
Multirobot Task Allocation with Real-Time Path Planning

Bradley Woosley1 and Prithviraj Dasgupta2

1Computer and Electronics Engineering Department, University of Nebraska-Lincoln
2Computer Science Department, University of Nebraska, Omaha

Abstract

We consider the multi-robot task allocation (MRTA)
problem in an initially unknown environment. The ob-
jective of the MRTA problem is to find a schedule or
sequence of tasks that should be performed by a set
of robots so that the cost or energy expended by the
robots is minimized. Existing solutions for the MRTA
problem mainly concentrate on finding an efficient task
allocation among robots, without directly incorporat-
ing changes to tasks’ costs originating from changes
in robots’ paths due to dynamically detected obsta-
cles while moving between tasks. Dynamically updat-
ing path costs is an important aspect as changing path
costs can alter the task sequence for robots that corre-
sponds to the minimum cost. In this paper, we attempt to
address this problem by developing an algorithm called
MRTA-RTPP (MRTA with Real-time Path Planning) by
integrating a greedy MRTA algorithm for task planning
with a Field D*-based path planning algorithm. Our
technique is capable of handling dynamic changes in
a robot’s path costs due to static as well as mobile ob-
stacles and computes a new task schedule if the origi-
nal schedule is no longer optimal due to the robots’ re-
planned paths. We have verified our proposed technique
on physical Corobot robots that perform surveillance-
like tasks by visiting a set of locations. Our experimen-
tal results show that that our MRTA technique is able to
handle dynamic path changes while reducing the cost of
the schedule to the robots.

Introduction
Multi-robot task allocation (MRTA) is an important yet chal-
lenging problem in robotics with applications in several do-
mains such as unmanned search and rescue, robotic surveil-
lance, mapping and exploration, automated landmine detec-
tion, robotic vacuum cleaning, etc. The MRTA problem con-
sists of a set of robots that have to perform a set of tasks.
We consider a class of MRTA problems called ST-SR-TA
(Gerkey and Matarić 2004), where ST stands for single-task
robots, i.e., each robot is able to execute at most one task at
a time, SR means single robot tasks, i.e., each task requires
one robot to be completed, and TA means time-extended as-
signment, problems where the information to allocate tasks

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to robots arrives over time. The problem is complicated be-
cause of several reasons - the set of tasks is usually not
known beforehand and tasks arrive dynmically. Addition-
ally, the environment is initially unknown and robots have
to dynamically plan their path to a task as they detect obsta-
cles on their sensors. The objective of the MRTA problem
is to find a schedule or sequence of tasks to be performed
by each robot so that the overall cost or energy expended
by the robots to perform the set of tasks is minimized.
MRTA is known to be an NP-hard problem and several re-
searchers have proposed solutions using heuristics including
market-based algorithms, learning-based techniques, vehi-
cle routing-based approaches, etc.. However, much of this
research has focussed on determining an efficient task al-
location among robots without directly considering the ef-
fect of updated path costs between tasks originating from
changes in robots’ paths due to dynamically detected ob-
stacles while moving between tasks. Dynamically updating
path costs is an important aspect to find a consistent solution
to the MRTA problem because changing path costs can alter
the task sequence for robots that corresponds to the min-
imum cost. In this paper, we describe an algorithm from
MRTA-RTPP (MRTA with Real-time Path Planning) that
dynamically combines task and motion planning on multi-
ple robots. In our proposed algorithm, robots dynamically
update their path costs upon encountering static as well as
mobile obstacles while navigating between task locations
using the Field D* algorithm. Updated path cost informa-
tion is simultaneously integrated with the MRTA algorithm
to compute a new task schedule if the original schedule is
no longer optimal due to the robots’ replanned paths. We
have verified our proposed technique by implmenting it on
physical Corobot robots that perform surveillance-like tasks
by visiting a set of locations and shown that it successfully
replans the robot’s path on encountering obstacles and nav-
igates the robot along a reduced cost path to visit the loca-
tions.

