

Simulating a LEGO Mindstorms RCX Robot
in the Robotran Environment

R. Mark Meyer and David C. Puehn

Canisius College

Computer Science Department, 2001 Main Street WTC 207, Buffalo, NY 14208
meyer@canisius.edu, dpuehn@gmail.com

Abstract
LEGO Mindstorms robots are very popular with colleges and
universities for teaching computer concepts and programming.
These robots elicit excitement in students and provide a
nontrivial, real-world platform for exploring algorithmic
concepts. We created a simple algorithmic language, called
Robolang, and wrote a translator that turns it into Lejos code, a
variant of Java that can be run on the RCX version of the LEGO
Mindstorms robots. Seeing that students were eager to explore
programming with the RCX robots at home, we wrote a graphical
simulator to visualize actions of our penbot, a configuration of the
RCX robot that we used in most assignments. Using an emulator
approach, we intercept the ROM calls to the RCX's hardware
made by the TinyVM, the stripped-down Java Virtual Machine
that runs compiled Java bytecodes. Our system then forwards
these calls to a software model that represents the actual robot
hardware. The software model creates the graphics to mimic the
penbot using Java2D. This approach greatly simplified coding by
capitalizing on existing software, namely the Java compiler and
the JVM. Students can program either in Robolang or in actual
Lejos and use the simulator to visualize the actions of the robot
acting as a sort of visual debugger.1

Introduction
In 2005, eager to get students to program the RCX LEGO
Mindstorms robots in a simplified procedural language, we
created a simple environment called Robotran (Meyer and
Burhans 2007). A programming language called Robolang
was embedded in Robotran, providing the ordinary
algorithmic constructs as well as robot movement
commands. Robotran contains a parser that creates a Lejos
program from the Robolang program, which can then be
compiled using lejosc and downloaded to a real robot. We
shied away from the primitive visual programming
language that LEGO provided, called Robolab, because of
its weaknesses and because we wanted the students to
begin experiencing a programming language that was not
too far removed from Java which they would see in the
following semester.

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Robotran was very successful at our college. Students
enjoyed it and were able to draw complex letters and
shapes, follow the beam of a flashlight, sense a black track
on paper underneath the robot, and respond to touch sensor
bumps using only a few lines of code. Lejos, which is Java
with a special robot-command library, was deemed too
complicated for this group of students, some of whom were
taking robotics for a general education requirement.
However, Robolang was sufficiently powerful that students
could program for our robot competition in it and do quite
well against other students who wrote directly in Lejos or
NQC (Not Quite C).

A limiting factor with all robots used in education is the
expense of the robots. Since each kit costs approximately
$300, we couldn’t expect students to buy their own,
especially if they took the course for general credit. To
avoid loss or damage, we could not lend out robots, forcing
students to only work on robot assignments at school, but
not at home. It was then that we decided to embark on the
ambitious route of simulator building.

Since the purpose of our simulator was very specific and
curricular in its scope, we didn’t attempt to create a
physically accurate general-purpose simulator, but rather
one that would respond to our students’ Robolang
programs somewhat realistically. Our penbot is a standard
roverbot (Fig. 1) with bump sensors, a pen attached to a
motor for up and down movement and a light sensor. To
match our curricular use, we modeled our simulator’s robot
on this hardware configuration, adding a world of barriers,
light sensors and a floor on which the robot could draw and
a track that the robot could follow.

Because we needed to run compiled Lejos programs,
which are actually Java programs, we wrote the simulator
and IDE in Java. This permitted a conservation of effort
since we emulate the josx API with our own Java code,
instead of writing a simulator engine that follows the
Robolang program directly. This strategy appears to be
unique to our approach and has a number of benefits as
well as trade-offs which we will explore.

Writing and testing a simulator is a very daunting task.
Though more testing needs to be done, the simulator is

154

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

mature enough to let students do most of their assignments
with it.

Fig. 1: Penbot used in Robotran

Previous Work
Robot simulators fulfill a crucial role in saving time and
money, both in industrial and educational settings.
Simulators make it possible for students to explore high-
cost robots that they would likely never get to touch. They
enable more students to write and debug robot controller
programs, unconstrained by the limited number of robots.
There are many reasons for using simulators as well as
some drawbacks (Dodds 2006).

