algorithm are among the
fastest algorithms that exist for learning in POMDPs.

A new problem is also introduced which is a simplified
version of the Robocup Rescue Simulation (Amraii et al.
2004) problem that is very scalable and could be a useful
testbed for evaluating abstraction methods in POMDPs.

In the remainder, the next section gives an introduction
to the formal definition of POMDPs and the value iteration
learning algorithms for these models. Then we explain how
value iteration could be modified to learn policies that in-
clude high-level actions. In the last section, the evaluation
environment and the experimental results are presented.

Related Work
POMDPs
A Partially Observable Markov Decision Process (POMDP)
is a broader definition of the Markov Decision Process
(MDP). The difference is that in a POMDP the world’s state
is not known to the agent; instead, a probabilistic obser-
vation corresponding to the state is received from the en-
vironment after taking each action. Compared to an MDP,
POMDP models are more realistic representations of real-
world environments and therefore solving POMDP prob-
lems is a step towards addressing more realistic problems.

A finite POMDP is formally defined by the tuple
< S,A,Z, I, T, Z,R, γ > where:
• S is a finite set of all the states of the world;
• A is a finite set of all the actions available to the agent;
• Z is a finite set of all the observations the agent could

receive from the environment;

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

82

• I : D(S) is the initial state probability function and Is is
the probability of the world starting in state s;

• T : S × A → D(S) is the state transition probability
function and T sas′ is the probability of transiting to state s′
after taking action a in state s;

• Z : S × A → D(Z) is the observation probability func-
tion and Zsaz is the probability of receiving observation z
after taking action a and ending up in state s;

• R : S × A → R is the reward function and Rsa is the
reward received after taking action a in state s;

• γ ∈ [0, 1] is the discount factor.

Belief States
In an MDP model, the agent can make decisions based on
the current state of the world which is known to it. There-
fore, the policy can be defined as a mapping from the world
states to actions. However, in a POMDP the world state is
not known by the agent and it could thus not define policies
by mapping states to actions. To address this, one way to
define POMDP policies as a mapping from belief states to
actions (Kaelbling, Littman, and Cassandra 1998).

A belief state b is a probability distribution over the world
states. Given a belief state b, we use bs to represent the prob-
ability of state s. The belief state starts being equal to the ini-
tial state probability function, I , given by the POMDP model
and is updated over time to track the world state’s probability
using the observations the agent receives. Formally, a belief
state b after taking action a and receiving observation z is
updated to belief state b′, or T (b, a, z), as defined below:

Ts′(b, a, z) = b′s′ =

∑
s bsT

sa
s′ Z

s′a
z∑

s′′
∑
s bsT

sa
s′′Z

s′′a
z

(1)

Value Iteration
The optimal value function for a POMDP model can be de-
fined recursively over the belief state space using the Bell-
man equations (Kaelbling, Littman, and Cassandra 1998):

V ∗n (b) = max
a

∑
s

bs

(
Rsa +

γ
∑
s′

∑
z

T sas′ Z
s′a
z V ∗n−1(T (b, a, z))

)
, (2)

where, V ∗n (b) is the value of the optimal policy for belief
state b in the nth iteration.

A major problem with this representation of the value
function is that it is defined over an infinite space of be-
lief states, making it impossible to learn using conventional
value iteration algorithms or even to represent the value
function. This way, a single iteration of the value iteration
algorithm would require an infinite amount of time and ex-
act representation of the value function needs infinite space.

In 1973 (Smallwood and Sondik 1973) showed that the
optimal value function given in Equation 2 has properties
that make it possible to solve it using value iteration al-
gorithms. In particular, they showed that the optimal value
function is piece-wise linear and convex over the space of

Figure 1: A sample optimal value function for a two state
POMDP problem.

belief states and can be represented by a finite set of vec-
tors. Figure 1 shows a piece-wise linear and convex value
function for a sample POMDP with two states. Each of the
vectors representing a linear function is called an α-vector
and the value of the optimal policy at each belief state is
equal to the maximum value for all of the linear functions at
that belief state. This is formally expressed in Equation 3:

V ∗n (b) = max
l

[∑
s

bsα
l
s(n)

