
RIFO Revisited: Detecting Relaxed Irrelevance

Jörg Hoffmann∗ and Bernhard Nebel
Institute for Computer Science

Albert Ludwigs University
Georges-Köhler-Allee, Geb. 52

79110 Freiburg, Germany
{hoffmann, nebel}@informatik.uni-freiburg.de

Abstract

RIFO, as has been proposed by Nebel et al. (Nebel, Di-
mopoulos, and Koehler 1997), is a method that can auto-
matically detect irrelevant information in planning tasks. The
idea is to remove such irrelevant information as a pre-process
to planning. While RIFO has been shown to be useful in a
number of domains, its main disadvantage is that it is not
completeness preserving. Furthermore, the pre-process of-
ten takes more running time than nowadays state-of-the-art
planners, like FF, need for solving the entire planning task.
We introduce the notion of relaxed irrelevance, concerning
actions which are never needed within the relaxation that
heuristic planners like FF and HSP use for computing their
heuristic values. The idea is to speed up the heuristic func-
tions by reducing the action sets considered within the relax-
ation. Starting from a sufficient condition for relaxed irrele-
vance, we introduce two preprocessing methods for filtering
action sets. The first preprocessing method is proven to be
completeness-preserving, and is empirically shown to termi-
nate fast on most of our testing examples. The second method
is fast on all our testing examples, and is empirically safe.
Both methods have drastic pruning impacts in some domains,
speeding up FF’s heuristic function, and in effect the planning
process.

Introduction
RIFO, as has been proposed by Nebel et al. (Nebel, Di-
mopoulos, and Koehler 1997), is a method that can auto-
matically detect irrelevant information in planning tasks. A
piece of information can be considered irrelevant if it is not
necessary for generating a solution plan. The idea is to
remove such irrelevant information as a pre-process in the
hope to speed up the planning process. While RIFO has
been shown to be useful for speeding up GRAPHPLAN in a
number of domains, it does not guarantee that the removed
information is really irrelevant. In effect, RIFO is not com-
pleteness preserving. Furthermore, the pre-process itself can
take a lot of running time. While RIFO can be proven to ter-
minate in polynomial time, it—or at least its implementation
within IPP4.0 (Koehler et al. 1997)—is on a lot of planning

∗Current address: Saarland University, Saarbrücken, Germany,
hoffmann@cs.uni-saarland.de
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tasks not competitive with nowadays state-of-the-art plan-
ners. In our experiments on a large range of tasks from dif-
ferent domains, we found that in most examples RIFO needs
more running time to finish the pre-process than FF needs
for solving the entire task.

In this paper, we present a new approach towards defining
and detecting irrelevance. We explore the idea of relaxed ir-
relevance, which concerns pieces of information, precisely
STRIPS actions, that are not needed within the relaxation
that state-of-the-art heuristic planners like FF (Hoffmann
and Nebel 2001a) and HSP (Bonet and Geffner 2001) use for
computing their heuristic values. Those planners evaluate
each search state S by estimating the solution length from S
under the relaxation that all delete lists are ignored (this idea
has first been proposed by Bonet et al. (Bonet, Loerincs,
and Geffner 1997)). The main bottleneck in FF and HSP is
the heuristic evaluation of states, so it is worthwhile trying
to improve on the speed of such evaluations. Our idea is to
speed up the heuristic functions by reducing the action sets
considered within the relaxation. Actions that are relaxed
irrelevant need never be considered. We define the notion of
legal generation paths, and prove that an action is relaxed ir-
relevant if it does not start such a path. Deciding about legal
generation paths is still NP-hard, so we introduce two ap-
proximation techniques. Both can be used as preprocessing
methods for filtering the action set to be considered within
the relaxation. The first preprocessing method includes all
actions that start a legal generation path, and can therefore
safely be applied to the relaxation. The pre-process termi-
nates fast on most of our testing examples in the sense that
it is orders of magnitude faster than FF. The second approxi-
mation method is fast on all our testing examples, and while
it is not provably completeness preserving, it is empirically
safe: from a large testing suite, no single example task got
unsolvable because of the filtering process.

We introduce our theoretical investigations and algorith-
mic techniques within the STRIPS framework, and sum-
marize how they are extended to deal with conditional ef-
fects. Both action filtering methods can in principle be
used as a pre-process to either FF or HSP—or rather as a
pre-process to any planner that uses the same relaxation—
and both methods have drastic pruning impacts in some do-
mains. We have implemented the methods as a pre-process
to FF, and show that they significantly speed up FF’s heuris-

127

Proceedings of the Sixth European Conference on Planning

tic function, and in effect the plan generation process, in
those cases where the pruning impact is high.

The next section gives the necessary background in terms
of STRIPS notations and heuristic forward state space plan-
ning as done by FF and HSP. Section defines and investi-
gates our notions of relaxed irrelevance and legal generation
paths.1 Section explains two ways of approximating legal
generation paths, yielding the above described two action
filtering methods. Section summarizes how our analysis is
extended to ADL domains, and Section describes the ex-
periments we made for evaluating the approach. Section
explains two lines of work that we are currently exploring.
Section concludes.

Background
We introduce our theoretical observations and our algo-
rithms in a propositional STRIPS (Fikes and Nilsson 1971)
framework.