Related Work
The problem of multi-robot task allocation (MRTA) has
been investigated using different techniques (Gerkey and
Matarić 2004; Mataric, Sukhatme, and Ostergaard 2003),
and, recently with market-based approaches (Dias et al.
2006). One of the earliest systems using for MRTA was

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

574



the M+ system (Botelho and Alami 1999). In (Gerkey and
Matarić 2004) a widely accepted taxonomy for MRTA prob-
lems is provided. The problems are classified along three di-
mensions: (a) single task robots (ST) vs. multi-task (MT)
robots, related to the parallel task performing capabilities
of robots, (b) single robot (SR) task versus multi-robot
(MR) tasks, related to the number of robots required to per-
form a task, and, (c) instantaneous assignment (IA) ver-
sus time extended assignment (TA), related to the plan-
ning performed by robots to allocate tasks. Mataric et al.
compare performance of robots teams using auction-based
strategies for coordination and commitment. Their results
show that the least time is required to complete all tasks
(put out all alarms) when the robots are allowed to coor-
dinate their plans with each other, as well as to dynam-
ically change their plans (Mataric, Sukhatme, and Oster-
gaard 2003). The traderbots approach by (Dias 2004) uses
multi-round, single-item auctions for dynamic task alloca-
tion across multiple robots, while in (Jones et al. 2006)
the traderbots approach is augmented using the Skill, Tac-
tics, Play (STP) approach for coordinated teamwork. The
MRTA problem has also been approached as an exploration
problem of matching a set of robots to a set of targets us-
ing an algorithm called PRIM-ALLOCATION (Lagoudakis
et al. 2005). Zlot and his team have also used auction-
based algorithms for multi-robot task allocation (Zlot 2006;
Jones, Dias, and Stentz 2011). The MRTA problem has
also been combined with techniques from multi-agent co-
ordination and optimization techniques such as negotiation
(Viguria, Maza, and Ollero 2007), reinforcement learning
(Schneider et al. 2005), vector regression learning (Jones et
al. 2006), Hungarian algorithm (Liu and Shell 2011), and
dynamic vehicle routing (Bullo et al. 2011) to improve the
performance of the robots and deal with uncertainty. Our
proposed algorithm extends these directions of MRTA algo-
rithms by combining MRTA with an online path planning al-
gorithm to accommodate dynamically changing task sched-
ules.

Real Time Path Planning for MRTA
We consider a set of mobile robots that are deployed in
a bounded, polygonal environment. Each robot knows the
boundaries of the environment but is not aware of features
such as obstacles or about the presence or location of other
robots inside the environment. The environment’s map is di-
vided into a grid-like structure with the size of each grid-cell
corresponding to the footprint of a robot. Each robot has a
laser sensor for detecting obstacles and other robots, an in-
door GPS device for localization, and is capable of wireless
networked communication with other robots and a base sta-
tion.

The multi-robot task allocation problem consists of as-
signing a set of tasks to a set of robots so that the overall cost
of performing the tasks by the robots is minimized. Tasks are
distributed spatially within the environment and can arrive
dynamically. The spatial and temporal distribution of tasks
are not known a priori by the robots. Also environment fea-
tures such as obstacles have to be discovered in real time by
the robots while navigating in the environment. The MRTA

problem in such as scenario is known to be NP-hard. The ac-
tual tasks performed by robots are domain specific, such as,
reaching a specific location to perform surveillance over a
specific area, range clearing, object manipulation, etc. To fo-
cus on the performance of the robots in determining and ex-
ecuting an appropriate task schedule, we have assumed that
performing a task by a robot corresponds to the robot visit-
ing the location of the task (within a certain radius). A sched-
ule of tasks is given by the set of waypoints corresponding to
the locations of tasks that the robot has to perform. The ob-
jective of the MRTA problem then is to determine the lowest
cost path of its current schedule. This problem is non-trivial
as the schedule of tasks gets dynamically updated as new
tasks arrive, and, obstacles get discovered along previously
determined paths as the environment is being explored while
performing tasks (navigating between waypoints). Our pro-
posed approach uses a widely adopted real-time path plan-
ning algorithm for robots called Field D* and integrates it
with the dynamically updated schedule calculated by the
MRTA algorithm using the MRTA-RTPP algorithm, as de-
scribed in the following sections.

