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Abstract

The success of knowledge discovery in real-world do-
mains often depends on our ability to handle data im-
perfections. Here we study this problem in the frame-
work of association mining, seeking to identify frequent
itemsets in transactional databases where the presence
of some items in a given transaction is unknown. We
want to use the frequent itemsets to predict “missing
items”: based on the partial contents of a shopping cart,
predict what else will be added. We describe a tech-
nique that addresses this task, and report experiments
illustrating its behavior.

Introduction
The task of association mining is to detect frequently co-
occurring groups of items in transactional databases. These
frequent itemsets can be exploited in predictions. Sup-
pose a set of transactions frequently contains the itemset
{i1, i2, i3}. Observation of the items {i1, i2} in the partial
contents of a shopping cart may lead us to expect that the
customer will also buy i3. Although association mining has
usually been cast in the department-store paradigm, many
other domains can be converted to the same scenario.

Suppose we have a database of customer ratings of a
line of products. If a group of users tend to rate products
{p1, p2, p3} in a similar way, {〈p1, r1〉, 〈p2, r2〉, 〈p3, r3〉},
then a new user’s ratings {〈p1, r1〉, 〈p2, r2〉} lead us to ex-
pect that this user, too, will rate p3 as r3. By consider-
ing a 〈product, rating〉 pair as an item, we can use the
department-store paradigm. But the scope of applications is
broader than it seems. Thus in medical diagnosis, a patient’s
symptoms are rarely due to a single cause—multiple dis-
eases tend to conspire. Having identified one, the physician
wants to anticipate the others, if only to suggest additional
lab tests. But knowing the presence or absence of a disease is
not enough. What matters is also the severity as quantified,
say, by a value from Θ = {Critical,Medium,Normal}.
When assigning the value, a physician relies on his/her expe-
rience and/or the experience of colleagues. Such ratings are
inevitably ambiguous and not easily expressed in terms of
probabilities—for instance, it would be mistaken to assume
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that the statement, “the symptom is Critical with a 70%
confidence” implies a 30% confidence in the complement
of Critical. The lack of mechanisms to accommodate such
subjectivity often necessitates various unwarranted “interpo-
lations.” Their inadequacy motivates our research: knowing
some (ambiguous) ratings a user has given, we want to pre-
dict his or her other ratings.

Recent work studied this issue in the framework of clas-
sifier induction: for class-label ambiguities (Subasingha
et al. 2008) as well as for attribute-value imperfections
(Hewawasam, Premaratne, & Shyu 2007). But the problem
studied here is more general. Whereas classification usu-
ally seeks to predict a single preselected class attribute, we
are concerned here with the case where any attribute can
be the “class label.” We want to predict all unknown items
based on the partial knowledge of the presence of other items
(note that classification is only a special case of this task). A
collaborative-filtering-based approach to this task has been
recently proposed by (Wickramarathne 2008), but to use as-
sociation mining to this end is new. We propose a novel
technique, DS-ARM—Dempster-Shafer based Association
Rule Mining and report experiments illustrating its behav-
ior.

Problem Statement
We use pj , j = 1, Np, to denote products (or attributes)
in the dataset. Let Θ = {θ1, . . . , θK} be the set of mu-
tually exclusive and exhaustive ratings. Rating values that
can be assigned to a product are thus drawn from the power
set 2Θ of Θ and r�, � = 1, Nr, where Nr = |2Θ|, are
used to denote user assigned ratings. We refer to each pair
〈product, rating〉 or 〈attribute, value〉 as an item and the
item vector of a single user as a transaction. More formally,
let I = {ij�|j = 1, Np, � = 1, Nr} be a set of distinct items
where ij� = 〈pj , r�〉. Let a database consist of N transac-
tions, T1, . . . , TN , such that Tk ⊆ I, ∀k. An itemset, X , is a
group of items, i.e., X ⊆ I . The support of itemset X is the
number, or the percentage, of transactions that subsume X .
An itemset that satisfies a user-specified minimum support
value is called a frequent itemset or a high support itemset.