Definition 1 A state S is a finite set of logical atoms. An
action o is a triple o = (pre(o), add(o), del(o)) where pre(o)
are the preconditions, add(o) is the add list, and del(o) is the
delete list, each being a set of atoms. The result of applying
a single action to a state is:

Result(S, 〈o〉) =

{
(S ∪ add(o)) \ del(o) pre(o) ⊆ S
undefined otherwise

The result of applying a sequence of more than one action to
a state is recursively defined as Result(S, 〈o1, . . . , on〉) =
Result(Result(S, 〈1, . . . , on−1〉), 〈on〉). A planning task
P = (O, I,G) is a triple where O is the set of actions, and
I (the initial state) and G (the goals) are sets of atoms.

Plans are simple sequences of actions throughout the pa-
per, i.e., we do not consider parallelism. FF and HSP do,
in their current versions, not allow for any concurrency be-
tween action applications.

Definition 2 Given a planning task P = (O, I,G). A plan
or solution is a sequence P = 〈o1, . . . , on〉 of actions in O
that solves the task, i.e., for which G ⊆ Result(I, P) holds.

A plan P = 〈o1, . . . , on〉 is called minimal, if no single
action can be left out of the sequence without loosing the
solution property, i.e., if 〈o1, . . . , oi−1, oi+1, . . . , on〉 is not
a solution for any oi. The length of a plan is the number of
actions in the sequence. A plan for a task P is optimal if it
has minimal length among all plans for P . Obviously, opti-
mal plans are minimal. We will need those notations when
deriving our sufficient condition for relaxed irrelevance.

FF is based on the general principle of heuristic forward
state space search, as has first been implemented in HSP1.0
(Bonet and Geffner 1998). The idea is to search in the space
of states that are reachable from the initial state, trying to
minimise a heuristic value that is computed to each consid-
ered state. The heuristic evaluation in both FF and HSP is
based on the following relaxation.

1We only scetch our proofs. The complete proofs can be found
in a longer version of the paper, available as a technical report
(Hoffmann and Nebel 2001b).

Definition 3 Given a planning task P = (O, I,G). The
relaxation P ′ of P is defined as P ′ = (O′, I,G), with

O′ = {(pre(o), add(o), ∅) | (pre(o), add(o), del(o)) ∈ O}
In words, a planning task is relaxed by ignoring all delete

lists. When either FF or HSP face a search state S, they esti-
mate the length of a relaxed solution starting in S, i.e., they
estimate the solution length of the task (O′, S,G). In HSP,
this is done by computing certain weight values for all facts,
where the weight of a fact is an estimate of how difficult
it is to achieve that fact from S. Computing these weight
values involves a fixpoint computation that iteratively ap-
plies all actions until no more changes occur (Bonet, Lo-
erincs, and Geffner 1997). In FF, the solution length to
(O′, S,G) is estimated by extracting an explicit solution
in a GRAPHPLAN-style manner (Blum and Furst 1997;
Hoffmann and Nebel 2001a). The technique is based on
building a relaxed version of GRAPHPLAN’s planning
graph, which involves, like HSP’s method, repeated appli-
cation of all actions.

The main bottleneck in HSP, i.e., the main source of run-
ning time consumed, is the heuristic evaluation of states
(Bonet and Geffner 1999). The same applies to FF. While
heuristic evaluation is implemented efficiently in both sys-
tems, usually no more than a few hundred state evaluations
can take place in a second (for FF, Section provides aver-
aged running times per state evaluation on a large range of
domains). In some huge planning tasks, we have observed
that a single evaluation in FF can take up to half a second
running time. This is due to the large number of actions that
there are in instantiated planning tasks. With ten-thousands
of actions to be considered, FF’s process of building a re-
laxed planning graph, and HSP’s process of computing a
weight fixpoint, must be costly no matter how efficient the
implementation is. Our idea, consequently, is to reduce the
number of actions that the planners need to consider within
the relaxation, i.e., to compute as a pre-process a set O|r of
actions that are considered relevant for the relaxation. Dur-
ing search, one can then estimate solution lengths to the
tasks (O|′r, S,G) as opposed to using the whole action set
in the tasks (O′, S,G).

Of course, the setO|r can not be chosen arbitrarily small.
If important actions are missed out, then the task (O|′r, S,G)
can become unsolvable for a state S though it would be solv-
able with the original action set. In other words, one runs the
risk of loosing relaxed completeness. If the task (O|′r, S,G)
is unsolvable, which both HSP’s and FF’s algorithmic meth-
ods will detect, then the systems set the heuristic value of S
to∞, excluding the state from the search space. While this
is normally justified—if a state can not be solved even when
ignoring delete lists, then that state is unsolvable—it can
lead to incompleteness if solving (O|′r, S,G) only failed be-
cause O|r does not contain some important action(s).2 The

2One might argue that this could be fixed by setting the heuris-
tic value of S to a large integer instead of∞. While this would re-
gain completeness, it would also make the adequacy of the heuristic
questionable: If a large number of states have the same high heuris-
tic evaluation only becauseO|r is too restrictive, then the heuristic
is not very informative about the real structure of the search space.

128

rest of the paper is inspired by the observation that it is pos-
sible to define a notion of relevance that maintains relaxed
completeness.

Relaxed Irrelevance
We consider an action relaxed irrelevant if it never appears
in an optimal relaxed solution. Clearly, such actions can be
ignored within the relaxation without loosing completeness.

Definition 4 Let (O, I,G) be a planning task. An action
o ∈ O is relaxed irrelevant if o is not part of any optimal
relaxed solution from any reachable state.

