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Abstract

Time series are found widely in engineering and science. We
study multiagent forecasting in time series, drawing from lit-
erature on time series, graphical models, and multiagent sys-
tems. Knowledge representation of our agents is based on
dynamic multiply sectioned Bayesian networks (DMSBNs),
a class of cooperative multiagent graphical models. We pro-
pose a method through which agents can perform one-step
forecast with exact probabilistic inference. Superior perfor-
mance of our agents over agents based on dynamic Bayesian
networks (DBNs) are demonstrated through experiment.

Introduction

Time series (Brockwell and Davis 1991) are found widely
in engineering, science and economics, and allow useful in-
ferences such as forecasting. Time series are traditionally
studied under the single agent paradigm, but research under
the multiagent paradigm has been seen in recent years, e.g.,
(Raudys and Zliobaite 2006) and (Kiekintveld et al. 2007).

Graphical models (Pearl 1988; Lauritzen 1996) have be-
come an important tool for analyzing multivariate data.
There is now a large literature on time series models which
can be depicted by graphs. Some of the earliest models
proposed are DBNs (Dean and Kanazawa 1989; Kjaerulff
1992). These graphs code a variety of conditional indepen-
dence statements both with variables with the same time in-
dex and across time. One of the most successful of these
is based on the class of vector autoregressive (VAR) models
(Brockwell and Davis 1991) led by developments such as
(Dahlhaus and Eichler 2003). A second approach adopted
by (West and Harrison 1996; Koller and Lerner 2001;
Pournara and Wernisch 2004; Queen and Smith 1993) de-
velop state space analogues of these processes. Because of
their simplicity and convenient closure properties, this paper
focuses on multiagent forecasting models of the first kind.

Under the multiagent paradigm, multiply sectioned
Bayesian networks (MBSNs) (Xiang 2002) are proposed as
cooperative multiagent graphical models. They are first ap-
plied to static domains and have been extended to dynamic
domains (An, Xiang, and Cercone 2008).

This paper proposes a technique for cooperative multia-
gent forecasting with time series based on DMSBNs. For
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these stochastic graphical models, their time series across
(temporal) interface variables share the type of conditional
independence structure of VAR models without linearity
assumptions. Unlike (Raudys and Zliobaite 2006) where
agents are “competing among themselves” for better finan-
cial prediction, agents based on DMSBNs are cooperative.

Background

Dynamic Bayesian network

A DBN (Dean and Kanazawa 1989; Kjaerulff 1992) models
a dynamic domain over a finite time period. Our formulation
follows that of (Xiang 1998).

Definition 1 A DBN of horizon k is a quadruplet G =

(
⋃k

i=0
Vi,

⋃k

i=0
Gi,

⋃k

i=1
Fi,

⋃k

i=0
Pi). Vi is a set of vari-

ables for time interval i. Gi is a DAG whose nodes are la-
beled by elements of Vi. Fi is a set of arcs each directed from

a node in Gi−1 to a node in Gi. Each node v ∈
⋃k

i=0
Vi

is conditionally independent of its non-descendants given
its parents π(v). Pi is a set of probability distributions
Pi = {P (v|π(v))|v ∈ Vi}.

G models a dynamic domain over k + 1 intervals, each of
which is referred to as interval i or time i. Vi represents the
state of the domain at interval i and Gi models the uncertain
dependency among elements of Vi. Fi is a set of temporal
arcs representing how the domain evolves over time.

Definition 2 In a DBN G of horizon k, subset FIi =
{x|∃ (x, y) ∈ Fi+1} is the forward interface of Vi (0 ≤
i < k). Subset BIi = {z|∃ (x, y) ∈ Fi, z ∈ fmly(y) ∩ Vi}
is the backward interface of Vi (0 < i ≤ k). Denote
Gi = (Vi, Ei), where Ei is the set of arcs, and Di =
(Vi ∪ FIi−1, Ei ∪ Fi). The pair Si = (Di, Pi) is a slice
of the DBN and Di is the structure of Si.
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Figure 1: An example DBN.

The joint probability distribution (jpd) of the domain over
k + 1 intervals is the product of distributions in all slices.
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Fig. 1 shows a DBN where V1 = {a1, b1, c1, d1, e1, f1},
E1 = {(a1, b1), (b1, d1), (c1, e1), (d1, e1), (e1, f1)}, F1 =
{(a0, b1), (f0, f1)}, FI1 = {a1, f1}, and BI1 =
{a1, b1, e1, f1}. Note that subscripts are used to index tem-
poral distribution of variables and dependency structures.