Let us assume that an association mining program has al-
ready discovered all high support itemsets. For each such
itemset, X , any pair of subsets, r(a) and r(c), such that
r(a) ∪ r(c) = X and r(a) ∩ r(c) = ∅, we can define an as-
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sociation rule: r : r(a) ⇒ r(c); r(a) is the rule’s antecedent
and r(c) is the consequent. The rule reads: if all items from
r(a) are present in a transaction, then all items from r(c) are
also present in the same transaction. The rule does not have
to be absolutely reliable. The probabilistic confidence in the
rule r(a) ⇒ r(c) can be defined with the help of the sup-
port (relative frequency) of the antecedent and consequent as
the percentage of transactions that contain r(c) among those
transactions that contain r(a):

conf = support (r(a) ∪ r(c))/support (r(a)). (1)

The number of rules implied by X grows exponentially in
the number of items; it is thus practical to consider only
high-confidence rules derived from high-support itemsets.

Given an itemset s in a transaction, we want to predict the
remaining items of this transaction. The association rules we
generate for this purpose must satisfy the following: (1) The
rule antecedents should be sufficiently similar to s. (2) The
rule consequent is limited to any single item 〈pj , •〉 /∈ s.

In summary: Given the itemset s ⊆ I , find the match-
ing rules of the form r(a) ⇒ ij�, such that r(a) is “close”
(we will formalize this later) to s and 〈pj , •〉 /∈ s, and ex-
ceed the user-set minimum support, θs, and minimum con-
fidence, θc. Find a method to combine rules with mutually
contradicting consequents. Ultimately, we are predicting the
〈product, rating〉 values of unrated products.

Representation of Imperfect Data
Preliminaries: DS Theory
Let us define the frame of discernment (FoD) as a set
of mutually exclusive and exhaustive propositions, Θ =
{θ1, . . . , θK}. A proposition, θi, referred to as a singleton,
represents the lowest level of discernible information. We
assume that all products have the same FoD. In our context,
θi states that the “rating of given product is equal to θi.” Ele-
ments in 2Θ, the power set of Θ, form all propositions of in-
terest. Any proposition that is not a singleton, e.g., (θ1, θ2),
is referred to as composite. In our context, composite propo-
sitions represent ambiguous ratings.

The mapping m : 2Θ �−→ [0, 1] is a basic belief assign-
ment (BBA) for the FoD Θ if (Shafer 1976);

m(∅) = 0;
∑
A⊆Θ

m(A) = 1. (2)

The BBA of a proposition A ⊆ Θ is free to move into its
individual singletons. This is how DS theory models igno-
rance. Any proposition A that possesses a non-zero mass,
i.e., m(A) > 0, is called a focal element; the set of focal el-
ements, F, is referred to as the core. The triple {Θ,F,m(•)}
is called the body of evidence (BoE).

An indication of the evidence one has towards all proposi-
tions that may themselves imply a given proposition A ⊆ Θ
is quantified via the belief, Bel(A) ∈ [0, 1], defined as

Bel(A) =
∑
B⊆A

m(B). (3)

Bel(A) represents the total support that can move into A
without any ambiguity. Note that Bel(A) = m(A) if A

is a singleton. Plausibility of A is defined as Pl(A) =
1 − Bel(A); it represents the extent to which one finds A
plausible.

A probability distribution Pr(·) satisfying Bel(A) ≤
Pr(A) ≤ Pl(A), ∀A ⊆ Θ, is said to be compatible with
the underlying BBA m(•). An example of such a probability
distribution is the pignistic probability distribution BetP (•)
defined for each singleton θi ∈ Θ as follows (Smets 1999):

BetP (θi) =
∑

θi∈A⊆Θ

m(A)/|A|. (4)

Here |A| denotes the cardinality of set A.
The Dempster’s rule of combination (DRC) makes it pos-

sible to arrive at a new BoE by fusing the information from
several BoEs that span the same FoD. Consider the two
BoEs, {Θ,F1,m1(•)} and {Θ,F2,m2(•)}. Then,

K12 =
∑

Bi∩Cj=∅

m1(Bi)m2(Cj) (5)

indicates the conflict between the evidence of the two BoEs.
If K12 < 1, then the two BoEs are compatible, and
the two BoEs can be combined to obtain the overall BoE
{Θ,F,m(•)} as follows: for all A ⊆ Θ,

m(A) ≡ (m1⊕m2)(A) =

∑
Bi∩Cj=A

m1(Bi)m2(Cj)