There exist several dimensions along which a robot
simulator can be pegged to describe crucial differences
between simulators. These include 1) tie-in to a real-world
robot, 2) dimensionality of the graphics, i.e. 2D or 3D, 3)
physical verisimilitude, 4) configurability, 5) programming
model and permitted programming languages, and 6)
number of robots in the world and 7) obstacles in the world
other than robots.

Karel the robot is one of the most widely used robotic
simulators, although it does not actually simulate an
existing robot, but rather an idealized one (Pattis 1995).
The programming language Karel, and its descendent,
Karel++, was based on structured programming languages
e.g. Pascal, and later C++ and Java. Since the purpose of
Karel is to teach programming, verisimilitude is less
important. Karel is part of a long lineage of robot-like
teaching tools, going back to the LOGO programming
language and others. LOGO was designed to implement
turtle graphics, which itself was an idealization of turtle
robots.

With the advent of low-cost robot kits about ten years ago
and their continued improvement, the field has seen an
explosion of interest in programming actual devices rather
than simulators. Simulators are still useful as test beds or
to provide access to otherwise expensive machinery.
Along with this shift in emphasis to real hardware,
simulators are now driven by the hardware. Thus, the tie-
in to physical robots has strengthened since the days of
LOGO and Karel as more projects attempt to mimic the
real world.

An important dimension of simulator differences is
whether they attempt to model the physical properties and
constraints of a robot accurately. The Doane Roverbot
simulator attempted to do that (Buss et al. 2005). Its
creators studied the roverbot's physical movement,
including its speed at different power levels. They
carefully measured the motion of the actual roverbot using
a motion sensor and charted its position versus time at ten
different power levels. The authors also measured the
torque exerted by the motors and factored in the weight of
the robot to make the most realistic 3D simulation possible.
However, they found that some movements, like turning,
were very difficult to model. They fell short of
implementing a collision detection system or sensor inputs.

However, some point out that simulators are often too
perfect (Dodds et al. 2006). They do not replicate real-
world settings in which robots do not move in a perfectly
straight line or respond to every sensor input in a consistent
way. The Jago simulator (Wolf et al. 2003) corrected this
by causing the simulated robots to sometimes veer off
course and to represent quantification errors that arise from
sensors, thereby giving students a more realistic taste of
what they can expect from actual robots.

One of the most visible dimensions of difference among
simulators is the level of the graphics. Robotran is only
2D, as is Jago and Karel. Gazebo offers both 2D and 3D
simulations, and runs on Linux only. The Doane simulator
is a 3D simulation. Many commercial packages, such as
Webots, use 3D graphics for a more realistic simulation.
Commercial simulators offer a much larger range of
functionality but are often not free. Vajta and Juhasz
(Vajta and Juhasz 2005) discuss the role of 3D simulation
in robotic design, test and control. They note the difficulty
of achieving true binocular vision and the need for special
glasses or at least visual clues that give the illusion of
depth. Their Webots Simulator is widely used and they
discuss a newer simulator called RobotMAX that uses a
3D visualization engine and a CAD interface to allow the
user to design virtual environments (Tellez and Angulo,
2006).

Yet another dimension of simulator design is
configurability. Robotran permits only one modification of

155

the basic roverbot design, specifically the orientation of the
light sensor. Commonly, other educational simulators,
such as Jago and Doane, do not permit much
customization. Some commercial packages, including
Webots, permit the user to define a model, which is a
configuration of sensors and motors. This model is
uploaded to the simulator for use during actual runs and is
not alterable during execution.

The programming model is where Robotran differs from
all other LEGO simulators. Most simulators accept
programs written in some programming system that is used
with actual robots and then interpret the commands in
terms of the simulated world and robot. Assembly
language is sometimes used, as in RCXSimulator (Butler
and Brockman 2001) NQC (Not Quite C) is another
popular choice.

Some simulators, such as the Doane simulator, emulate the
brick by interpreting the low-level bytecodes. This
approach gives more control over the simulation but also
means that the software must include a full interpreter for
the bytecodes, either P-script or Java. Writing and testing
this part of the simulator, which is behind the scenes, is a
huge undertaking in itself. Robotran makes use of the
standard Java bytecode interpreter, the JVM, which is
available for almost every computer, and intercepts the
specific commands to the RCX brick. This approach was
not seen to be duplicated elsewhere, at least in terms of
RCX simulators.