One might be tempted to consider an action irrelevant al-
ready when to all reachable states there is at least one op-
timal relaxed solution without that action. While this is ad-
equate for a single action, it would not allow us to remove
more than one action: Consider the case where two actions
can be used alternatively for solving a state. Each single one
can be replaced by the other one, but removing both renders
the state unsolvable. This can not happen with the above
definition of relaxed irrelevance, where both actions must be
entirely useless for being removed. Deciding about relaxed
irrelevance is PSPACE-hard.

Definition 5 Let RELAXED-IRRELEVANCE denote the fol-
lowing problem:

Given a planning task (O, I,G) and an action o ∈ O, is o
relaxed irrelevant?

Theorem 1 Deciding RELAXED-IRRELEVANCE is
PSPACE-hard.

Proof Sketch: By a polynomial reduction from PLANSAT,
the decision problem of whether there exists a solution plan
for a given arbitrary STRIPS planning task (Bylander 1994):
First rename all atoms in the original task. Then put origi-
nal o into the renamed action set, plus two artificial actions:
one requiring the renamed goal to be solved, deleting all re-
named atoms, and adding o’s precondition, the other needing
o’s adds, and achieving the renamed goal. o is needed for an
optimal relaxed solution in the modified task if and only if
the original task is solvable.

A Sufficient Condition
As an exact decision about relaxed irrelevance is as hard as
planning itself, we now derive a sufficient condition. The
following definition forms the heart of our investigation.

Definition 6 Let P = (O, I,G) be a planning task. The
generation graph to the task is defined by the node set O ∪
{oG}, with oG := (G, ∅, ∅), and the edge set

{(o, o′) | add(o) ∩ pre(o′) 6= ∅}
We refer to paths P = 〈o1, . . . , on = oG〉 in this graph as
generation paths. We call add(oi) ∩ pre(oi+1) the connect-
ing facts at position i. P is legal if at each position there is
at least one connecting fact that is not contained in the pre-
conditions of the previous actions, i.e., if for 1 ≤ i ≤ n− 1:

(add(oi) ∩ pre(oi+1)) \
⋃

1≤j≤i

pre(oj) 6= ∅

The generation graph to a task intuitively represents all
ways in which facts can be achieved. A generation path is a
sequence of actions that support each other, and that end up
making at least one goal true. We will see in the following
that the only generation paths that are adequate in minimal
relaxed solutions are those generation paths that are legal.
Precisely, we will show the following.

Theorem 2 Let (O, I,G) be a planning task, S a state, and
P = 〈o1, . . . , on〉 a minimal relaxed solution to S. Then for
all oi there exists a legal generation path Pi starting with oi.

With that, we immediately have our sufficient condition.

Corollary 1 Let (O, I,G) be a planning task, o ∈ O. If
there is no legal generation path P starting with o, then o is
not part of any minimal relaxed solution from any state. In
particular, o is then relaxed irrelevant.

Semantically, Definition 6 can be seen as a modification
of the base technique that is used in RIFO. The relation be-
tween the techniques gives a nice picture of what is hap-
pening. Briefly, it can be explained as follows. To create
an expectation of what is relevant for solving a planning
task, RIFO builds a so-called fact-generation tree. This is an
AND- OR-tree that is built by backchaining from the goals.
The root node is an AND-node corresponding to the goals.
Other AND-nodes correspond to an action’s preconditions,
and the OR-nodes are single atoms that can alternatively be
achieved by different actions. Once this tree is generated,
RIFO applies a number of simple heuristics to select the in-
formation from the tree that is likely most relevant. Now,
the set of all legal generation paths can be viewed as a more
restrictive version of RIFO’s fact-generation tree, where an
action is only allowed to achieve an OR-node if the intersec-
tion of the action’s precondition with the facts on the path
from the OR-node to the tree root is empty. This is adequate
(only) for relaxed planning. While RIFO selects fractions
of its tree as relevant, we select the whole tree. This gives
us completeness in the relaxation. The proof to Theorem 2
proceeds using what we call the needed facts, which are the
facts for whose achievement actions can be placed at a cer-
tain position in a relaxed solution.

Definition 7 Let (O, I,G) be a planning task, S a state, and
P = 〈o1, . . . , on〉 a relaxed solution to S. The open facts
OF (P, i) of P at position i are

OF (P, i) := (G \
⋃

i<j≤n

add(oj))∪

⋃
i<j≤n

(pre(oj) \
⋃

i<k<j

add(ok)),

and the needed facts NF (P, i) of P at position i are

NF (P, i) := OF (P, i) \ (S ∪
⋃

1≤j<i

add(oj))

An action placed at position i in a relaxed plan P must add
all needed facts of P at position i, and in a minimal relaxed
plan there is at least one needed fact at each position.

129

Lemma 1 Let (O, I,G) be a planning task, S a state, and
P = 〈o1, . . . , on〉 a relaxed solution to S. Then add(oi) ⊇
NF (P, i) holds for 1 ≤ i ≤ n.

Proof Sketch: If an action does not add a needed fact, then
P is no relaxed solution, because either some precondition
ahead or some goal remains unachieved.

Lemma 2 Let (O, I,G) be a planning task, S a state, and
P = 〈o1, . . . , on〉 a minimal relaxed solution to S. Then
NF (P, i) 6= ∅ holds for 1 ≤ i ≤ n.