(1 − K12)
. (6)

A variation of the DRC that can be used to address the re-
liability of the evidence provided by each contributing BoE
is to incorporate a discounting factor di, di ≤ 1, to each
BoE (Shafer 1976). The BBA thus generated is

m(A) = (m̂1 ⊕ m̂2)(A), where, for i = 1, 2,

m̂i(A) =

{
dimi(A), for A ⊂ Θ;

(1 − di) + dimi(Θ), for A = Θ.
(7)

Attribute Value Ambiguities
The FoD of rating of product pj , is taken to be finite and
is denoted by Θpref . For instance, in a “five-star” rating
system Θpref = {1, 2, 3, 4, 5};. The number of possible
singleton values a product rating may assume is |Θpref | and
r� ∈ 2Θpref . The “intra-attribute BBA” or the BBA of rat-
ing of product pj is a BBA mj : 2Θpref �→ [0, 1] defined
on the FoD Θpref ; {Θpref ;Fj ;mj} is the corresponding
intra-attribute BoE (intra-BoE) (Hewawasam, Premaratne,
& Shyu 2007). Note that, Fj = ∅ denotes that the product
pj is “not rated”. We assume that an 〈product, rating〉 vec-
tor whose ratings are all “not rated” is non-existent (i.e., in
our context, each user has rated at least one product).

The intra-attribute BBA captures the uncertainty among
the ratings each product may take and it allows several
types of common data imperfections to be conveniently
modeled. This “inter-attribute BBA” can capture the inter-
relationships among different attributes (Hewawasam, Pre-
maratne, & Shyu 2007). Clearly, the inter-FoD ΘT of each
attribute vector T is the cross-product of the intra-FoD of
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each attribute. The inter-BBA of a given record is referred
to as Data Record BBA (DR-BBA).

Table 1 shows a toy domain with four distinct products
and the ratings (some ambiguous, others “crisp”) given by
two users. An empty field indicates the user has not rated
the product. DR-BBAs generated from Table 1 is shown in
Table 2. The user rating vector u1 is converted into four
data-records in the cross-product space (that grows expo-
nentially in the number of ambiguous ratings). So, the pro-
posed method becomes expensive in highly ambiguous do-
mains. Our toy domain can be seen as a transaction database
where each 〈product, rating〉 represents an item and each
row represents a transaction. This database is then used for
frequent-itemset detection and for association rule genera-
tion.

Table 1: Intra-BBAs of Two Data Records
product p1 p2 p3 p4

user F1 m1 F2 m2 F3 m3 F4 m4

u1 4 1.0 4 0.8 3 0.6
4,5 0.2 3,4 0.4

u2 1 1.0 5 1.0 3 0.8
2,3 0.2

Table 2: DR-BBAs of the Data Records in Table 1
Data Rec. DR-BBA Itemset

u
(1)
1 0.48 〈p1, 4〉, 〈p2, 4〉, 〈p3, 3〉

u
(2)
1 0.32 〈p1, 4〉, 〈p2, 4〉, 〈p3, (3, 4)〉

u
(3)
1 0.12 〈p1, 4〉, 〈p2, (4, 5)〉, 〈p3, 3〉

u
(4)
1 0.08 〈p1, 4〉, 〈p2, (4, 5)〉, 〈p3, (3, 4)〉

u
(1)
2 0.80 〈p1, 1〉, 〈p2, 5〉, 〈p4, 3〉

u
(2)
2 0.20 〈p1, 1〉, 〈p2, 5〉, 〈p4, (2, 3)〉

Making Predictions
Given a user’s ratings with ambiguities, and asked to predict
unrated products, the first step is to get the cross product of
intra-BBAs and find the DR-BBAs of the given rating vec-
tor. For instance, if the given user is u2 (Table 1), and we are
asked to predict the rating for product p3, we get two “data
records” u

(1)
2 , u

(2)
2 (Table 2). The matching rule set is gen-

erated for each of the records, and the prediction is made by
the combination of the rules. Each prediction is discounted
based on the corresponding DR-BBA; the discounted BBAs
are then combined in making the final prediction.