Some RCX simulators, for example LegoSim (Roblitz,
Buhn and Mueller 2002), model the behavior of the brick
alone. They show an image of the brick, as LegoSim does,
with clickable button images and the LCD display, but
there are no sensors or motors visibly attached. LegoSim
displays three boxes for the three sensor input ports, and
three other boxes for the A, B and C motors, displaying the
direction and speed. The emphasis is on the internal state
of the brick.

Other simulators model a brick with sensors and motors,
forming a roverbot, penbot or other student-built robot, like
the Doane Roverbot Simulator (Buss et al. 2005). This
robot uses a set configuration which has two bump sensors
and two motors. The world that the simulated roverbot
moves around in is a rectangular box with some objects in
it, closely mimicking a real-world test setup. The Doane
Roverbot uses downloaded P-Brick script files, which are
generated by the visual programming language Robolab,
into the simulator which then interprets them and runs the
simulation.

While it is not necessary to have more than one robot in a
simulated world, having the capability of more than one
allows exploration of inter-robot behavior, for example
“sumo wrestling” or racing, popular themes for robotics

competitions. Jago permits multiple robots per world,
whereas Robotran does not.

User Interfaces
Robotran contains two major windows: an IDE for editing
Robolang and Lejos code, and a simulator for visualizing
what the code will do on a real robot. The IDE permits
entry, editing and saving of programs in either language. It
also translates from Robolang to Lejos. Thus, the
simulator can be used in our earliest course where only
Robolang is used, as well as our CS 1 course, which is a
Java-based introduction to programming. Fig. 2 shows the
basic IDE with tabbed panes in which the programs are
edited.

Fig. 2: Robotran IDE

The simulator’s visual interface consists of two panes: the
virtual robot in its world, and an image of the RCX brick
with control buttons (Fig. 3). The buttons on the image
can be pressed just as a student would press the buttons on
a real RCX to start, run and stop a program. The LCD also
provides output identical to a real RCX robot.

The robot’s world is simple, consisting of a square sheet of
paper over which the robot moves and draws if the pen is
down. Only one robot can exist in this world. There are
four boundaries around this world which the robot can hit
and by which it will be stopped. Additional barriers can be
placed inside the world. Blue barriers represent marks on
the paper that trigger the robot’s light sensor if the light
sensor is oriented down. This allows students to test out
line-following algorithms. A simulated light source can be
placed in the world, corresponding to a flashlight which the
robot may follow or avoid, depending on the assignment.

156

Fig .3: Robotran simulator interface

Simulation Architecture
The key to making this approach work is to emulate calls
to the RCX’s ROM. Normally, the TinyVM calls routines
in the RCX’s controller directly via Java JNI (Java Native
Interface). JNI is the Java technology that permits calling
machine language routines outside the JVM. The physical
robot responds to these calls by turning motors on or off or
actuating a sensor.

Our approach replaces the bottom layer only, namely the
real robot, with a software model, comprised of a number
of Java classes. This model’s interface is the set of ROM
calls that TinyVM makes. By replacing the original
package that Lejos used on the robot with our own, we
cause the running program to call our model instead of a
real robot. Another thread continuously inspects the state
of the model and makes calls on a graphics panel to display
a visual analogue of what the real robot would be doing.
For instance, if the TinyVM would have turned on motors
A and C in the forward direction, our model's components
corresponding to A and C motors would be set. During the
next repaint cycle, our graphics object would get updated
to show the simulated roverbot moving forward in a
straight line.

The following steps comprise the lifecycle of a student
RCX program as executed on a real robot:

1. Student writes Robolang code on PC.
2. Student translates code to Lejos using the Robotran

translator on PC.
3. Student compiles the Lejos code on PC using lejosc.
4. Student downloads the .class file to the RCX using the

infrared tower.

5. The .class file now resides in RAM of the RCX and
the TinyVM is already in RAM, ready to execute.

6. Student presses the green RUN button on the RCX.
7. TinyVM loads the .class file and interprets the

bytecodes, making calls to the hardware ROM when
methods inside the josx package are called.

8. The student stops the program by pressing the STOP
button on the robot.

The lifecycle of a simulated program differs from the
above as follows. The .class file created from compiling
the student’s program exists only on the PC and is never
downloaded to the robot.