Path Planning with Field D* Algorithm

Field D* (Ferguson and Stentz 2006)is a grid-map based
real-time path planning algorithm that allows a robot to plan
its path towards its goal and refine the plan after encoun-
tering obstacles along the initially planned path. A principal
advantage of D* is that it allows to plan a smooth trajectory
for the robot through the grid cells by using interpolation, in-
stead of constraining the robot’s movement to cells that are
at orientations of ±π or ±π2 from its current position. The
basic D* algorithm starts by calculating the cost to reach a
neighboring cell node from the node at the goal location.
It then makes a virtual edge to each neighboring node that
would give a low cost path towards the start location. It then
repeats the same calculation for the node with the lowest
cost so far, and continues until the node with the lowest cost
corresponds to the start node. At this point in time, given the
information the robot knows, the planed path is the lowest
cost path from the start point to the goal point. The algorithm
then calls for the robot to begin executing the planned path.
To do this, the robot follows the set of node pointers from
the start node to the goal node. If the robot’s sensors detect
an obstacle in front of the robot while the robot is tracing
out the path between nodes, the robot’s motion stops and it
marks the cell that it was attempting to reach as an obstacle
and updates the path to the goal. After the update is com-
plete, the robot continues along the new path, which may
require it to back track to a node it recently visited and then
leave from it to the next node. In the Field D* algorithm, the
basic D* algorithm is augmented using interpolation to de-
termine which point along any side of the current grid would
be the most efficient point to go to. Those points are stored
in the map and when the robot traverses the path given by
its plan, it selects the closest point on the edge of the current
cell as the next point to navigate to instead of navigating to
one of the cell’s corners.

575



Issues with D* Algorithm During the implementation of
the Field D* algorithm, there were several challenges arising
from the way in which obstacles are detected and marked on
the map. The problems encountered and proposed solutions
are mentioned below:
• No unexplored path from current location: During initial

simulation tests of the Field D* algorithm, it was noticed
that if there was a case when the robot followed a wall of
obstacles into a corner then the robot would stop moving.
It was determined that when this happened, the previous
paths that had already been explored prevented the robot
from finding a new path back to the goal because old paths
were not re-planned over if the robot had to move in the
opposite direction from how it was already moving. This
problem was fixed by checking if the next grid square that
the robot was supposed to go to did not exist, meaning,
if there was no path found to the goal, all planned paths
were removed from the map, but the detected obstacles
stayed. After the paths were removed, the path to the goal
was re-planned completely from scratch.

• Avoiding frequent replanning using long-range laser
data: The original obstacle detection in the Field D* algo-
rithm only detected an obstacle that was directly in-front
of the robot. This meant that if there was a wall that the
robot could not pass, it would drive up to the wall, de-
tect that it was an obstacle, re-plan the path by trying to
move to the next grid-square to the right or left of the
path. This method of finding obstacles works, but takes
a considerable time to compute the re-planned the path.
To get around this time consuming problem, we exploited
the longer range of the laser sensors on the robot. The lo-
cations of obstacles perceived from the laser data are di-
rectly incorporated into the map of the environment main-
tained by the robot. This allows the robot to perceive mul-
tiple obstacles at once, requiring fewer re-plans and fewer
obstacle hits.

• Trapped on an obstacle: When the robot gets into tight
spaces, which are about two to three times the size of the
robot, as the robot would try to navigate out of the area,
it would detect the walls bordering the area it had and in-
correctly mark nodes as obstacles, even marking the node
which the robot is currently on as an obstacle. There is no
way a robot can be sitting on an obstacle, so when this
case is detected, the current node is unmarked as an ob-
stacle and the path is re-planned.