For a given itemset s ⊆ I , we want to find all rules of the
form r(a) ⇒ ij�, where r(a) “matches” s and 〈pj , •〉 /∈ s,
that exceed minimum support and minimum confidence.
Note that the consequent ij� is a single item, i.e., 〈pj , r�〉.
For each unrated product pj , the corresponding ruleset—
all the matching rules having a consequent of the form
〈pj , r�〉; r� ⊆ 2Θpref —is selected and a DS theoretic ap-
proach is used to combine the rules. This prediction is given
as a DS theoretic mass structure over the set of singletons
or the frame of discernment. If no rule consequent in the
generated ruleset has 〈pj , •〉, no prediction is made for pj .

Distance Metric
We define a rule r(a) ⇒ ij� and given itemset s is
“matching” iff (a) ∀〈pj , •〉 ∈ r(a) → 〈pj , •〉 ∈ s, and

(b) ∀〈pj , r
(r(a))
j 〉 ∈ r(a) and 〈pj , r

(s)
j 〉 ∈ s: dj ≡ |r(r(a))

j −
r
(s)
j | ≤ dt; where dt is a user-set distance threshold. r

(r(a))
j

and r
(s)
j are the ratings given for the product pj in the rule

antecedent r(a) and given itemset s respectively. If the rat-
ing rj is not a singleton we take the mean value to calculate
the distance.

Distance between a matching rule antecedent and
incoming itemset s is denoted by ds,r(a) ; where
ds,r(a) =

∑
j dj/|r(a)|.

Rule Generation
To expedite rule generation, we rearrange the database by
the use of the flagged IT-tree developed by (Li & Kubat
2006). Our goal is not to generate all association rules, but
to build a predictor from a set of ‘effective’ association rules.
The rule generation algorithm takes an incoming itemset as
the input and returns a graph that defines the association
rules entailed by the incoming itemset.

�(a) : antecedents �(c) : consequents

Figure 1: The Rule Graph, G. f(r
(a)
i )= frequency count of

antecedent, f(�i,j)=support count of rule r
(a)
i ⇒ Ij

The graph consists of two lists; the antecedents list �(a)

and the consequents list �(c). In each node, r
(a)
i , the

antecedents list keeps the corresponding frequency count
f(r

(a)
i ). As shown in Fig. 1, the line �i,j between the two

lists links an antecedent r
(a)
i with a consequent Ij . The car-

dinality of the link, f(�i,j), represents the support of the rule

r
(a)
i ⇒ Ij . The frequency counts denoted by fo(•) are used

when building the graph. If Ti is a transaction, then fo(r
(a))

records the sum of DR-BBAs of all Tis, where r(a) is the
largest “matching” itemset in Ti. All frequency counts are
initialized to zero at the beginning and are updated as we tra-
verse the IT-tree according to the rule generation algorithm
from (Wickramaratna, Kubat, & Premaratne 2009).

After completing the rule graph, we select rules that ex-
ceed the minimum support and minimum confidence in the
rule-combination step. To account for data skewness and to
avoid loosing important rules, we use the modified support
value described in the next section.

363



Basic Belief Assignment
In association mining, a user-set threshold decides which
rules have ‘high support.’ The rules that pass this test are
all treated equally, regardless of their supports, and deci-
sions are based solely on the rules’ confidence values. Since
an intuitive approach would give more weight to rules with
higher support, we propose a method to assign the rule-
masses based on both confidence and support values (though
the supports should have a smaller impact).

In many applications, the training sets are skewed. Thus
in a medical domain, the percentage of patients with the
“critical” rating for renal failure might be only 2%. There-
fore, the rules suggesting “critical” rating for renal failure
will have very low support, and rules suggesting the com-
plement will have higher supports. A predictor built from
a skewed training set often tends to favor the “majority”
classes at the expense of “minority” classes. To mitigate this
problem, we adopt the following modified support value:

Definition 1 (Partitioned-Support) The partitioned-
support p supp of the rule, r(a) ⇒ r(c) is the percentage
of transactions that contain r(a) among those transactions
that contain r(c), i.e.,

p supp = support(r(a) ∪ r(c))/support(r(c)).