1 to 3. Identical to above
5. The student starts the simulator software which loads

the .class file into PC’s RAM.
6. A graphical window opens, which continually checks

the state of the in-RAM RCX model.
7. The PC's JVM interprets the bytecodes of the .class

file, making calls to our stand-in josx package. The
running program changes values in the RCX model.
When these are eventually spotted by the graphics
window thread, they cause the simulator to change its
display.

8. The student stops the program by pressing the on-
screen STOP button.

Fig. 4 illustrates the two complementary scenarios.

Most of the josx framework’s functionality is achieved by
performing native ROM calls on the RCX. This means
that for a given Java operation the endpoint usually is a
ROM call to the RCX. RCX ROM calls require a memory
address and zero to four parameters. Robotran takes
advantage of this simple hardware interface since all that
must be done is to emulate the functionality of the RCX
ROM calls.

Here is a sample Lejos program that starts the RCX’s
motors going forward indefinitely.

Motor.A.forward();
Motor.C.forward();

The Java code that these statements activate in our
simulator is the following:

ROM.call(0x1a4e, 0x2000, 1, 3);
ROM.call(0x1a4e, 0x2002, 1, 3);

On the real RCX these calls would pass through JNI and
the layers of native code and reach the hardware. Our
simulator redirects these calls to our virtual ROM instead
of the native code.

157

Fig. 4: Comparison of the actual lejos/RCX architecture with Robotran simulator

Here is the ROM method header from the original josx
code:

public static native void call(short aAddr,

 short a1, short a2, short a3, short a4);

Next is our modified version of the method that redirects
the call to our virtual ROM.

public static void call(short aAddr, short a1,
 short a2, short a3, short a4) {
 RCX.rom.call(aAddr, a1, a2, a3, a4);
 //RCX.rom points to Robotran’s virtual ROM
}

Only minimal changes needed to be made to the josx
source to intercept the ROM calls since all ROM calls are
passed to a native function. Once the ROM call enters the
virtual ROM it is handled by the following code:
//controlMotor call:
//a1: which motor
//a2: the motor's mode
//a3: the motor's power
else if (aAddr == 0x1a4e) {
 if (a1 == Opcodes.MOTOR_0) {
 rcx.motorA.setMode(a2);
 rcx.motorA.setPower(a3);
 }
 else if (a1 == Opcodes.MOTOR_1) {
 rcx.motorB.setMode(a2);
 rcx.motorB.setPower(a3);
 }
 else if (a1 == Opcodes.MOTOR_2) {
 rcx.motorC.setMode(a2);
 rcx.motorC.setPower(a3);
 }
}

The parameter of the call specifies changes to the state of
the model, in this case the rcx object that replaces the real
robot, by updating Robotran’s internal data structures The
example above changes the mode (direction) and the power
of the virtual RCX’s motors. There are data structures for
every component in a real RCX, including Button,
Display, Memory, Motor, and Sensor.

Alternative Approaches
Our need to simulate students’ Robolang programs
directed many of our choices. The first approach was to
write an interpreter that would interpret and simulate
Robolang directly. However, the interpreter would have
required quite a lot of code. The biggest flaw of this
design is that simulating at such a high level means we
would not be able to simulate Lejos programs at all.

The current design of intercepting the RCX’s ROM calls
was not the first idea we tried. Other designs were
considered and some were prototyped. One way was to
create an intermediate language (IL) that the simulator
would interpret. A benefit of this design is that we could
simulate any program that could be compiled down to this
IL. We spent some time with this idea and even designed
the intermediate language. But it was abandoned because
it would have required us to write an interpreter for it as
well as a Lejos to IL compiler, a not insignificant task even
using a compiler compiler like JavaCC or YACC.

Another design that was considered involved writing a
Java bytecode interpreter that would interpret a compiled

158

Lejos program. This would give us much more control of
the execution of the program since we would be able to
precisely control timings and forbid features that exist on
desktop Java but are not implemented on the TinyVM.
We decided against this approach because the learning
curve of understanding how to interpret Java bytecodes
was too steep for this project.

Although our current scheme has some downsides we felt
that it was the best choice since it required much less new
code and was at a low enough level to simulate most Lejos
programs.