]
, (3)

where, αls(n) is the sth element of the lth α-vector at iter-
ation n. The size of each α-vector is equal to the number
of states. α-vectors can be calculated recursively using the
α-vectors of the previous iteration:

αls(n) = Rsa + γ
∑
s′

T sas′ Z
s′a
z αl

′

s′(n− 1) ∀a, z, l′. (4)

One problem with this method of value iteration is that
the number of α-vectors grows very fast after each iteration.
This could make the algorithm computationally very expen-
sive or even infeasible if it is implemented the exact way.
However, there exists significant work aimed at address-
ing this, resulting in different variations of the value itera-
tion algorithm that are computationally less expensive. Most
of these algorithms work by approximating the α-vectors
through either sampling or by defining bounds on the value
function (Smith and Simmons 2012)(Pineau et al. 2003).

Options
In 1998 (Precup, Sutton, and Singh 1998) introduced ab-
stract actions for Semi-MDP models which they call options.
An option is an already learned policy for performing a sub-
task that could be transferred and used in solving other prob-
lems as an additional action in the MDP model. For example,
when a robot learns how to go from one room to another, it
could use that as one of its skills or actions when learning to
plan for another problem like cleaning the house.

Learning the optimal policy for MDPs when options are
added is very similar to the original case. Each option is
a regular policy that uses lower-level actions to execute.
For each option, after being learned, some statistics includ-
ing the expected reward and transition probability functions
are calculated and preserved. The expected reward function,
Rso, defines the expected sum of the discounted rewards that
could be obtained if executing option o in state s before the

83

option terminates. The state transition function T sos′ gives the
probability of option o terminating in state s′ if executed in
state s. These functions look very similar to those of regular
actions, and with slight modifications to the algorithms and
the model, options can be added to the model’s set of actions
and used for learning of future problems.

The Markov processes the options could be used in are
called Semi-Markov, because options violate the Markov as-
sumption by taking arbitrarily long to execute. This prevents
the probability of the next time-step’s state to depend only
on the action taken and the current state.

Hierarchical Policy for POMDPs
In this section we show how an optimal policy made of high-
level actions could be calculated for POMDPs by making
some modifications to the value iteration algorithm.

Generalized Belief State Update
One of the main pre-requisites of the value iteration algo-
rithm for POMDPs is to have a belief state, because the value
function is defined over the belief state space. As a result, it
is very important to show how the belief state is updated if
options are available in the POMDP model.

Here, we define a more general version of the belief state
update to handle options in the value function. In the con-
ventional form, the belief state is updated once after each
action is executed and an observation is received. An op-
tion, however, is a high level action and executes a sequence
of lower-level actions before terminating. Therefore, in the
generalized form we define a belief update over a sequence
or trajectory of action-observation pairs we call a history.

A history h is a trajectory of action-observation pairs:
h =< a1, z1, a2, z2, ..., aL, zL >, (5)

where at is the action taken and zt is the observation ob-
tained at time-step t. L is the length of the history. Also, hk
is a prefix of h which contains the first k pairs.

Now, we show how a belief state is updated. b′ = T (b, h)
is the updated belief state b after experiencing history h:

Ts′(b, hk) =

∑
s Ts(b, hk−1)T saks′ Zs

′ak
zk∑

s′′
∑
s Ts(b, hk−1)T saks′′ Z

s′′ak
zk

. (6)

If we expand this recursive function we see that the belief
state function is still linear in the initial belief state. We use
ψhss′ to simplify the equations in the later sections:

Ts(b, h1) =

∑
s0
bs0T

s0a1
s Zsa1z1∑

s0

∑
s1
bs0T

s0a1
s1 Zs1a1z1

,

Ts(b, h2) =

∑
s0

∑
s1
bs0T

s0a1
s1 Zs1a1z1 T s1a2s Zsa2z2∑

s0

∑
s1

∑
s2
bs0T

s0a1
s1 Zs1a1z1 T s1a2s2 Zs2a2z2

,

...