With Definition 1 in place, we take inspiration from the
traditional Fα-measure (van Rijsbergen 1979) and use the
weighted harmonic mean of support and confidence to as-
sign the following BBA to the rule r(a) ⇒ 〈pj , r�〉:

m(〈pj , r〉|r(a)) =

⎧⎨
⎩

β, for pj’s rating r = r�;

1 − β, for pj’s rating r = Θpref ;

0, otherwise,
(8)

where β =
(1 + α2) × conf × p supp

α2 × p supp + conf
with α ≥ 1.

Note that, as α increases, the emphasis placed upon the
partitioned-support measure in m(•) decreases.

With this mass allocation, the effectiveness of a rule is
tied to both its confidence and partitioned-support. More-
over, just as the Fα-measure enables one to ‘trade’ precision
and recall, the mass allocation above allows us to trade the
effectiveness of the confidence and partitioned-support of a
rule. Parameter α can quantify the user’s willingness to trade
increased confidence for lower partitioned-support.

Discounting Factor
The reliability of the evidence provided by each contributing
BoE is addressed by incorporating the following discounting
factor (Hewawasam, Premaratne, & Shyu 2007):

d = [1 + Ent]−1[1 + ln (Np − |r(a)|)]−1,

with Ent = −
∑
ij⊆Θ

m(ij�|r(a)) ln [m(ij�|r(a))]. (9)

Recall that Np denotes the number of products in the
database. The term 1/(1 + Ent) accounts for the uncer-
tainty of the rule about its consequent. The term 1/(1 +

ln [Np − |r(a)|]) accounts for the non-specificity in the rule
antecedent. Note that, d increases as Ent decreases and
length of rule antecedent increases. As dictated by (7), the
BBA then gets accordingly modified. The DRC is then used
on the modified BoEs to combine the evidence.

Experiments
We experimented with Movielens, a movie recommenda-
tion domain widely used for benchmarking (Research 2007).
The dataset consists of 100,000 ratings provided by 943
users for 1682 movies. The ratings are integers from the
interval [1,5], with 5 being best. To demonstrate our tech-
nique’s full functionality, we needed soft ratings that were
not available in Movielens. We thus created the dataset
DS-Movielens by artificially introducing soft ratings: we re-
lied on different user profiles obtained from “partial proba-
bility models,” a widely used methodology to convert data
with diverse types of imperfections into the DS theoretic
framework (Blackman & Popoli 1999), (Hewawasam, Pre-
maratne, & Shyu 2007). To be more specific, we used—as
in (Wickramarathne 2008)—three user profiles: zero toler-
ance, ±1 tolerance, and end-weighted ±1 tolerance. The
partial probability models for each profile are shown in Fig-
ure 2. The horizontal axis (lighter shading) always rep-
resents the user rating as it appears in the DS-Movielens
dataset; the vertical axis (dark shading) represents the true
rating a movie should receive. A power-set approach enables
us to account for user rating imperfections without resorting
to various “assumptions” and “interpolations” that may be
hard to justify.
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(c) ±1 tol. end-weight

Figure 2: Partial probability models of user profiles.

We then built DS-Movielens by the following steps:
(a) Select a user rating that has been rated as rk. (b) Ran-
domly, with the probabilities {p, (1 − p)/2, (1 − p)/2}, se-
lect one user profile from Figs 2(a), 2(b), and 2(c), respec-
tively. (c) Obtain the corresponding feasible true ratings and
DS theoretic basic probability assignment (BPA) r

(DS)
k via

the procedure in (Blackman & Popoli 1999). (d) Replace
rk with r

(DS)
k . (e) Repeat for all rated entries in Movielens

dataset.

Performance Criteria
Datasets with Hard Ratings: The mean absolute error
(MAE) is the most popular performance criterion to eval-
uate user ratings (Herlocker et al. 2004). Since our algo-
rithm presents the prediction as a mass structure over the
FoD Θpref = {1, 2, 3, 4, 5}, to compute the MAE, these DS
theoretic predictions are converted to hard predictions via
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the pignistic transformation. Pignistic transformation con-
verts the DS-theoretic “soft” decision to a hard decision.
Note that even though we did this transformation to directly
compare our results with other available methods, this ap-
proach is some what unfair to the proposed DS-ARM whose
strength lies in its ability to generate soft decisions. In addi-
tion to MAE, other standard performance metrics—such as
precision, recall, and F1—were used in the results.