Multiply Sectioned Bayesian Networks

An MSBN models a domain, typically spatially distributed
among a set of agents. The domain dependency is captured
by a set of (overlapping) graphs, defined below and illus-
trated in Fig. 2.

Definition 3 Let Gi = (V i, Ei) (i = 0, 1) be two graphs.
G0 and G1 are graph-consistent if subgraphs of G0 and G1

spanned by V 0 ∩ V 1 (keeping nodes in V 0 ∩ V 1 and arcs
among them only) are identical. Given two graph-consistent
graphs Gi = (V i, Ei) (i = 0, 1), the graph G = (V 0 ∪
V 1, E0 ∪ E1) is the union of G0 and G1, denoted by G =
G0 ∪G1. Given a graph G = (V, E), a decomposition of V
into V 0 and V 1 such that V 0 ∪ V 1 = V and V 0 ∩ V 1 �= ∅,
and subgraphs Gi (i = 0, 1) of G spanned by V i, G is said
to be sectioned into G0 and G1.

section
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b
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a

d
c c

d e

Figure 2: Illustration of graph union and section.

To ensure exact probabilistic inference, distributed graph-
ical models need to satisfy the following conditions. Def. 4
specifies how domain variables are distributed.

Definition 4 Let G = (V, E) be a connected graph sec-
tioned into subgraphs {Gi = (V i, Ei)}. Let the subgraphs
be organized into an undirected tree Ψ where each node is
uniquely labeled by a Gi and each link between Gk and Gm

is labeled by the non-empty interface V k ∩ V m such that
for each Gi and Gj in Ψ and each Gx on the path between
Gi and Gj , V i ∩ V j ⊂ V x. Then Ψ is a hypertree over G.
Each Gi is a hypernode and each interface is a hyperlink.
A pair of hypernodes connected by a hyperlink is said to be
adjacent.
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Figure 3: A trivial MSBN with hypertree G1 − G0 − G2.

Fig. 3 shows three subgraphs which section a graph G (not
shown). A corresponding hypertree has the topology G1 −
G0 − G2. Def. 5 specifies what variables agent interfaces
contain. This condition ensures conditional independence
given the interface.

Definition 5 Let G be a directed graph sectioned into sub-
graphs {Gi} such that a hypertree over G exists. A node

x (whose parent set in G, possibly empty, is denoted π(x))
contained in more than one subgraph is a d-sepnode if there
exists at least one subgraph that contains π(x). An interface
I is a d-sepset if every x ∈ I is a d-sepnode.

For the above hypertree related to Fig. 3, it has two iden-
tical d-sepsets {a, b, c}. Each d-sepnode is shown with a
dashed circle. Def. 6 combines the above definitions to spec-
ify the dependence structure of an MSBN.

Definition 6 A hypertree MSDAG G =
⋃

i Gi, where each

Gi is a DAG, is a connected DAG such that (1) there exists
a hypertree Ψ over G, and (2) each hyperlink in Ψ is a d-
sepset.

Def. 7 defines an MSBN and specifies its associated prob-
ability distributions, which is illustrated in Fig. 3.

Definition 7 An MSBN M is a triplet M = (V, G, P ).
V =

⋃
i V i is the domain where each V i is a set of vari-

ables, called a subdomain. G =
⋃

i Gi (a hypertree MS-

DAG) is the structure where nodes of each DAG Gi are la-
beled by elements of V i. Each node x ∈ V is conditionally
independent of its non-descendants given its parents π(x) in
G. P =

⋃
i P i is a collection of probability distributions,

where P i = {P (x|π(x))|x ∈ V i}, subject to the follow-
ing condition: For each x, exactly one of its occurrences (in
a Gi containing {x} ∪ π(x)) is associated with P (x|π(x)),
and each occurrence in other DAGs is associated with a con-
stant (uniform) distribution.

Each triplet Si = (V i, Gi, P i) is called a subnet of M .
Two subnets Si and Sj are adjacent if Gi and Gj are adja-
cent on the hypertree.

Note that if a variable x occurs in Gi and Gj (i �= j),
x’s parents πi(x) in Gi may differ from its parents πj(x) in
Gj . Note also that superscripts are used to index spatial
distribution of variables and dependency structures.