• Working with multiple goal points: The D* algorithm and
its variants have been designed to work with a single start
point and a single end point. This works very well in the
case where the robot needs to get from the start position
to an end position once, but when there are multiple way-
points that the robot needs to visit, there needs to be a
method by which the robot can stop on its current path,
either when it reaches the goal or when a higher level al-
gorithm such as MRTA decides that a different node is a
better end point. For integrating the Field D* algorithm
with the MRTA algorithm, when the MRTA algorithm de-
termines a new goal location for the robot, the robot aborts
its movement towards it previous goal, removes the old

path information while retaining information about the
obstacles it has found, and then plans the path from its
current location to the new goal.

(a) (b)

Figure 1: (a) Initially assigned paths to three waypoints
(tasks) for three robots, (b) Updated path with newly added
waypoints.

Multi-Robot Task Allocation
As mentioned before, each task is represented as a waypoint
for the robot to navigate to. The initial set of waypoints or
tasks is provided to each robot. Note that the order of the
tasks could be different depending on the robots initial loca-
tion. For example, the initially allocated path for three robots
is shown in Figure 1(a). In this figure, green squares, red
dots, and blue lines represent the robots, waypoints, and the
path, respectively. When the robots reach a waypoint within
a previously defined boundary, the next waypoint is provided
to the robot. The robot’s path planning algorithm, D*, then
generates the optimal plan to get to the next waypoint. The
cost incurred by a robot to move between any two points in
the environment is assumed to be proportional to the Eu-
clidean distance between the points. Finding the shortest
schedule through a set of waypoints is similar to the trav-
eling salesman problem, which is known to be NP-hard, and
can be solved using an approximation in polynomial time. A

(a) (b)

Figure 2: (a) Example for Bresenham line, (b) Obstacle grid
map generated by Laser sensor

576



wrinkle to this problem arises from the fact that the order to
visit the waypoints could be altered while the robot is trying
to reach the waypoint. The first case happens when an obsta-
cle lies on the path generated by D* and the robot discovers
the obstacle while traveling towards its current goal point. In
such a scenario, the robot has to make a detour around the
obstacle and move on a new path different from the original
path. Consequently, the cost to its earlier goal point gets re-
computed. Secondly, if any new waypoints are added to the
set of waypoints while a robot is moving between two way-
points the cost of the schedule changes to accommodate the
new waypoints. For example, Figure 1(b) shows the updated
path by adding new waypoints.

Obstacle Map Generator
One of the critical components for robot navigation is to fig-
ure out where the obstacles in the environment are. For the
D* path planning algorithm, the obstacle information needs
to be provided represented on the grid map corresponding to
the environment. As the robot moves, the grid map needs
to be continuously updated using the laser scan data. We
have used the Bresenham line algorithm (Bresenham 1965)
to update the grid map continuously. The Bresenham line al-
gorithm is an algorithm which determines which points in
an n-dimensional raster should be plotted in order to form
a close approximation to a straight line between two given
points. We consider these two given points as the robot’s cur-
rent position and end point of each laser beam, with n = 2.
We define two variables in each cell called hitBeam and
missedBeam respectively. The value of hitBeam is increased
by one at the cell where the obstacle is detected while the
value of missedBeam is increased by one at the cell where
the Bresenham line passes. Figure 2(a) shows the two points
and Bresenham line. In the figure, the green cell is where the
robot is currently located, which corresponds to the start cell
for the Bresenham line. The red cell is occupied by the ob-
stacle, which corresponds to the end cell for the Bresenham
line. So, the value of hitBeam is increased at the red cell.
The gray cells are where the Bresenham line passes and the
value of missedBeam is increased at those cells. The way
to decide if a cell is occupied by any obstacle is to com-
pute the value of the hitBeam residue in the cell given by
(value ofhitBeam−value ofmissedBeam). If the residue
is larger than a certain threshold, the cell has an obstacle,
otherwise, it is a free cell. Figure 2(b) shows an example of
the obstacle grid map generated using the Breshenham line
technique.