Ts(b, hk) =

∑
s0,s1,...sk−1

bs0T
s0a1
s1 Zs1a1z1 ...T

sk−1ak
s Zs,akzk∑

s0,s1,...sk
bs0T

s0a1
s1 Zs1a1z1 ...T

sk−1ak
sk Zsk,akzk

=

∑
s0
bs0ψ

hk
s0s∑

s′
∑
s0
bs0ψ

hk

s0s′

. (7)

POMDP Options
Similar to regular policies, a POMDP option can be defined
either by a Finite State Controller (FSC) or by a finite set of
linear functions represented by vectors (we name β-vectors).
In this paper, we will focus mainly on options defined using
a set of linear equations, because the higher level policy is
defined this way, too. However, it is possible to use the FSC
options in the proposed value iteration algorithm, as well.

An option needs a termination method; otherwise, it will
never stop execution after being selected. We will use a de-
terministic termination function by adding a termination ac-
tion to the option’s action set. This way, the option’s policy
will select termination in those areas of the belief state sim-
plex where termination should happen. When learning the
option, the reward function has to be manipulated such that
the termination action is selected when the sub-task is done.
Similarly, initialization has to ensure that an option is not
selected in a belief state outside its initialization set.

In the case of FSC options, the solution for handling ini-
tialization and termination is much simpler: there will be ad-
ditional memory states that define those conditions.

Value Iteration for Abstract Policies
Here we discuss the conditions under which the value func-
tion for an optimal POMDP policy using options will re-
main piecewise linear and convex. Then we will explain how
value iteration can be modified to learn with options.

First, we need to re-define the POMDP value function
from Equation 2 for the case where options are available.
The value function could be re-defined using the generalized
form of the belief state update function we just explained:

V ∗n (b) = max
o

(
Rob +

∑
h∈H

P o,bh γLV ∗n−1(T (b, h))
)
, (8)

where, V ∗n (b) is the value of the optimal policy in belief state
b in iteration n, h is a history, H is the finite set of possible
limited horizon histories, and L is the length of history h.
P o,bh = P (h|o, b) is the probability of history h happening

if option o starts execution in belief state b:

P o,bh =
(
1− νo(b)

)∑
s0

bs0

× πo(b, a1)
(
1− ηo(b)

)∑
s1

T s0a1s1 Zs1a1z1

...
× πo(T (b, hk), ak)ηo(T (b, hk))

∑
sk

T sk−1ak
sk

Zsk,akzk

= πo(b, a1)...πo(T (b, hk), ak)
(
1− νo(b)

)(
1− ηo(b)

)
...
(
1− ηo(T (b, hk−1))

)
ηo(T (b, hk))

×
∑

s0,...,sk

[
bs0T

s0a1
s1 Zs1a1z1 ...T sk−1ak

sk
Zsk,akzk

]
= Aohk

×W b
hk

(9)

where, πo(b, a) is the probability of action a being selected

84

by option o in belief state b:

πo(b, a) =

{
1 if a = argmaxi

∑
s bsβ

o,i
s ,

0 otherwise.
(10)

νo(b) is the probability of belief state b not being an initial
state for option o and ηo(b) is the probability of option o
terminating in belief state b. So, if init represents the virtual
initialization action and term is the termination action, then
νo(b) = πo(b, init) and ηo(b) = πo(b, term).

In Equation 9, we have split the history probability into
two terms: the agent effect Ao,bh and the model effect W o

h as
introduced in (Shelton 2001). The Agent Effect is the prod-
uct of all action, initialization and termination probability
terms defined by the policy, while the Model Effect is the
product of all initial state, state transition and observation
terms defined by the world model. Splitting the equation this
way, will help us simplify the math later.
Rob in Equation 8 is the expected reward after executing

option o in belief state b. Assuming that an option is a regular
POMDP policy, an option’s utility, or its expected reward
function, is piecewise linear in b and can be represented with
a set of β-vectors, each representing a linear equation.

Rob = max
i

∑
s

bsβ
o,i
s (11)

Theorem: The optimal value function V ∗n (b) in Equation 8
is piecewise linear and convex, given the option’s initializa-
tion and termination functions are deterministic and mod-
eled using the β-vectors:

V ∗n (b) = max
l

(∑
s

bsα
l
s(n)

)
(12)

Proof: First, the claim is true for n = 0 which is the end of
our finite horizon, because the total reward we could get at
the end of time is zero and V ∗0 (b) = 0 is linear.