Proof Sketch: If there is no needed fact at position i, then
P without oi is still a relaxed solution—all facts that must
be achieved are true without applying oi.

Using the above two lemmata, Theorem 2 can be proven,
stating that to all actions oi in a minimal relaxed solution
P = 〈o1, . . . , on〉 there is a legal generation path Pi starting
with oi.

Proof Sketch: (to Theorem 2) The desired paths Pi can be
constructed by starting with oi, successively stepping onto a
successor action that has a needed fact as precondition, and
stopping when a goal fact is needed. With Lemma 2, there
is always at least one needed fact, and with Lemma 1, those
facts are added. The resulting action sequence is obviously a
generation path, and it is legal because facts are not yet true
at the position where they are needed.

Unfortunately, deciding about the sufficient condition
given by Corollary 1 is still NP-hard.

Definition 8 Let LEGAL-GENERATION-PATH denote the
following problem:

Given a planning task (O, I,G) and an action o ∈ O, is
there a legal generation path starting with o?

Theorem 3 Deciding LEGAL-GENERATION-PATH is NP-
complete.

Proof Sketch: Membership follows by a simple guess-and-
check argument. Hardness can be proven by a polynomial
reduction from 3SAT. Introduce one action for each literal
in the clauses, and one action for each variable. Addition-
ally, introduce a starting action s. The preconditions and add
lists can be arranged such that the following holds: Firstly, a
generation path starting with s must visit all clauses at least
once, and afterwards pass through all variables. Secondly,
passing a variable legally requires that the path has not vis-
ited the respective variable and its negation. A legal genera-
tion path starting in s thus defines a satisfying truth assign-
ment via the literals visited in the clauses, and vice versa.

Approximation Techniques
We will now introduce two polynomial-time approximations
of legal generation paths, filtering action sets for relaxed
planning. The first method includes all actions that start a
legal path, and is therefore complete in the relaxation. As
we will see in the next section, the method terminates fast in

almost all of our testing examples. The second method does
not give any completeness guarantees, but will be shown to
be empirically safe, and to terminate extremely fast on all
examples in our testing suite.

A Sufficient Approximation
Let us first introduce a notation for the set of all actions that
start a legal generation path. With Corollary 1, we can re-
strict the actions considered by an FF or HSP style heuristic
function to that set without loosing completeness.

Definition 9 Let P = (O, I,G) be a planning task. The
legal action set to P is O|l := {o ∈ O | ∃ P ∈ O∗ :
〈o〉 ◦ P is a legal generation path }.

Our sufficient approximation collects together all actions
starting generation paths that fulfill a weaker notion of legal-
ity. Reconsider Definition 6.

Definition 10 Let P = (O, I,G) be a planning task. A gen-
eration path P = 〈o1, . . . , on〉 is initially legal if (add(oi)∩
pre(oi+1)) \ pre(o1) 6= ∅ for 1 ≤ i ≤ n− 1. The initially le-
gal action setO|il toP is defined using the following fixpoint
operator Γ : 2O 7→ 2O.

Γ(O|r) := {o ∈ O | ∃ P ∈ O|∗r :
〈o〉 ◦ P is an initially legal generation path}

We set O|il :=
⋃∞

i=0 Γi(∅).

In words, we obtain the initially legal action set by com-
puting a fixpoint over the actions that start an initially legal
generation path. A generation path is initially legal when
between any two actions there is a connecting fact that is
not contained in the precondition of the first action. Clearly,
legal generation paths—where there are connecting facts
that are not contained in the precondition of any previous
action—fulfill this property.

Proposition 1 Let P = (O, I,G) be a planning task. The
initially legal action set is a superset of the legal action set,
i.e., O|il ⊇ O|l holds.

The definition of O|il translates directly into the fixpoint
computation depicted in Figure 1. Our implementation is
straightforward. In each iteration of the fixpoint process,
check for all not yet selected actions o whether there is a
path to the goals, using only edges that are not excluded by
o’s preconditions.

We have also implemented two other sufficient approx-
imations of O|l. One of those weakens O|il by dropping
the condition that the action sequences P must consist of
O|il members. The other method strengthens O|il by incre-
mentally building a graph of edges that start already selected
paths. The required action sequences P must then traverse
only edges that are in the graph already. In our experiments,
both methods showed significantly worse runtime behaviour
than the above O|il computation. The filtered action sets
were, however, the same for all three methods in most of
the cases. We therefore chose to concentrate on O|il as a
sufficient approximation.

130

O|il := ∅
repeat

Fixpoint := TRUE
for o ∈ O \ O|il do

if there is an initially legal path from o to oG
consisting out of actions in O|il then

O|il := O|il ∪ {o}
Fixpoint := FALSE

endif
endfor

until Fixpoint

Figure 1: Fixpoint computation of actions starting initially
legal generation paths: A sufficient approximation of legal
generation paths.

An Insufficient but Fast Approximation
The approximation that we introduce now does not theoret-
ically include all actions from O|l. The method is therefore
not completeness-preserving in general. It has, however,
proven to be empirically safe in our experiments. Moreover,
the method terminated extremely fast in all our testing ex-
amples. Like the computation of initially legal paths, the
method performs a fixpoint computation. Unlike the for-
mer computation, the method allows only edges (o, o′) in
the paths that are legal with respect to o. What’s more, each
action o is associated with at most one single edge that can
be traversed from o. We call the resulting action set the set of
approximative legal actions O|al. Have a look at the pseudo
code in Figure 2.