For exact, distributed inference, each subnet is compiled
into a local junction tree (JT), where each cluster is asso-
ciated with a potential. The MSBN is thus compiled into
a linked junction forest (LJF). Operation UnifyBelief al-
lows an agent to bring potentials in its local JT into con-
sistency. Operation CommunicateBelief allows potentials
in all agents to reach global consistency. The full posteriors
can then be retrieved from the relevant potentials. Due to
space, readers are referred to (Xiang 2002) for details.

Dynamic Multiply Sectioned Bayesian Networks

A DMSBN models a domain that is both spatially distributed
and temporally evolving. In the following definition, sub-
scripts are used to index temporal evolution and superscripts
are used to index spatial distribution.

Definition 8 A DMSBN DM of horizon k is a quadruplet

G = (

k⋃

i=0

Vi,

k⋃

i=0

Gi,

k⋃

i=1

Fi,

k⋃

i=0

Pi).

Vi =
⋃

j V
j
i is the domain for time interval i, where

V
j
i is a subdomain for time i. Gi =

⋃
j G

j
i (a hyper-

tree MSDAG) is the structure for time i, where nodes of
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each DAG G
j
i = (V j

i , E
j
i ) are labeled by elements of V

j
i .

Fi =
⋃

j F
j
i is a collection of temporal arcs, where F

j
i

is a set of arcs each directed from a node in G
j
i−1 to a

node in G
j
i . Each node v ∈

⋃k

i=0
Vi is conditionally in-

dependent of its non-descendants given its parents π(v) in⋃k

i=0
Gi. Pi =

⋃
i P

j
i is a collection of probability distri-

butions, where P
j
i = {P (x|π(x))|x ∈ V

j
i }, subject to the

following condition: For each x ∈ Vi, exactly one of its oc-

currences (in a G
j
i containing {x}∪π(x)) is associated with

P (x|π(x)), and each occurrence in other DAGs for time i is
associated with a constant distribution.

The j’th subnet of DM for time i is a triplet S
j
i =

(V̂ j
i , Ĝ

j
i , P̂

j
i ). Its (enlarged) subdomain is V̂

j
i = V

j
i ∪

FI
j
i−1, where FI

j
i = {x|∃ (x, y) ∈ F

j
i+1} is the forward

interface of V
j
i (0 ≤ i < k) and FI

j
−1 = ∅. Its (enlarged)

subnet structure is Ĝ
j
i = (V̂ j

i , Ê
j
i ), where Ê

j
i = E

j
i ∪ F

j
i .

The set of probability distributions (one per node) in the

subset is P̂
j
i = {P (x|π(x))|x ∈ V̂

j
i } except that each

x ∈ FI
j
i−1 is assigned a constant distribution.

A slice of DM for time i is

Mi =
⋃

j

S
j
i = (

⋃

j

V̂
j
i ,

⋃

j

Ĝ
j
i ,

⋃

j

P̂
j
i ).

A DMSBN is time-invariant if Gi and Gj are isomorphic,
Fi and Fj are isomorphic, and Pi and Pj are equivalent for
i �= j. Pi and Pj are equivalent if Gi and Gj are isomorphic,
Fi and Fj are isomorphic, and for every variable xi in Gi

and its isomorphic counterpart xj in Gj , P (xi|π(xi)) ∈ Pi

is identical to P (xj |π(xj)) ∈ Pj . In this work, we focus on
time-invariant DMSBNs.

The above definition of a DMSBN is based on a forward
interface. This is not necessary as our results apply to other
alternative temporal interfaces as well.

Properties of DMSBNs

We establish the fundamental relations between DMSBN,
DBN and MSBN. Proposition 1 does so relative to DMSBN
and DBN. Its proof is straightforward by comparing Def. 1
and Def. 8.

Proposition 1 Let DM be a DMSBN of horizon k. Then,

Gj = (
k⋃

i=0

V
j
i ,

k⋃

i=0

G
j
i ,

k⋃

i=1

F
j
i ,

k⋃

i=0

P
j
i )

is a DBN for each j.

Note that from Def. 8, for each variable x with multiple
occurrences at time i, only one occurrence is associated with
P (x|π(x)) and each other occurrence is associated with a
constant distribution. Hence, the product of distributions at
all nodes in the above DBN is not necessarily identical to the

marginal of JPD from DM marginalized down to
⋃k

i=0
V

j
i .

Proposition 2 establishes the relation between a DMSBN
and an MSBN.