Moving Robots Avoidance
While dynamically planning the path between waypoints for
multiple robots, it is important for robots avoid each other.
Because the environment and its obstacles are initially un-
known, it is infeasible to calculate the robots’ trajectories
beforehand. To address this problem, each robot tracks other
robots using its laser sensor and GPS. When the trajectories
of two robots are about to intersect each other, the robots
select a movement to avoid colliding with each other. We
consider three behaviors for robots, viz., STOP, GO and DE-
TOUR. For example, if two robots approach each other head

TaskAllocation(RobotPos)
d = compute distance between robot’s current position
and current goal waypoint;
if d < waypoint hit boundary threshold then

set current goal waypoint visited;
end
forall the wi ∈ not visited waypoints do

Use D* to compute shortest path between Robot’s
location and wi;
wtarget = argwi

min(cost(wi), cost(goalprev));
end

MRTA-RTPP()
completedBool = {false0, , falsen}; //missions
completed or not for all robots
target = {00, , 0n} // set of targets for all robots
while (any of completedBool is false) do

forall the i ∈robots having false completedBool
do

ith target = TaskAllocation(ith robot position);
if ith target 6= target(i) then

target(i) = ith target;
ComputeShortestPath(target(i));

end
if no more target then

set completeBool(i) = true;
end

end
end

Algorithm 1: MRTA-RTPP algorithm

on while moving along their respective paths, then the robot
with the lower id stops (STOP behavior) while the robot
with the higher id is given precedence to move around the
stopped robot using the DETOUR behavior. On the other
hand, if two robots are imminent to have a head-side colli-
sion, the robot with the higher id stops while the robot with
the lower id continues to move along its trajectory using the
GO behavior. In terms of cost or energy expended by robots
to perform one of the above behaviors, STOP incurs more
cost than GO, while DETOUR incurs more cost than STOP,
i.e., cost(DETOUR) > cost(STOP) > cost(GO). The above
technique ensures that the robot with the lower id performs
the behavior that incurs lower cost.

Algorithm 1 shows the MRTA-RTPP algorithm that inte-
grates MRTA with real time path planning using Field D*
algorithm.

Experimental Results
For verifying the MRTA-RTPP algorithm we have run sev-
eral experiments using Corobot robots. The Corobot robot
has four wheels, 2 GB RAM, 80 GB HDD and runs Win-
dows XP. One Hokuyo laser range sensor with a range of
40 cm to 4 m was mounted on the robot and used to detect
obstacles. Each robot has Wi-Fi capability and can commu-
nicate with other robots over an ad-hoc wireless network.
For localizing each robot, we attached a Hagisonic Stargazer
RS kit on board each robot. This unit provides 2-D coordi-

577



(a) (b) (c) (d)

Figure 3: (a) Photograph of Corobot robot used for experiments, (b)-(d) Three environments, each with the same five waypoints
(tasks) but different distributions of obstacles used in our experiments. The green circle marked ’S’ is the robot’s start location
and the red, numbered circles show the different waypoints.

Figure 4: Time taken and distance traveled by a single robot
to reach the set of five waypoints in the three different test
environments.

nates of the robot’s position within the reference frame of
the environment. It is capable of localizing the robot within
±2 cm of its actual location. The footprint of the robot is
40 cm × 40 cm. A photograph of one of the Corobot robots
used in our experiments is shown in Figure 3(a). The default
speed of the robot was set to 5.2 cm/sec. The testing arena
used for the robots has an area of 4× 2 m2. Five waypoints
(tasks) were placed within it at arbitrary locations and ob-
stacles were placed at different locations to create three test
environments used for our experiments, as shown in Figure
3(b)-(d).