O|al := {oG}, e := ∅, k := 0
repeat

Fixpoint := TRUE
for o ∈ O \ O|al do

if there is an edge (o, o′), o′ ∈ O|al such that
the path 〈o, e0(o′), e1(o′), . . . , ek(o′) = oG〉
is initially legal then

O|al := O|al ∪ {o}
e := e ∪ {(o, o′)}
Fixpoint := FALSE

endif
endfor
k := k + 1

until Fixpoint

Figure 2: Fixpoint computation of actions starting approx-
imative legal generation paths: An insufficient but fast ap-
proximation of legal generation paths.

The algorithm depicted in Figure 2 iteratively includes
new actions into O|al until a fixpoint is reached. The key
feature of the algorithm is the function e : O 7→ O, which is
represented in the figure as a set of (o, e(o)) pairs. The func-
tion starts as the empty set of such pairs, i.e., e is initially
undefined for the whole action set. If an action o is included
into O|al due to an edge (o, o′), then that edge is included
into the definition of e. Initially, the only member of O|al is
oG, so in iteration k = 0 the only edges that can be included

are direct connections to the goals. In any later iteration k, e
defines a tree of depth k where the root node is oG, and each
node—the actions for which e is defined—occurs exactly
once. For the not yet selected actions o it is then checked
whether they have an edge connecting them to a tree node o′
such that the path 〈o, e0(o′), e1(o′), . . . , ek(o′) = oG〉 is ini-
tially legal. Note here that 〈o, e0(o′), e1(o′), . . . , ek(o′)〉 is
just the concatenation of the edge (o, o′) with the path from
o′ to the tree root. If that path is initially legal, then o and the
edge (o, o′) are included into the tree.3 While allowing only
a single edge for each node may sound way to restrictive,
the method turned out to be, as said, surprisingly safe in our
testing examples.

Extension to Conditional Effects
We have extended our theoretical analysis and approxima-
tion algorithms to deal with conditional effects. Because
FF compiles away all ADL constructs except the conditional
effects (Koehler and Hoffmann 2000; Hoffmann and Nebel
2001a), this enabled us to deal with planning domains spec-
ified in the ADL language (Pednault 1989), precisely in the
respective sublanguage of PDDL as was used in the AIPS-
2000 competition (Bacchus 2000). In the following, we
summarise the extensions made to the definitions, proofs,
and algorithms introduced in Sections and .

A propositional action with conditional effects is a con-
struct o = (pre(o),Φ(o)) where Φ(o) are the effects of
o. Each single effect φ ∈ Φ(o) has the form φ =
(con, add, del) where con are the effect conditions. A
STRIPS action in this framework has a singleton set
of effects, the effect condition being empty, i.e., o =
(pre(o), {(∅, add(o), del(o))}).

We say that an effect φ of an action oi in a relaxed solution
P = 〈o1, . . . , on〉 can be ignored in P , if P without φ is still
a relaxed solution, i.e., if

〈o1, . . . , oi−1, (pre(oi),Φ(oi) \ φ), oi+1, . . . , on〉

is a relaxed solution. Recall Definition 4. We call an effect φ
relaxed irrelevant if it can be ignored in all optimal relaxed
solutions from all reachable states. The parallelity to the pre-
vious definition is that if the single effect of a STRIPS action
can always be ignored, then the whole action can always be
thrown out, such that the action is never part of an optimal
relaxed solution. As STRIPS is a special case of conditional
effects, deciding about the extended notion of relaxed irrel-
evance is of course also PSPACE-hard.

We extend our investigation of legal generation paths
by looking at the set of all effects in a task as a set of
STRIPS actions: for an action setO with conditional effects,
look at the set STRIPS(O) := {(pre(o) ∪ con, add, del) |
(con, add, del) ∈ Φ(o) for some o ∈ O}. The key obser-
vation paralellizing Theorem 2 is the following. If an ef-
fect can not be ignored in a minimal relaxed solution from
some state, then the effect starts a legal generation path in
STRIPS(O). This can be proven by a natural extension of
the needed facts notion. Such facts must be made TRUE by

3For optimisation, one obviously only needs to look at actions
o′ that are leafs of the current tree.

131

an action. In a minimal solution, there is at least one such
fact at each position. If an action does no longer achieve the
respective needed facts when its effect φ is ignored, then φ
adds at least one needed fact. This fact is either a goal or the
pre- or effect-condition of an important effect φ′ ahead. A
legal generation path in STRIPS(O) can be created by stop-
ping when a goal is reached, and moving on to φ′ in the other
case.

The parallel statement to Corollary 1 is, obviously, if an
effect does not start a legal generation path in STRIPS(O),
then the effect can be ignored in all minimal relaxed solu-
tions, which in particular means that the effect is relaxed
irrelevant. Extending the filtering methods from Section
comes down to implementing them on the set STRIPS(O).
If an effect does not start an initially or approximative legal
generation path in STRIPS(O), then the effect is removed
from the respective action in the sense that the effect is not
considered within the relaxation. If all effects of an action
are removed, then the whole action is ignored. Remember
that STRIPS actions have singleton effect sets, so in that
special case the more general techniques simplify exactly
to what we described in the previous sections.