Now, using induction we can show V ∗t (b) is piecewise-
linear and convex in b for all values of t. Assuming the hy-
pothesis holds for t = n − 1, then we prove this applies to
t = n as well. By using Equation 12 for t = n− 1, we have:

V ∗n−1(T (b, h)) = max
l

(∑
s

Ts(b, h)αls(n− 1)
)

(13)

Plugging Equations 13 and 11 into Equation 8, we get:

V ∗n (b) = max
o

([
max
i

∑
s0

bs0β
o,i
s0

]
+

∑
h∈H

P o,bh γL
[

max
l

∑
s

Ts(b, h)αls(n− 1)
])

(14)

Finding the location of a particular belief state inside the
belief state simplex, we can select the vector that provides
the largest value for the given belief state (Smallwood and
Sondik 1973). Calling this vector α∗, we can remove the
max operation of the α-vectors from Equation 14. The same
argument applies to the β-vectors of the option:

V ∗n (b) = max
o

(∑
s0

bs0β
o,∗
s0 +

∑
h∈H

P o,bh γL
∑
s

Ts(b, h)α∗s(n− 1)
)

(15)

In Equation 15, moving P o,bh inside the inner sum and multi-
plying it with Ts(b, h) will cause the model effect W b

h from
Equation 9 to be cancelled out with the normalizing factor
(the denominator) in Equation 7. Applying these changes to
Equation 15 will result in:

V ∗n (b) = max
o

(∑
s0

bs0β
o,∗
s0 +

∑
h∈H

γL
∑
s

[
Aoh
∑
s0

bs0ψ
hk
s0s

]
α∗s(n− 1)

)
= max

o

(∑
s0

bs0

[
βo,∗s0 +

∑
s

α∗s(n− 1)
(∑
h∈H

γLAohψ
hk
s0s

)])
(16)

= max
o

(∑
s0

bs0

[
βo,∗s0 +

∑
s

α∗s(n− 1)Ψ̂o
s0s

])
, (17)

where, Ψ̂o
s0s =

∑
h∈H γ

LAohψ
hk
s0s.

In Equation 16, Aoh is a product of option o’s initial-
ization, termination and action probability functions. The
action probability πo(b, a) takes on a value of either 0 or 1
for each belief state point b depending on the result of the
argmax operation in Equation 10 and this value is constant
over the whole belief state area wherein the corresponding
β-vector has a maximal value. This is because the policy
function is piecewise linear. As a result, the action probabil-
ity terms in Aoh are constants. The νo(b) and ηo(b) functions
are constants, too, because they are also defined using
β-vectors1. Obviously, βo,∗, α∗ and ψh are independent of b
and are constants, too. As a result, all of the terms inside the
brackets in Equation 16 are constants and thus the equation
is piecewise linear and convex in b, completing the proof. �

In practice we do not need to go through all possible his-
tories to calculate the value of Ψo

ss′ as explained in Equa-
tion 17. Instead, we could use a sample set of histories to
approximate the expected value for this parameter and we
could pre-compute that for each option beforehand.

Another method to expedite the calculations is to approx-
imate the value function by running the value iteration algo-
rithm using a finite set of sampled belief points that prop-
erly cover the belief simplex (Pineau et al. 2003). We could
also go one step further and instead of sampling the belief
points that cover the entire simplex, sample those that are
more likely to be reached from the current belief state (Smith
and Simmons 2012). This will enable us to approximate the
value function more accurately for the current belief state.

Evaluation
The Ambulance Problem
The Robocup Rescue Simulation (Amraii et al. 2004) is one
of the well-known AI test-beds that provides a comprehen-
sive environment for research on challenging problems such

1Removing this restriction and using arbitrary functions of the
belief state for initialization and termination will prevent the value
function from remaining piecewise linear and convex.

85

Figure 2: A sample ambulance problem with two civilians.

as decision making under uncertainty, multi-agent planning,
realtime learning, etc. The scalability of this environment is
unique among most existing official AI problems. One can
easily create different subsets of this problem from a sim-
ple single-agent environment with few states to a complex
multi-agent environment with an infinite number of states.