Proposition 2 Let DM be a DMSBN of horizon k and Mi

be a slice of DM for time i. Then Mi is an MSBN.

Proof: The proof is straightforward by comparing Def. 7 and

Def. 8 and noting the following: Although in each subnet S
j
i

of Mi, G
j
i is enlarged into Ĝ

j
i with FI

j
i−1 and F

j
i , the tem-

poral arcs F
j
i do not introduce direct connection between G

j
i

and Gk
i for all k �= j. Hence, whenever Gi =

⋃
j G

j
i is a hy-

pertree MSDAG, Ĝi =
⋃

j Ĝ
j
i is also a hypertree MSDAG.

�

Note that for each x ∈ FI
j
i−1 in the subnet S

j
i , it has no

parent in S
j
i and is assigned a constant distribution in Def. 8.

Hence, P (FI
j
i−1) as defined by S

j
i is a constant distribution

as well. More precisely, the following marginalization
∑

V̂i\FI
j

i−1

∏

j

P̂
j
i (where V̂i =

⋃
V̂

j
i )

is a constant distribution. We summarize this in the follow-
ing Lemma, which is needed in our later analysis.

Lemma 1 Let DM be a DMSBN of horizon k and Mi be
a slice of DM for time i > 0. Then, in each subnet, the

distribution over forward interface FI
j
i−1

P (FI
j
i−1) =

∑

V̂i\FI
j

i−1

∏

j

P̂
j
i (where V̂i =

⋃
V̂

j
i )

is a constant distribution.

Multiagent Forecasting

We consider a dynamic problem domain that can be repre-
sented as a DMSBN. The domain is populated by a set of

agents. Each agent Aj is in charge of the subdomain V
j
i and

has the access of subnet S
j
i for i = 0, 1, ..., k. At any time

i, subdomains are organized into a hypertree and we refer to
each interface on the hypertree as an agent interface at time
i. Variables contained in agent interfaces are public.

We assume that the knowledge of Aj over V
j
i is propri-

etary. Hence, variables in V
j
i that are not contained in any

agent interface of Aj are private variables of Aj . The depen-
dency structure among them as well as numerical parameters
that quantify the structure are also private to Aj . As a result,
a centralized representation of the domain is not feasible.

On the other hand, agents share a common interest that
motivates them to cooperate truthfully within the limit of
their privacy. That is, any message exchanged regarding
public variables must be consistent with the true belief of
the sending agent. No messages regarding private variables
will be communicated.

We make the interface observability assumption: At time
i, all variables in each agent interface are observed by the
two corresponding agents. In addition, each agent Aj may

carry out additional observations over its subdomain V
j
i .

The task of agents is to forecast the state of the domain at
time i + 1 based on all observations obtained up to time i.

The above generalizes a number of cooperative situations
such as the following in a supply chain:

Forcasting in a supply Chain In order to meet needs of
production operations for workers (to be hired or laid-off),
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equipment (to be purchased or reconfigured), and materi-
als (to be ordered and shipped), arrangements often must
be made in advance. Forecast allows such needs to be an-
ticipated so that necessary arrangements are made in time.

As an example from the equipment perspective, manu-
facturing of a particular part, device or component requires
equipment setup and reconfiguration. Per-part cost is re-
duced if set up is performed for a large batch of parts to
be manufactured. Constant switching between manufactur-
ing of different parts increases per-part cost and should be
avoided. On the other hand, maintaining a large inventory
over an extended period is also costly. Hence, accurate pre-
diction of short-term demand allows optimal planning of the
manufacturing process.

In a supply chain, a demand (from a consumer) of a given
component (produced by one manufacturer) generates a de-
mand of parts (likely produced by several other manufactur-
ers) that the component is composed of. This interdepen-
dency among suppliers makes isolated forecasting by indi-
vidual manufacturers less accurate. A cooperative forecast-
ing is advantageous here as it benefits from knowledge and
observations of all agents over their individual subdomains.
Better forecasting will allow better planning and more cost-
effective operation by all suppliers.

Fig. 4 illustrates such a multiagent system of three agents
over two time intervals. Spatial dependences are along the
horizontal direction and temporal evolution is along the ver-
tical direction. For each supplier, availability of skilled
workers, adequate equipment, and material (or component)
ordered constrain the level of production, which in turn
determines the amount of supply produced and influences
the unit cost. Availability of skilled workers influences the
workers’ wage, which in turn affects the unit cost. The unit
cost is also affected by the sale price of the material from
the next supplier down the chain. The amount of supply and
the order incoming from the next supplier up the chain de-
termine the inventory left and affect the unit sale price.