Empirical Evaluation
We evaluated our approach by running a number of large
scale experiments. We used 20 benchmark planning do-
mains, including all examples from the AIPS-1998 and
AIPS-2000 competitions. The domains were Assembly,
two Blocksworlds (three- and four-operator representation),
Briefcaseworld, Bulldozer, Freecell, Fridge, Grid, Grip-
per, Hanoi, Logistics, Miconic-ADL, Miconic-SIMPLE,
Miconic-STRIPS, Movie, Mprime, Mystery, Schedule,
Tireworld, and Tsp. In each of these domains, we generated
instances by using randomised generation software.4 We ran
experiments for evaluating

1. RIFO’s runtime behaviour when compared to FF,

2. the runtime behaviour and pruning impact of O|il and
O|al,

3. and the empirical safety of O|al.
For each single experiment, we set up a large testing suite
containing up to 200 instances from each domain. The test-
ing suites differed in terms of the size of the instances that
we generated.

In the first experiment, we ran the RIFO implementation
within IPP4.0 versus FF on a suite of 681 instances that
were small enough for the IPP4.0 instantiation routine to
cope with.5 Test runs were given 300 seconds time and 400
M Bytes memory on a Sun machine running at 163 MHz.

4Descriptions of the randomisation strategies and
the source code of all generators are publicly available
at http://www.informatik.uni-freiburg.de/˜ hoffmann/ff-
domains.html.

5In some domains, like Freecell, the routine can handle only
comparatively small instances which is, we think, due to the imple-
mentation: this is intended to deal with full scale ADL constructs
(Koehler and Hoffmann 2000), and fails to efficiently handle the
simple STRIPS special case.

We show the number of instances handled successfully, and
the average running time per domain. For FF, we count as
successfully handled those instances were a plan was found.
For RIFO, success on an instance means termination of the
pre-process within the given time and memory bounds. We
count only those such instances for which we know they are
solvable—those were FF found a plan. Times are averaged
over those instances that both implementations handled suc-
cessfully. Running time for RIFO does not include IPP’s
instantiation time. See the data in Table 3.

success running time
domain RIFO FF RIFO FF

Assembly 33 33 1.08 9.16
Blocksworld-3ops 21 21 4.45 2.90
Blocksworld-4ops 21 21 0.91 0.07
Briefcaseworld 20 20 1.86 1.12
Bulldozer 17 17 1.97 4.54
Freecell 33 50 21.90 0.06
Fridge 22 22 0.23 0.22
Grid 22 35 43.77 7.72
Gripper 25 25 0.45 0.31
Hanoi 8 8 0.34 4.79
Logistics 35 35 46.80 1.18
Miconic-ADL 22 40 14.03 3.77
Miconic-SIMPLE 25 25 0.64 0.54
Miconic-STRIPS 25 25 0.64 0.37
Movie 30 30 0.00 0.00
Mprime 48 61 16.47 1.19
Mystery 23 36 27.16 12.51
Schedule 15 28 28.34 14.06
Tireworld 20 20 6.03 0.48
Tsp 25 25 4.90 0.12

Figure 3: Instances handled successfully, and average run-
ning times for RIFO and FF per domain. The successfully
handled instances for FF are those for which a plan was
found. The successfully handled instances for RIFO are
those solvable ones where RIFO terminated within the given
time and memory bounds.

In 3 of the 20 domains shown (Assembly, Bulldozer and
Hanoi) does RIFO terminate faster than FF solves the tasks.
In 10 domains, RIFO’s average running time is orders of
magnitude higher than that of FF. In some domains, RIFO
exhausts resources on a number of instances that FF man-
ages to solve. We conclude that RIFO is, as a pre-process,
not competitive with FF, at least in its implementation within
IPP4.0.

In our second experiment, we evaluated theO|il andO|al
methods in terms of runtime behaviour and pruning impact.
Test runs were given 300 seconds and 200 M Bytes memory
on a Sun machine running at 300 MHz. We used a total of
2334 large instances generated to be of a size challenging for
FF, but still within its range of solvability within the given
resources. On each task, we ran three implementations: FF-
v2.2 (Hoffmann and Nebel 2001a), and two versions of the
same code were O|il respectively O|al were computed as a
pre-process. In the latter two versions, FF’s heuristic func-
tion was changed to consider only those effects contained in

132

the filtered action set. We measured the overhead produced
by the filtering methods, the total running times, the time
taken for state evaluations, and the number of effects in the
complete respectively filtered action sets. See the data in
Table 4.

All measured values were averaged over those instances
were all three methods succeeded in finding a plan (we tried
inserting default values in the other cases, but found that this
generally obfuscated the results more than it helped under-
standing them). In 12 domains, the solved instances were
exactly the same across all methods anyway. In another 3
domains, differences occured only in very few instances (1
- 2 out of 90 - 181). In Grid and Mprime, computing O|il
sometimes exhausted resources (in Grid, 41 of 179 cases,
in Mprime, 51 of 196 cases). In Assembly and Logistics,
the speed-up produced by the filtering methods helped FF
to solve some more instances (165 instead of 159 in Assem-
bly, 87 instead of 75 in Logistics). In Schedule, original FF
solved 85 instances instead of 74 solved with O|il or O|al
on. We will come back to the Schedule domain later.