In our research we also needed a problem that could eas-
ily be scaled from a simple case used for benchmarking the
algorithms in absence of abstraction to more complex cases
that could better show the advantage of the abstraction meth-
ods. Most of the existing problems however are designed to
be simple and solvable using the existing algorithms. We
therefore created a simplified version of the Robocup Res-
cue Simulation problem which is scalable from a very sim-
ple version to complex versions for the future algorithms.

In our ambulance problem, there exists a rectangular grid
world on which there are an ambulance agent, a set of civil-
ians and one of the grid cells defined as the refuge. The civil-
ians have experienced a disaster and need to be carried to the
refuge for protection and cure. The ambulance agent should
find the civilians, load them, carry them to the refuge one by
one and unload them there. The ambulance does not know
its own location and the civilians’. It can see the civilians if
they are in the same cell and can hear their voice probabilis-
tically based on their distance. The ambulance also observes
when it hits a wall which is considered to be the edges of
the grid-world. The agent has actions to move one step Up,
Down, Right or Left on the grid world and also can Load or
Un-load a civilian. A civilian can be loaded if it is in the
same cell as the ambulance, and can be un-loaded every-
where. There is a reward of +1000 to un-load a civilian at
the refuge and a -1 for all other actions. A civilian can not
be loaded from or escape from the refuge.

We have defined two very simple options for this environ-
ment to run our experiments. The Search option finds a cell
that contains a civilian and then terminates. The Carry op-
tion moves until it reaches the refuge cell and terminates. It
is obvious that the optimal policy is to repeat the sequence
of Search, Load, Carry and Unload actions. However, it is
not that simple for the learning algorithm because it needs
to evaluate all sequences of actions, including primitive ac-
tions and options and all different possible trajectories re-
sulting from executing each option. In these experiments we
modeled the options as FSCs with three memory states each.

Implementation
Using the value function we derived in the previous section,
it is easy to adopt any of the existing POMDP value itera-
tion algorithms to support learning with the high-level ac-
tions. All variations of POMDP value iteration use different
methods to address the problem of increasing complexity
due to the fast growing number of α-vectors. We do not ad-
dress this problem here and have based our implementation
on the Point-based value iteration methods with the updated
backup function as explained in Algorithm 1. Please refer to
the HSVI paper (Smith and Simmons 2012) for more details.

Algorithm 1 ρ = backup(Γ, b)
βo,∗ ← argmaxβo(βo.b)

ρos ← βo,∗s + maxα∈Γ(
∑
s′ αs′Ψ̂

o
ss′)

ρ← argmaxρo(ρo.b)

Experiments
We used the ambulance problem to run experiments and
evaluate the learning algorithm.

Two different scales of the ambulance problem are used.
In the first there is a 3x3 grid world, one civilian and 162
states. The second one has a grid world of size 4x4 with one
civilian and 512 states. The parameters defining the state are
the ambulance location, the civilians’ location and the load
status. There is one Found-civilian and four Hit-wall (for
different sides) observations. We did not use the Heared-
civilian observation here. There are also 6 primitive actions:
Up, Down, Right, Left, Load and Un-load. The reward to
rescue a civilian is 1000 and the discount factor is 0.95.

Figure 3 depicts the computation times of the algorithm
for the two problems, each in three different settings. In the
first case (circles), all of the primitive actions are used and
there are no high-level actions available. This is the normal
POMDP value iteration algorithm. In the second case (rect-
angles), the Search and Carry options are added to the list of
available actions. All of the primitive actions are also pre-
served. This will increase the number of actions to 8. In the
last setting (triangles), we add the two options and removed
the four primitive move actions (Up, Down, Left and Right).
The picture on the top shows the results for the 3x3 problem
while the bottom is the result from the 4x4 problem.

The results show that adding options improves the learn-
ing speed even though it makes the model more complex
by increasing the number of actions. It also shows that as
the number of states is increasing, the effectiveness of the
high-level actions in speeding up the learning algorithm also
increases. In the ambulance-3x3 problem, the utility of the
optimal policy reaches 90% of the maximum value using
options two times faster than in the case of primitive actions
only. This is almost three times faster in the ambulance-4x4
problem which has almost three times as many states. The
reason is that options propagate more information about fu-
ture rewards in each iteration and will let the value function
be updated faster (Precup, Sutton, and Singh 1998).