Figure 4: A DMSBN based multiagent system.

Temporally, the current availability of workers, the cur-
rent workers’ wage level, and the current availability of ade-

quate equipment are closely dependent on their status in the
previous time interval. Inventory left from the previous time
interval affects both the current level of supply and the order
of material from the next supplier down the chain.

Forecasting Algorithms

Forecasting proceeds as follows: At time i = 0, agents com-
municate through the MSBN M0 to acquire prior for their
respective subdomains. So each agent Aj acquires a prior

P (V̂ j
0 ) for i = 0.

Then each agent Aj acquires observations obs
j
0 and up-

dates its belief about its subdomain V̂
j
0 to get a posterior

P (V̂ j
0 |obs

j
0) for i = 0. Due to d-sepset agent interface

and interface observability, this step can be performed at
each agent’s local JT without communication. After this

the MSBN M1 is loaded into agents. The subnet for V̂
j
1 is

separated from the subnet for V̂
j
0 through the forward inter-

face, and a prior over the temporal interface is defined from

a marginalization of P (V̂ j
0 |obs

j
0). Through the MSBN M1,

agents communicate and forecast for i = 1. That is, each

agent Aj obtains the prior P (V̂ j
1 |obs0) for i = 1, where

obs0 includes observations at i = 0 by all agents.

From then on at each i, each agent Aj acquires obser-

vations obs
j
i and updates its belief about its subdomain V̂

j
i

to get the posterior P (V̂ j
i |obs

j
0, ..., obs

j
i ). It is performed

at each agent’s local JT without communication. After this

the MSBN Mi+1 is loaded into agents. The subnet for V̂
j
i+1

is separated from the subnet for V̂
j
i through a temporal

interface, and a prior over the interface is obtained from

marginalization of P (V̂ j
i |obs

j
0, ..., obs

j
i ). Using Mi+1 with

the priors, agents communicate and forecast for i + 1. Each

agent Aj obtains the prior P (V j
i+1

|obs0, ..., obsi) for i + 1.

The above is enabled through a compilation of the
DMSBN. Its subnets for each time i are compiled into an
LJF and reused for each time instance. The compilation is
similar to that for MSBNs, except that for each subnet of

time i, FI
j
i−1 is contained in a cluster in the local JT and so

is FI
j
i . We denote the local JT of agent Aj compiled from

its subnet S
j
i by T

j
i .

We assume that no forecast is made for the interval i = 0.
The following diagram illustrates agent activities and their
timing. The first line shows a sequence of time intervals
each bounded by a pair of vertical bars. In the second
line, the label obs0 refers to local observation made during
interval 0, and the label forecast1 refers to forecasting
on interval 1. The observation and forecasting activities
are grouped into two algorithms InitialObservation and
Forecast specified below. The third line illustrates which
activities in the 2nd line are included in the execution of
each algorithm.

| interval0 | interval1 | interval2 | ...
obs0 forecast1 obs1 forecast2 obs2 forecast3 ...

< Init >< Forecast >< Forecast > ...
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Algorithm 1 (InitialObservation) At start of interval 0,
each agent Aj does the following:

1 load local JT T
j
0 into memory;

2 enter local observations from interval 0;
3 perform UnifyBelief;

Algorithm 2 (Forecast) At end of interval i ≥ 0, each
agent Aj does the following:

1 retrieve potential B(FI
j
i ) from its local JT T

j
i ;

2 replace T
j
i by T

j
i+1 in memory;

4 find a cluster Q in T
j
i+1 such that Q ⊇ FI

j
i ;

5 update potential B(Q) into B′(Q) = B(Q) ∗ B(FI
j
i );

6 respond to call on CommunicateBelief;
7 answer forecasting queries on interval i + 1;

During interval i + 1, Aj does the following:

8 enter local observations from interval i + 1;
9 perform UnifyBelief;

Note that for each x ∈ FI
j
i−1 in the subnet S

j
i , it has no

parent in S
j
i and is assigned a constant distribution. Hence,

B(FI
j
i−1) in T

j
i is a constant distribution immediately after

the local JT is loaded into memory.
CommunicateBelief is called upon an arbitrary agent

during each interval.