We conducted different experiments to verify the correct
operation and quantify the performance of the MRTA-RTPP
algorithm. For each experiment, we used 2 Corobot robots
used. Robots had to avoid static obstacles and avoid each
other (mobile obstacles) while planning their paths. In the
first set of experiments, we observe the time required by
the MRTA-RTPP algorithm to visit the five waypoints in the
three different test environments. In all the environments,
the robot starts with the waypoints ordered w1 through w5.
However, the positions of the obstacles in the three test en-
vironments requires the robot to use the Field D* algorithm
replan its path. For example, in environment 1 shown in Fig-

ure 3(b), the direct path between w2 and w3 is blocked. The
MRTA-RTPP algorithm determines that a lower cost sched-
ule results if, after visiting w2, w5 and w4 are visited before
visiting w3. Figure 4 shows the time taken and distance trav-
eled by one robot to visit the five waypoints in environments
1−3 using the MRTA-RTPP algorithm. The horizontal lines
along each of the three curves represents time required by
the D* algorithm to recompute a path towards a newly pro-
vided waypoint determined by the MRTA algorithm when
the robot encounters an obstacle while moving towards its
previous waypoint. Note that more horizontal lines occur
when the order of waypoints gets revised indicating that re-
planning is triggered when obstacles are encountered while
moving towards waypoints in the order given in the original
schedule.

In our next set of experiments, we quantified the number
of path replans made by the MRTA-RTPP algorithm for the
different environments, as shown in Figure 5(a). We observe
that the number of replans is the lowest for environment 1
where the plan is revised once after visiting w2, while it is
the highest for environments 2 and 3 where the plan is re-
vised twice, after visiting w1 and again after visiting w3, as
the robot traverses the boundary of the obstacle segregating
w2 from the rest of the waypoints.

In our final set of experiments, we measured the perfor-
mance of the MRTA-RTPP algorithm in terms of path cost
with respect to an offline algorithm that is provided a map
of the environment along with the location of obstacles on
the map. The Hungarian algorithm (Kuhn 1955) was used as
the offline algorithm for determining the task schedule. The
performance is measured by the competitive ratio (CR) of
MRTA-RTPP that is given by:

CR =
Path cost incurred by MRTA-RTPP

Path cost incurred by offine algorithm

Figure 5(b) shows that CR is the lowest (MRTA-RTPP per-
forms closest to optimal cost) in environment 1 where the
plan is revised only once after visiting w2 and the extra path
traveled by the robot (to unsuccessfully visit w3 after w2) is
the least. In contrast, the CR is higher in environments 2 and
3. We observe that the CR and the number of replans in the
three environments are correlated with each other because
more number of replans result in more unsuccessful paths
which increase the CR. However, the CR for environment 3

578



1 2 3
0

10

20

30

40

50

60

70

80

90

Environment Number

N
u

m
b

er
 o

f 
re

p
la

n
s

Number of replans per Environment

(a)

1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Environment Number

C
o

m
p

et
it

iv
e 

R
at

io

Competitive Ratios per Environment

(b)

Figure 5: (a) Number of path replans done after encounter-
ing obstacles by the MRTA-RTPP algorithm for the three
environments. (b) The competitive ratio of the path cost cal-
culated by the MRTA-RTPP algorithm and the optimal path
cost calculated offline with prior information of obstacles,
for the three environments.

is considerably lower than that of environment 2, although
the number of replans done in both the environments are
comparable. The reason for this is that, in environment 2,
due to the location of w2 behind the obstacle, the robot ends
up tracing the boundary of the obstacle twice, once while go-
ing from w1 to w3 and again while going from w5 to w2, re-
sulting in higher path cost and consequently, higher CR than
environment 3. The algorithm also operated correctly with
multiple robots and the same set of waypoints. Overall, our
experiments show that the MRTA-RTPP operates correctly
and appropriately revises the task schedule while replanning
the robot’s path in different environments.