It is obvious form the experiments that after new, high-
level skills are added, the learning speed can be increased if

86

Figure 3: Computation times for learning an ambulance-3x3
problem (top) and an ambulance-4x4 problem (bottom).

less useful primitive actions are removed. We do not address
the problem of which actions to remove in this paper; how-
ever, this has been studied for MDP models (Asadi 2006).

We also do not explain in this paper how options should
be extracted from previous experiments. One way to achieve
this is to find the useful policies that might not directly per-
form a complete task but are repeatedly used as a subset of
other policies (Asadi and Huber 2007).

We have used the Cassandra POMDP learning tools (Cas-
sandra 1999) to parse and load the POMDP files for bench-
marking with existing value iteration algorithms and also as
a base to add our implementation. All experiments were run
on a PC with an Intel Pentium 4 CPU (3.40GHz) running a
Redhat Enterprise 5 GNU/Linux operating system.

Conclusion
In this paper we provided a learning algorithm based on
value iteration for POMDP models that enables the use of
high-level actions, or options. Using options makes it pos-
sible to transfer knowledge gained from past experiences to
solve other problems. We show that the optimal value func-
tion remains piece-wise linear and convex after options are
added and it is possible to benefit from the existing value
iteration algorithms to solve POMDPs. We have also in-
troduced a new problem for benchmarking abstraction in
POMDPs that we called the ambulance problem. Our exper-
iments show that adding options makes the learning algo-
rithm faster and more effective when the number of states is
increased. In this work we are not addressing how sub-goals
could be defined for learning options and how to reduce the

complexity by removing less useful primitive actions from
the model. The presented algorithm also relies on having the
model’s distribution functions (i.e. state transition and obser-
vation functions) which is a requirement for all other value
iteration algorithms; however, in another line of research we
are working on a different learning algorithm that enables
learning model-less POMDP problems using options.

References
Amraii, S.; Behsaz, B.; Izadi, M.; Janzadeh, H.; Molazem,
F.; Rahimi, A.; Ghinani, M.; and Vosoughpour, H. 2004.
Sos 2004: An attempt towards a multi-agent rescue team. In
Proceedings of the 8th RoboCup International Symposium.
Asadi, M., and Huber, M. 2007. Effective control knowl-
edge transfer through learning skill and representation hier-
archies. In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, 2054–2059.
Asadi, M. 2006. Learning State and Action Space Hierar-
chies for Reinforcement Learning Using Action-Dependent
Partitioning. Ph.D. Dissertation, University of Texas at Ar-
lington.
Cassandra, A. 1999. Tonys pomdp page. website
http://www. cs. brown. edu/research/ai/pomdp.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence 101(1):99–134.
Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-
based value iteration: An anytime algorithm for pomdps.
In International joint conference on artificial intelligence,
volume 18, 1025–1032. LAWRENCE ERLBAUM ASSO-
CIATES LTD.
Precup, D.; Sutton, R.; and Singh, S. 1998. Theoretical
results on reinforcement learning with temporally abstract
options. Machine Learning: ECML-98 382–393.
Shelton, C. 2001. Policy improvement for pomdps using
normalized importance sampling. In Proceedings of the Sev-
enteenth conference on Uncertainty in artificial intelligence,
496–503. Morgan Kaufmann Publishers Inc.
Smallwood, R., and Sondik, E. 1973. The optimal control of
partially observable markov processes over a finite horizon.
Operations Research 21(5):1071–1088.
Smith, T., and Simmons, R. 2012. Point-based pomdp
algorithms: Improved analysis and implementation. arXiv
preprint arXiv:1207.1412.
Sutton, R.; Maei, H.; Precup, D.; Bhatnagar, S.; Silver, D.;
Szepesvári, C.; and Wiewiora, E. 2009. Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th An-
nual International Conference on Machine Learning, 993–
1000. ACM.
Taylor, M., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. The Journal of Ma-
chine Learning Research 10:1633–1685.
Toussaint, M.; Charlin, L.; and Poupart, P. 2008. Hierarchi-
cal pomdp controller optimization by likelihood maximiza-
tion. Uncertainty in AI (UAI).

87