Theorem 1 After execution of InitialObservation at each
agent, followed by Forecast from interval 0 to i − 1, fol-
lowed by the first 7 lines of Forecast at end of interval i, the
answers from each agent to forecasting queries on interval
i + 1 are exact.

Proof: We prove this by induction on time intervals.
During InitialObservation, the LJF loaded in line 1 is

globally consistent. In line 2, observations are entered at
each agent. As agent interfaces are d-sepsets and due to
interface observability assumption, each (enlarged) subdo-

main V̂
j
0 is conditionally independent on each other subdo-

main V̂ k
0 where k �= j, given observations on an agent inter-

face between them. Therefore, line 3 is equivalent to Com-
municateBelief without actual communication. After line
3, not only each local JT T

j
0 is locally consistent, but also

the LJF at interval 0 is globally consistent. From Theorem

8.121 in (Xiang 2002), and the fact that FI
j
0 is contained in a

single cluster in T
j
0 , B(FI

j
0 ) retrieved from a unique cluster

in T
j
0 is exact: That is,

B(FI
j
0 ) = const ∗ P (FI

j
0 |obs

j
0) = const ∗ P (FI

j
0 |obs0),

where ‘const’ is a constant, obs
j
0 is the local observation by

Aj at i = 0, and obs0 includes observations at i = 0 by all
agents.

For the base case i = 0, we need only to consider one
execution of the first 7 lines of Forecast at each agent. Based

1Briefly, after agents enter their local observations, Communi-
cateBelief renders cluster potentials in each local JT to be exact
posteriors.

on the above argument, B(FI
j
0) retrieved at line 1 is exact.

At line 2, the LJF for i = 1 is loaded. From Lemma 1,
marginalization of B(Q) to FI

j
0 is a constant distribution.

Therefore, before line 5 is executed, B(Q) = const∗P (Q\

FI
j
0 |FI

j
0), and the potential associated with local JT T

j
1 is

B(V̂ j
1 ) = const∗P (V̂ j

1 \FI
j
0 |FI

j
0). After line 5 is executed,

the potential over Q becomes

B′(Q) = const ∗ P (Q \ FI
j
0 |FI

j
0) ∗ P (FI

j
0 |obs

j
0)

= const ∗ P (Q|obsj
0).

This implies that the potential over T
j
1 becomes

B′(V̂ j
1 ) = const ∗ P (V̂ j

1 \ FI
j
0 |FI

j
0) ∗ P (FI

j
0 |obs

j
0)

= const ∗ P (V̂ j
1 |obs

j
0).

That is, the potential over T
j
1 has been conditioned on ob-

servation obs
j
0. This, however, makes the LJF for i = 1

inconsistent. After line 6, from Theorem 8.12 in (Xiang
2002), the LJF for i = 1 is again globally consistent and

B′(V̂ j
1 ) = const∗P (V̂ j

1 |obs0). Hence, forecasting on i = 1
at line 7 is exact. This concludes the proof for the base case.

Assume that the theorem holds when i = m. That is,
when line 7 of Forecast is executed at end of interval m, the
LJF for i = m + 1 is globally consistent and, for each Aj ,

B′(V̂ j
m+1) = const ∗ P (V̂ j

m+1|obs0, ..., obsm).

Hence, forecast on i = m + 1 is exact.
We consider interval i = m + 1. First, each agent com-

pletes lines 8 and 9 with respect to the LJF for interval
m + 1. Due to d-sepset agent interfaces and interface ob-

servability, each subdomain V̂
j
m+1 is conditionally indepen-

dent on each other subdomain V̂ k
m+1 where k �= j, given

observations on an agent interface between them at inter-
vals i = 0, 1, ..., m, m + 1. Therefore, line 9 is equivalent
to CommunicateBelief. After line 9, the LJF for interval
m + 1 is globally consistent, and B(FI

j
m+1) retrieved from

T
j
m+1 in line 1 during next execution of Forecast satisfies

B(FI
j
m+1) = const ∗ P (FI

j
m+1|obs

j
0, ..., obs

j
m, obs

j
m+1).