Conclusions and Future Work
In this paper, we have described an algorithm that inte-
grates an MRTA algorithm with a dynamic path planning
algorithm. Our experimental results show that the proposed
algorithm works successfully in different environments. In
the future, we plan to consider more complex task schedules
with multiple visits to waypoints by different robots. Im-
provements to the replanning technique to reduce the time
required to recompute a path and to determine the optimal
schedule by the MRTA are also being investigated. Finally,
we are planning to implement the proposed algorithm on
teams of heterogeneous robots.

Acknowledgements
This research has been supported by the U.S. Office of Naval
Research grant no. N000140911174 as part of the COM-
RADES project.

References
Botelho, S., and Alami, R. 1999. M+: A scheme for multi-robot
coopeation through negotiated task allocation and achievement. In
Proceedings of the International Conference on Robotics and Au-
tomation, 1234–1239.
Bresenham, J. 1965. Algorithm for computer control of a digital
plotter. IBM Systems Journal 4(1):25–30.
Bullo, F.; Frazzoli, E.; Pavone, M.; Savla, K.; and Smith, S. 2011.
Dynamic vehicle routing for robotic systems. In Proceedings of the
IEEE, volume 99. 1482–1504.
Dias, M. B.; Zlot, R.; Kalra, N.; and Stentz, A. 2006. Market-based
multirobot coordination: a survey and analysis. In Proceedings of
the IEEE, Special Issue on Multirobot Systems, volume 94, 1257–
1270.
Dias, M. 2004. TraderBots: A New Paradigm for Robust and Ef-
ficient Multirobot Coordination in Dynamics Environments. Ph.D.
Dissertation, The Robotics Institute, Carnegie Mellon University.
Ferguson, D., and Stentz, A. 2006. Using interpolation to improve
path planning: The field d* algorithm. J. Field Robotics 23(2):79–
101.
Gerkey, B., and Matarić, M. 2004. A formal analysis and taxon-
omy of task-allocation in multi-robot systems. The International
Journal of Robotics Research 23(9):939–954.
Jones, E.; Browning, B.; Dias, M.; Argall, B.; Veloso, M.; and
Stentz, A. 2006. Dynamically formed heterogeneous robot teams
performing tightly coordinated tasks. Proceedings of the Interna-
tional Conference on Robotics and Automation.
Jones, E.; Dias, M.; and Stentz, A. 2011. Time-extended multi-
robot coordination for domains with intra-path constraints. Au-
tonomous robots 30(1):41–56.
Kuhn, H. 1955. The hungarian method for the assignment problem.
Naval Research Logistic Quarterly 2:83–97.
Lagoudakis, M.; Markakis, V.; Kempe, D.; Keskinocak, P.; Koenig,
S.; Kleywegt, A.; and Tovey, C. 2005. Auction-based multi-robot
routing. In Proc. of the International Conference on Robotics: Sci-
ence and Systems, 343–350.
Liu, L., and Shell, D. 2011. Assessing optimal assignment under
uncertainty: An interval-based algorithm. The International Jour-
nal of Robotics Research 30(7):936–953.
Mataric, M.; Sukhatme, G.; and Ostergaard, E. 2003. Multi-robot
task allocationin uncertain environments. Autonomous Robots
14:255–263.
Schneider, J.; Apefelbaum, D.; Bagnell, D.; and Simmons, R. 2005.
Learning opportunity costs in multi-robot market based planners.
In Proceedings of the International Conference on Robotics and
Automation, 1151 – 1156.
Viguria, A.; Maza, I.; and Ollero, A. 2007. Set: An algorithm
for distributed multirobot task allocation with dynamic negotiation
based on task subsets. In Proceedings of the International Confer-
ence on Robotics and Automation, 3339–334.
Zlot, R. 2006. Complex Task Allocation for Multi-robot Teams.
Ph.D. Dissertation, Carnegie Mellon University.

579