Let us first focus on the overheads produced. Compare
the first two columns with the third column, showing aver-
age solving time for FF. The overhead forO|il is neglectible
(i.e., below 0.2 seconds on average) in 11 of our domains,
and orders of magnitude smaller than FF’s average time in
another 4 domains. In the 3-operator Blocksworld, the over-
head is a third of FF ’s time, and below a second anyway.
In the remaining four domains, the pre-process can hurt: In
Freecell and Mystery, it takes almost as much time as FF,
and in Grid and Mprime it can take much longer time (we
will later describe an approach to automatic recognition of
the cases were the pre-process takes a lot of time). The over-
head for O|al is neglectible in 14 of the domains, and still a
lot smaller than FF’s running time in the other cases.

Concerning the impact that the filtering methods have on
the number of effects in the action set, the speed of the
heuristic function, and the total running time, it is easiest
to start by looking at the rightmost three columns in Table 4.
The methods do not prune any effects in 6 of our domains,
and prune very few effects in another 7 domains. Mod-
erately many effects are pruned in the Assembly, Gripper
and Miconic-ADL domains. In the Briefcaseworld, Logis-
tics, Schedule and Tireworld domains, the pruning is dras-
tic.6 As a consequence, the average time taken for a single
state evaluation (total evaluation time divided by number of
evaluated states) is, when using the filtering methods, sig-
nificantly lower in the four domains with drastic pruning,
and slightly lower in the three domains with moderate prun-
ing. Look at the respective columns, specifying the average
state evaluation time in milliseconds. In Briefcaseworld, Lo-
gistics and Tireworld, the faster heuristic functions translate
directly into improved total running time. In Schedule, there
seems to be some interaction between the filtering methods
and FF’s internal algorithmic techniques: though the heuris-

6In the Briefcaseworld, for example, amongst other things all
actions are thrown out that take objects out of the briefcase—taking
objects out of the briefcase is not necessary within the relaxation,
where keeping them inside never hurts.

tic function is faster, total running time gets worse. This
is because FF evaluates, with the filtered action sets, more
states before finding the goal. An explanation for this might
be FF’s helpful actions heuristic, which biases the actions
selected to those that could also be selected by the heuristic
function (Hoffmann and Nebel 2001a). For O|al, it might
also be that some states become unsolvable—though we did
not find such a case in the experiment described below.

We finally consider the safety of theO|al filtering method
with respect to completeness in the relaxation. The method
is empirically safe in the sense that, from the 2334 exam-
ples used in the above described experiment, only 11 Sched-
ule instances could not be solved with the method on though
they could be solved with original FF. The failures were only
due to the runtime restrictions we applied in the experiment:
given slightly more time, FF with O|al filtering could solve
those 11 instances. In addition to this result, we ran the fol-
lowing experiment. We generated a total of 2099 instances
from our 20 domains, small enough to build an explicit rep-
resentation of the state space. To each instance, we looked at
all reachable states, and verified whether the goal was reach-
able when ignoring delete lists, using the whole action setO,
or the filtered action set O|al. In 19 of our 20 domains, all
states solvable with O were still solvable with O|al. Only
in Grid did we find states that became unsolvable. This oc-
cured in 19 of 100 instances. In all those instances, the states
becoming unsolvable were less than 1% of the state space.

Current Work
Our current results reveal two drawbacks of the presented
approach:

1. O|il filtering sometimes hurts in the sense that it can take
a lot of running time.

2. While O|il is provably and O|al empirically safe, both
methods have strong pruning impacts only in a few do-
mains.

We address these difficulties in two lines of work that we
are currently pursuing. One idea to avoid the first problem is
estimate the runtime that would be necessary for computing
O|il. One can then skip the pre-process if it appears to be
too costly. O|il is computed by the repeated search for legal
generation paths, which is more costly the more edges there
are in the generation graph. An upper approximation to the
number of edges is:∑

f∈F

|{o ∈ O | f ∈ add(o)}| ∗ |{o ∈ O | f ∈ pre(o)}|

Here, F denotes the set of all logical atoms that appear in
the actions O. If |pre(o) ∩ add(o′)| ≤ 1 for all o, o′ ∈ O,
then the approximation is exact. We have computed, for the
2334 large instances from the second experiment described
in the previous section, the above upper limit, as well as the
real number of edges in the generation graph. In 8 domains,
the values are the same across all instances. In the remaining
domains, the values are close. There seems to be a close cor-
respondence to the running time consumed by theO|il com-
putation: the averaged approximation values are between 3

133

overhead total time single evaluation number of effects
domain O|il O|al FF +O|il +O|al FF +O|il +O|al O O|il O|al