At line 2, the LJF for i = m + 2 is loaded by agents. After

line 5, the potential over T
j
m+2 becomes

B′(V̂ j
m+2) = const ∗ P (V̂ j

m+2|obs
j
0, ..., obs

j
m, obs

j
m+1),

and the LJF for i = m + 2 is inconsistent. After line 6, the
LJF is again globally consistent and B′(V̂ j

m+2) = const ∗

P (V̂ j
m+2|obs0, ..., obsm, obsm+1). Hence, forecast at line 7

on i = m + 2 is exact. �

Experiments

The 3-agent supply chain DMSBN in Fig. 4 and the equiv-
alent centralized DBN are implemented using WebWeavr-
IV. Each batch of experiment is conducted on a group of
ten scenarios each of horizon 7, simulated from the DBN.
For each scenario, five forecasting sessions (S1,...,S5) may
be run. S2, S4 and S5 are run using the DMSBN. In S2,
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only variables in agent interfaces are observed as assumed
by interface observability. Additional local observations are
made in S4. In S5, the agent interface and forward interface
are observed. In S1 and S3, 3 agents are run independently
(using DBNs) without communication. In S1, agents’ obser-
vations are identical to those in S2. In S3, they are identical
to those in S4.

A common probabilistic inference session combines de-
ductive and abductive inference. Consider a directed path
x → ... → y → ... → z. If the posterior on y is needed,
then the observation of x drives deductive inference and the
observation of z drives abductive inference. Intuitively, fore-
casting is similar to deductive inference in the temporal di-
rection, without the assistance of the abductive counterpart.
As a result, the accuracy of forecasting is heavily dependent
on the causal strength2 between present events and future
events. To take this dependency into account, we conducted
experiment at different levels of causal strength:

Let v be a variable in the DMSBN associated with
P (v|π(v)). For each instantiation π(v) of π(v), denote

M(v|π(v)) = maxvP (v|π(v)), where max is over all pos-

sible values of v. M(v|π(v)) is a simple indicator of the

causal strength. The closer it is to 1, the more predicable
the value of v when π(v) is true. To set the level of causal

strength for a DMSBN, a parameter t ∈ (0.5, 1) is specified,
and for each variable v, M(v|π(v)) is lower-bounded by t.

Table 1: Forecasting accuracy with causal strength t = 0.93

Scenario S1 S2 S3 S4 S5

1 0.65 0.65 0.71 0.81 0.88

2 0.69 0.82 0.67 0.79 0.81

3 0.64 0.68 0.71 0.88 0.90

4 0.55 0.54 0.59 0.63 0.73

5 0.60 0.65 0.71 0.95 0.96

6 0.60 0.76 0.67 0.87 0.87

7 0.51 0.65 0.63 0.77 0.81

8 0.51 0.55 0.54 0.67 0.68

9 0.72 0.85 0.71 0.83 0.83

10 0.63 0.62 0.73 0.85 0.85

mean 0.61 0.68 0.66 0.81 0.83

Table 2: Forecasting accuracy with causal strength t = 0.80

Scenario S1 S2 S3 S4 S5

11 0.41 0.50 0.49 0.62 0.55

12 0.69 0.72 0.73 0.83 0.83

13 0.55 0.58 0.65 0.71 0.68

14 0.60 0.76 0.59 0.76 0.79

15 0.53 0.54 0.59 0.67 0.68

16 0.35 0.41 0.40 0.51 0.56

17 0.58 0.58 0.67 0.71 0.71

18 0.64 0.63 0.72 0.79 0.79

19 0.68 0.73 0.76 0.94 0.94

20 0.55 0.72 0.62 0.81 0.85

mean 0.56 0.62 0.62 0.73 0.74

We simulated three groups of scenarios (10 each),
G1, G2, G3, with strength parameter 0.93, 0.8, 0.7, respec-
tively. For each scenario in G1 and G2, sessions S1,...,S5 are

2We use the term ‘causal’ loosely here.

run. For each scenario (of horizon 7), six forecastings are
made. The accuracy over 13 variables (distributed among
agents) in each forecasting is recorded. Tables 1 and 2 show
the average accuracy over 13 × 6 = 78 variables.

By comparing results between S1 and S2, and between
S3 and S4, it can be seen that DMSBN agents have more
accurate forecasting than DBN agents. By comparing results
between S1 and S3, and between S2, S4 and S5, it can be
seen that more observations result in more accurate forecasts
by both DBN and DMSBN agents.

In addition, we run session S5 for each scenario in G3,
and the average accuracy over 10 scenarios is 0.53. From the
average accuracies of S5 in G1, G2 and G3, i.e., 0.83, 0.74
and 0.53, respectively, it is clear that stronger causal strength
in the environment results in more accurate forecasting.
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