Datasets with Soft Ratings: When the user preference
ratings are soft, we must determine how well the predicted
BoE’s (γ̂j) approximate the ground truths (γj). BetPγj

denotes the pignistic probabilities drawn from the BoE
γj . Taking inspiration from (Jousselme, Grenier, & Bosse
2001), we evaluate the soft result via the metric

DS PE =

Np∑
j=1

1√
2
||BetPγ̂j

− BetPγj
|| ÷ Np, (10)

where Np is the number of predictions made and || • || de-
notes the Euclidean norm. Note that DS PE takes values
from [0, 1]: DS PE = 0 means pignistic probabilities of
the prediction is exactly same as that of the ground truth.
We could also have used the KL-divergence instead of the
Euclidean norm, but the error then would not be bounded by
the closed interval [0, 1]. Moreover, KL-divergence requires
the pignistic distributions corresponding to the true and pre-
dicted BPAs to have identical supports.

Experiment Setup
For consistency with previous work, we followed the
methodology from (Herlocker et al. 1999): We randomly
selected 10% of users and, for each of them, we withheld 5
randomly selected ratings, i.e., we “hid” 5 non-empty fields
in the ratings matrix and prevented them from being used
for training. We then used these withheld ratings as an in-
dependent testing set. The remaining ratings represented the
training set. We repeated this process for 10 different ran-
dom splits into training and testing sets. Results shown here
are the average results obtained from the 10 splits.

Experiment 1. DS-ARM Performance: Let us first in-
vestigate DS-ARM’s behavior under diverse parameter set-
tings. The technique performance is likely to depend on
the distance threshold dt, the minimum p supp threshold,
and the parameter α in (8). For the time being, let us fo-
cus on mean absolute error, MAE. Throughout the experi-
ments, we will keep two parameters fixed at “baseline val-
ues,” while varying the third parameter. The baseline values
are p supp = 0.01, α = 10, dt = 1.5.

Figure 3(a) shows how the performance varies with grow-
ing dt, with the other parameters fixed. The the minimum
error was achieved when dt = 1.0. With high dt, the er-
ror increases due to the contributions from too “dissimilar”
rules. When the distance threshold is tight, few rules are
involved and the lack of diverse opinions seems to cause er-
rors. Figure 3(b) shows how MAE varies with changing α.
Minimum is reached around α = 20; which supports our
use of the partitioned-support value in mass allocation. Fig-
ure 3(c) shows how MAE varies with minimum partitioned-

support threshold of selecting rules. Best performance us
obtained by keeping the threshold very low. We have to re-
member that the computational costs of rule combination are
high if many rules are combined. We observe that as the
p supp threshold increases, the coverage decreases (i.e., no
rules are selected to predict certain preferences).
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Figure 3: Behavior of DS-ARM

Experiment 2. DS-ARM Performance on Hard Data:
Although the main strength of DS-ARM is its ability to
deal with ambiguous ratings, we still wanted to see how
it compares to older techniques when “crisp” values are
used. To this end, we compared DS-ARM with one of
the most widely used mechanisms of Automated Collab-
orative Filtering (ACF): the correlation analysis based ap-
proach from (Herlocker et al. 1999). We will refer to our
re-implementation of this algorithm by the acronym CORR.

The parameters of both systems were set to maintain at
least 95% level of “coverage,” calculated as the percentage
of predictions made by the predictor out of the total number
of predictions. Predictors sometimes fail to achieve 100%
coverage due to lack of evidence. The parameter settings
are: for DS-ARM, dt = 1.0, α = 20, p supp thres =
0.01; and for CORR, similarity threshold = 0.1.