Challenges and Future Work
Robotran is now stable enough to be used in a classroom
setting and will be deployed in Spring 2009 with a CS 1
class. Consequently student feedback does not yet exist
but a survey will be taken and grade comparisons with the
last two years’ worth of CS 1 students will be made to
ascertain any visible effect of using the simulator. In those
previous classes, the RCX robots were used for about half
of the lab projects, but no simulator was involved.

Despite the elegant simplicity of our approach and the
economies which we exploited, writing a simulator
complete enough for students to use in place of robots is a
substantial undertaking.

Several user interface enhancements are expected in the
near future, including an ability to save a world
configuration, which consists of the set of shapes, barriers,
floor marks and light source, and then to reload it. A
longer range goal is permitting more than one robot to exist
in the simulation so students could hold competitions or
investigate emergent behavior from multiple robots.

The minimal requirements for running Robotran are very
modest. The Java 1.6 JDK must be installed because it
calls the Java compiler as well as the JVM. We have
tested Robotran on a number of average Windows PCs as
well as a MacBookPro and a PC running Ubuntu Linux
and performance was more than adequate.

The most pressing, and perhaps most difficult, challenge is
to recast the simulator so it can work with Lejos NXJ and
to model an NXT LEGO Mindstorms robot. The code for
NXJ has been significantly restructured. Furthermore,
several sensors exist in the NXT that were either rarely
used with NXTs or not built in. Every NXT kit comes
with a sonar sensor, which would have to be modeled in
Robotran. This would not actually be too difficult because
the simulator could duplicate the logic of a bump sensor,
with the change in that a barrier or boundary does not need
to actually touch the bump sensor in order to activate it.
Even more significant are rotation sensors that are built

into the NXT’s motors. Though rotation sensors existed
for the RCX, they were externally attached to wheels and
used up valuable sensor ports. The NXT sensors are
accurate to 1 degree of rotation, in contrast to 6 degrees in
the older system. Because the NXT’s rotation sensors are
always present in the motors, they are more often used in
NXT projects and should be simulated.

Acknowledgements
Kevin Mastropaolo, a junior at Canisius College, took over
the project in September 2008 and finished several
significant features, including collision detection, light
sources and shapes on the floor for track following. He is
currently working on porting Robotran to NXJ.

References
Buss, C., Gilbert, A., Paisley, N. and Sillasen, J. 2005.
The Doane Roverbot Simulator. MICS 2005: Proceedings
of the Midwest Instruction and Computing Symposium,
Eau Claire, WI, April 2005.
Butler, J., and Brockman, J., 2001. A Web-based Learning
Tool that Simulates a Simple Computer Architecture,
SIGCSE Bulletin, Vol. 33, No. 2, 47-50, ACM Press.

Dodds, Z., Greenwald, L, Howard, A., Tejada, S., and
Weinberg, J. 2006. Components, curriculum, and
community: robots and robotics in undergraduate AI
education, AI Magazine, Vol. 27, No. 1, 11-22, AAAI
Press.

Meyer, R.M. and Burhans, D.T., 2007. Robotran: A
Programming Environment for Novices Using LEGO
Mindstorms Robots, Proceedings of the Twentieth International
Florida Artificial Intelligence Research Society Conference, 321-
326, AAAI Press.

Pattis, R.E., 1995. Karel The Robot: A Gentle Introduction
to the Art of Programming, 2nd Ed., New York: Wiley.

Roblitz, T., Buhn, O., and Mueller, F., 2002. LegoSim:
Simulation of Embedded Kernels over Pthreads, ACM
Journal on Educational Resources in Computing, Vol. 2,
No. 1, 117-130, ACM Press.

Tellez, R. and Angulo, C., 2007. Webots Simulator 5.1.7.
Cyberbotics Ltd., Artificial Life, Vo. 13, No. 3, 313-318,
MIT Press.

Vajta, L. and Juhasz, T., 2005. The Role of 3D Simulation
in the Advanced Robotic Design, Test and Control.
International Journal of Simulation Modelling, Vol. 4, No.
3, 101-156, DAAAM International.

Wolfe, D., Gossett, K., Hanlon, P.D., and Carver, C.A.,
2003. Active Learning Using Mechantronics in a
Freshman Information Technology Course, ASEE/IEEE
Frontiers in Education Conference, 24-28, IEEE Press.

159