Assembly 0.01 0.00 12.83 12.01 11.53 1.75 1.64 1.57 426.72 358.64 358.64
Blocksworld-3ops 0.59 0.08 1.62 2.24 1.61 3.41 3.47 3.21 1854.62 1854.62 1819.09
Blocksworld-4ops 0.04 0.00 1.04 1.08 0.99 0.76 0.76 0.72 290.06 290.06 286.94
Briefcaseworld 0.04 0.01 5.51 1.10 1.01 4.26 0.82 0.77 4106.50 670.00 670.00
Bulldozer 0.02 0.01 6.89 7.00 6.67 1.27 1.29 1.23 599.22 599.22 599.17
Freecell 11.14 0.53 17.47 28.77 17.33 8.19 8.26 7.87 4725.37 4668.17 4668.17
Fridge 0.00 0.00 1.71 1.72 1.70 0.96 0.97 0.95 302.22 302.22 302.22
Grid 76.12 0.54 11.57 87.90 11.93 7.95 8.09 7.89 6424.35 6424.35 6417.28
Gripper 0.03 0.01 0.33 0.36 0.27 1.38 1.39 1.11 478.00 478.00 359.00
Hanoi 0.00 0.00 4.73 4.80 4.58 0.83 0.84 0.80 244.50 244.50 244.50
Logistics 2.24 0.22 83.57 45.51 43.52 37.45 19.39 19.40 19904.53 15347.80 15347.80
Miconic-ADL 1.09 0.29 13.91 13.48 12.23 12.72 11.33 10.92 2988.20 2700.52 2700.52
Miconic-SIMPLE 0.17 0.02 0.52 0.69 0.51 2.14 2.15 2.04 1504.00 1504.00 1504.00
Miconic-STRIPS 0.16 0.02 0.39 0.55 0.38 1.92 1.94 1.82 1504.00 1504.00 1504.00
Movie 0.00 0.00 0.00 0.00 0.00 0.33 0.23 0.17 7.00 7.00 7.00
Mprime 60.20 0.79 5.40 65.66 6.13 16.38 16.54 16.18 12138.00 12136.97 12136.32
Mystery 12.87 1.05 20.11 33.26 21.14 15.59 15.80 15.57 14644.20 14644.20 14641.38
Schedule 0.48 0.01 52.31 55.56 54.52 10.86 7.07 6.99 3049.84 917.43 916.82
Tireworld 1.34 0.08 23.23 13.27 7.07 19.31 9.92 5.81 7105.50 4479.00 3646.00
Tsp 0.01 0.09 0.13 0.14 0.22 2.09 2.11 2.13 4390.00 4390.00 4390.00

Figure 4: Average overhead for pre-processing, average total running time, average running time per state evaluation, and
average number of effects, shown per planning domain and filtering method used. Times are in seconds except for state
evaluations, where milliseconds are specified.

and 11 millions in those four domains were O|il takes a lot
of computation time, and below one million in all other do-
mains. It remains to establish an exact criterion that uses this
correspondence for deciding about whether to compute O|il
or not.

Addressing the second problem, lack of strong pruning
impacts in many domains, appears to us to be a much harder
task. If one wants to obtain stronger pruning impacts, there
does not seem to be a way around sacrificing empirical,
let alone theoretical safety. We are currently experiment-
ing with combining our techniques and RIFO’s information
selection heuristics. We have implemented some first strate-
gies. As expected, the pruning impact became more drastic
in some examples. However—as we also expected—a lot of
states became unsolvable for the heuristic. Often all paths
to the goal were interrupted by such a state, rendering the
whole planning task unsolvable for FF.

Conclusion and Outlook
We have presented a new approach towards defining irrele-
vance in planning tasks, concerning actions that are not nec-
essary within the relaxation used in the heuristic functions of
state-of-the-art heuristic planners like HSP and FF. We have
derived a sufficient condition for relaxed irrelevance, and we
have presented two approximation methods that can be used
for filtering action sets. One of those methods, O|il compu-
tation, has been proven to be complete within the relaxation,
the other method, O|al computation, has been shown to be
empirically safe. The methods have drastic pruning impacts
in some domains, speeding up FF’s heuristic function, and
in effect the planning process (except in Schedule, where

there appears to be some interaction with FF’s internal tech-
niques). Computing O|al never hurts in the sense that the
required overhead is neglectible in most of the cases, and al-
ways small compared to FF’s running time. ComputingO|il
does not hurt in 16 of our 20 domains. We have outlined
an approach how the other cases might be recognisable au-
tomatically. The challenge remains to find filtering methods
that are still empirically safe in most of the cases, but have
stronger pruning impacts.

References
Bacchus, F. 2000. Subset of PDDL for the AIPS2000
Planning Competition. The AIPS-00 Planning Competition
Comitee.

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-2):279–
298.

Bonet, B., and Geffner, H. 1998. HSP: Heuristic search
planner. In AIPS-98 Planning Competition.

Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Biundo, S., and Fox, M., eds., Re-
cent Advances in AI Planning. 5th European Conference on
Planning (ECP’99), Lecture Notes in Artificial Intelligence,
60–72. Durham, UK: Springer-Verlag.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Kuipers,
B. J., and Webber, B., eds., Proceedings of the 14th National

134

Conference of the American Association for Artificial Intel-
ligence (AAAI-97), 714–719. Portland, OR: MIT Press.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Hoffmann, J., and Nebel, B. 2001a. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J., and Nebel, B. 2001b. RIFO revisited: De-
tecting relaxed irrelevance. Technical Report 153, Albert-
Ludwigs-Universität, Institut für Informatik, Freiburg, Ger-
many.
Koehler, J., and Hoffmann, J. 2000. On the instantiation
of ADL operators involving arbitrary first-order formulas.
In Proceedings ECAI-00 Workshop on New Results in Plan-
ning, Scheduling and Design.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning graphs to an ADL subset. In
Steel and Alami (1997), 273–285.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Steel
and Alami (1997), 338–350.
Pednault, E. P. 1989. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Brachman, R.;
Levesque, H. J.; and Reiter, R., eds., Principles of Knowl-
edge Representation and Reasoning: Proceedings of the 1st
International Conference (KR-89), 324–331. Toronto, ON:
Morgan Kaufmann.
Steel, S., and Alami, R., eds. 1997. Recent Advances in AI
Planning. 4th European Conference on Planning (ECP’97),
volume 1348 of Lecture Notes in Artificial Intelligence.
Toulouse, France: Springer-Verlag.

135