Table 3 summarizes the results, with boldface values in-
dicating the best performance. Although the difference is
on average only marginal, our method consistently out per-
forms CORR in predicting high user ratings “3-5”. For rat-
ings “1-2”, CORR is better. Note that the frequencies of
ratings “1-2” are low (the ratings distribution is “1”: 6%,
“2”: 11%, “3”: 27%, “4”: 34%, “5”: 21%). Based on the re-
sults, we conclude that the two methods provide comparable
performance even in the case of “crisp” data.

Experiment 3. DS-ARMPerformance on Soft Data: As
we said, we are not aware of any other system that can pre-
dict ratings based on the “soft” data such as those in DS-
Movielens. Still, we felt that some comparison with pre-
vious work is needed. This is why we decided to use the
CORR approach we worked with in Experiment 2 and to in-
terpret the hard decisions made by other predictors as soft
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Table 3: Performance Comparison: Hard Decisions
al

go
. True Rating mean

Metric 1 2 3 4 5 MAE

D
S-

A
R

M MAE 2.31 1.62 0.68 0.39 1.06 0.89
Pr 0.38 0.13 0.38 0.39 0.36
Re 0.08 0.04 0.39 0.63 0.23
F1 0.14 0.06 0.39 0.48 0.27

C
O

R
R

MAE 1.80 1.38 0.71 0.57 1.18 0.91
Pr 0.40 0.19 0.33 0.38 0.32
Re 0.16 0.16 0.38 0.51 0.19
F1 0.23 0.18 0.36 0.44 0.24

decisions. The comparison of CORR and DS-ARM is made
simpler by the fact that it is in the nature of correlation analy-
sis that the predictions of CORR are not necessarily integer-
valued. To be able to interpret a CORR prediction, r̂k, as
soft, we relied on the following DS-theoretic BPA:

m̂k(A) =

⎧⎪⎪⎨
⎪⎪⎩

�r̂k − r̂k, for A = �r̂k when r̂k /∈ Θ;

r̂k − �r̂k, for A = �r̂k when r̂k /∈ Θ;

1, for A = r̂k when r̂k ∈ Θ;

0, otherwise,

(11)

where �r̂k and �r̂k denote the lowest integer rating that does
not fall below and the highest integer rating that does not
exceed the CORR prediction r̂k, respectively. For instance,
with Θ = {1, 2, 3, 4, 5}, the CORR prediction 3.3 is inter-
preted as the Bayesian statement, “The rating is 3 with 70%
confidence, and 4 with 30% confidence”; (11) corresponds
well with this interpretation. In addition, the known DS-
Movielens user ratings could also be ambiguous. Therefore,
when working with CORR, the pignistic transformation was
used on the known ambiguous ratings.

Table 4 compares the results of CORR and DS-ARM, us-
ing the performance metric DS PE defined by (10). The
probability of selecting the “zero tolerance user” varies from
1 (no ambiguity) to 0.8 (20% ambiguity). The results indi-
cate that DS-ARM indeed outperforms CORR on these data.

Table 4: Performance Comparison: Soft Data
algo. Zero tolerance user selection probability, p

1.00 0.95 0.90 0.85 0.80
DS-ARM 0.60 0.58 0.57 0.55 0.53

CORR 0.61 0.61 0.60 0.59 0.58

Conclusion
The newly proposed technique DS-ARM for recommender
systems with ambiguous ratings is based on our recently de-
veloped algorithm (Wickramaratna, Kubat, & Premaratne
2009). Although the technique was originally developed for
association mining, we have shown that it can be used also
for ratings-predictions. Surprisingly, it compares favorably
with correlation analysis even when the data are “crisp.” For
data with ambiguities, we modified the correlation-based ap-
proach accordingly.

The reader will have noted that although we worked with
real-world data, we had to add ambiguities “artificially”; this

might leave the (false) impression that we targeted a prob-
lem that in reality does not exist. Our answer is that we are
facing a kind of chicken-and-egg problem: since induction
techniques are rarely capable of handling ambiguities, data
providers tend to “sanitize” the data by removing the ambi-
guities; consequently, the data mining community lacks an
incentive to investigate the related issues in the depth they
deserve. Indeed, one of the reasons we embarked on this re-
search was to break this vicious circle by drawing the atten-
tion of other scientists to these unfairly neglected problems.
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