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Abstract

Instance classification using machine learning techniques has
numerous applications, from automation to medical diagno-
sis. In many problem domains, such as spam filtering, classi-
fication must be performed quickly across large datasets. In
this paper we begin with machine learning techniques based
on the naı̈ve Bayes classification and attempt to improve clas-
sification performance by taking into account attribute confi-
dence intervals. Our prediction functions operate over nomi-
nal datasets and retain the asymptotic complexity of one-pass
learning and prediction functions. We present preliminary
results indicating a modest, albeit inconsistent improvement
over the naı̈ve Bayes classifier alone.

Introduction

The promise of machine learning is many-fold, ranging from
alleviating repetitive and mundane tasks such as spam fil-
tering to assimilating vast and disparate corpora of knowl-
edge necessary to perform medical diagnosis. The ability to
correctly classify an instance based on a (sometimes incom-
plete) set of attributes is central to many applications, and
improvements in classifier performance obviously increase
the value of these techniques. Furthermore, many endeav-
ors require methods that are efficient in terms of memory
and time complexity, perhaps due to the sheer number of
instances to be classified (again, email filtering) or limita-
tions of computational resources. Naı̈ve Bayes classifica-
tion (henceforth NB) is commonly employed as the basis of
classification in such domains both because of its speed and
performance (Zhang 2004), and so we use it both as a basis
for performance comparison and as the core classification
algorithm for our research.

For an instance of a classification problem, NB employs
the product of the conditional probabilities of each attribute
value pair in an instance times the overall likelihood of a
given class to find the maximum-likelihood classification
hypothesis (Russell & Norvig 2002, p. 718). A very similar
technique is to base the prediction on the sum of the relative
frequencies expressed as log odds ratios (LOR) of attribute
value pairs with respect to the class hypothesis being tested.
This approach is taken in (Možina et al. 2004), which is
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also the source of the confidence interval calculation used
in our research. Both techniques allow the requisite condi-
tional probability and log odds ratio and confidence interval
calculations to be performed once for the training set. Once
computed, we test and compare multiple hypotheses for how
to incorporate the attribute confidence interval (CI) into the
predicted class for instances in the test dataset.

Datasets

Our experiment utilizes a variety of datasets obtained from
the UCI Machine Learning Repository (Asuncion & New-
man 2007), all of which are already nominal or have been
discretized using the unsupervised discretization module in
Weka (Witten & Frank 2005). The datasets range from hav-
ing between 3 and 34 attributes used for binary and ternary
classifications. The number of instances range from 24 to
over 8000 in the mushroom dataset.

Predictors

In addition to the standard NB and log odds ratio predictors,
we explore several strategies to try to improve the perfor-
mance of the classifier. The first is to either ignore attributes
with poor CIs or augment the contribution of attributes with
strong CIs. In lieu of an absolute measure of goodness for
confidence, strength is determined by the relative ranking
of attribute value pairs by inverse confidence (since numer-
ically smaller values indicate better confidence). For pre-
dictors using LORs, the CI represents the expected error in
the LOR and therefore can be added or subtracted from the
LOR points. This can be done on a per-attribute basis, or the
variance of the CIs for all attribute values in the instance can
be computed and applied to sum of the LOR terms. Another
strategy is to scale the CI to fall within the range of LOR,
that is, to treat it as an attribute, and then explore weighting
the LOR and CI components. Permutations based on these
ideas are explored resulting in 14 strategy variations; we in-
troduce those relevant to the evaluation discussion here:

nbc standard naı̈ve Bayes classifier using the maximum a
posteriori (or MAP).

cautious LOR-based and similar to contrarian - the effect
of the CI is added or subtracted such that magnitude of
the prediction is minimized.
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reckless LOR-based - the effect of the CI is added or sub-
tracted from each attribute such that magnitude of the at-
tribute is maximized.

contrarian LOR-based - the predicted error in the CIs is
subtracted from the LOR prediction if it is positive (i.e. to-
wards the goal outcome); otherwise it is added. This may
change the sign of the prediction.

def c o n t r a r i a n ( avp l , g o a l ) :
p r ed = 0
f o r avp in a v p l :

p r ed += g e t L o r ( avp , g o a l )
p r e d E r r = g e t C i ( avp l , g o a l )
i f pred >= 0 :

re turn l o r T o P t s ( p r ed − p r e d E r r )
e l s e :

re turn l o r T o P t s ( p r ed + p r e d E r r )

Evaluation

Evaluation of the prediction functions is done using a stan-
dard 10-fold cross-fold validation which splits the dataset
into training and test sets, or folds, and then the results
across all folds are averaged. We ensure baseline operation
of our software via a calibration step in which the output
of our NB is manually compared to the NaiveBayesSimple
classifier included in Weka; for our CI calculations we ap-
peal to the nomogram visualization module of the Orange
data mining software suite (Zupan & Demšar 2004). All CI
calculations are for a confidence level (1− α) of 95%.

Predictor results are compared by calculating the con-
fusion matrix statistics for the test set: precision, speci-
ficity, recall, negative predictive value (precision for non-
goal predictions) and accuracy, along with the F-measure
(f1), which is the harmonic mean of precision and recall.
All statistics range between 0 and 1. We say that a predic-
tor function dominates another if all statistics are greater. A
predictor is acceptable relative to another predictor if the av-
erage of its confusion matrix statistics is equal to or greater
than that of the other predictor. These terms are used to com-
pare our hybrid predictors to the nbc predictor. An example
of predictor performance is depicted in Figure 1, where we
can see that the nbc is dominated by the contrarian predic-
tor, reckless proves acceptable despite scoring lower for the
recall metric, and cautious fails to outperform nbc for any
metric.

Ideally, one predictor or general predictor strategy, such
as omitting the attribute with the lowest confidence, would
prove itself preeminent and dominate over NB. However, no
single predictor dominated or proved acceptable across all
datasets in our experiments, although most datasets had at
least one acceptable alternative to nbc. A subset of results
selected with a bias towards the hybrid predictors appears
in Table 1. Datasets with more than 2 classes exhibited less
potential in terms of improving prediction using predictors
that incorporate CI. In our evaluation, the cautious and con-
trarian predictors performed better overall than other hybrid
predictors, and as a rule, strategies based on ignoring at-
tributes with poor confidence delivered weaker results. This
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Figure 1: mushroom (edible)

seems appropriate for rare attribute values which can actu-
ally be strong predictors of class.

nbc reckless cautious contra
colic 0.000 −0.022 +0.011∗ −0.025

mushroom 0.000 +0.019∗ −0.020 +0.002∗

sonar 0.000 +0.000 −0.095 −0.035

voting 0.000 +0.010∗ +0.007 +0.000

Table 1: Predictor Acceptance and Dominance∗

Our goal is to continue to investigate interactions between
attribute log odds ratios and attribute confidence in order to
develop heuristics based on dataset attributes or other oper-
ating conditions that allow for reliable predictor selection.
Once these interactions are better understood, such tech-
niques may be applicable to boosting or ensemble learning.
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