
On the Extraction, Ordering, and Usage of Landmarks in Planning

Julie Porteous∗
Department of Computer Science

The University of Durham
Durham, UK

J.M.Porteous@durham.ac.uk

Laura Sebastia
Dpto. Sist. Informáticos y Computación

Universidad Politécnica de Valencia
Valencia, Spain

lstarin@dsic.upv.es

Jörg Hoffmann†
Institute for Computer Science

Albert Ludwigs University
Freiburg, Germany

hoffmann@informatik.uni-freiburg.de

Abstract

Many known planning tasks have inherent constraints con-
cerning the best order in which to achieve the goals. A num-
ber of research efforts have been made to detect such con-
straints and use them for guiding search, in the hope to speed
up the planning process.
We go beyond the previous approaches by defining ordering
constraints not only over the (top level) goals, but also over
the sub-goals that will arise during planning. Landmarks are
facts that must be true at some point in every valid solution
plan. We show how such landmarks can be found, how their
inherent ordering constraints can be approximated, and how
this information can be used to decompose a given planning
task into several smaller sub-tasks. Our methodology is com-
pletely domain- and planner-independent. The implementa-
tion demonstrates that the approach can yield significant per-
formance improvements in both heuristic forward search and
GRAPHPLAN-style planning.

Introduction
Given the inherent complexity of the general planning prob-
lem it is clearly important to develop good heuristic strate-
gies for both managing and navigating the search space in-
volved in solving a particular planning instance. One way
in which search can be informed is by providing hints con-
cerning the order in which planning goals should be ad-
dressed. This can make a significant difference to search
efficiency by helping to focus the planner on a progressive
path towards a solution. Work in this area includes that
of GAM (Koehler 1998; Koehler and Hoffmann 2000) and
PRECEDE (McCluskey and Porteous 1997). Koehler and
Hoffmann (Koehler and Hoffmann 2000) introduce the no-
tion of reasonable orders where a pair of goals A and B can
be ordered so that B is achieved before A if it isn’t possible
to reach a state in which A and B are both true, from a state
in which just A is true, without having to temporarily destroy
A. In such a situation it is reasonable to achieve B before A
to avoid unnecessary effort.
∗Current address: Teesside University, Middlesbrough, UK,

j.porteous@tees.ac.uk
†Current address: Saarland University, Saarbrücken, Germany,

hoffmann@cs.uni-saarland.de
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The motivation of the work discussed in this paper is to
extend those previous ideas on orderings by not only order-
ing the (top level) goals, but also the sub-goals that will arise
during planning, i.e., by also taking into account what we
call the landmarks. The key feature of a landmark is that it
must be true on any solution path to the given planning task.
Consider the Blocksworld task shown in Figure 1, which
will be our working example throughout the paper.

A

C

D

BD

CBA

initial state goal

Figure 1: Example Blocksworld task.

Here, clear(C) is a landmark because it will need to be
achieved in any solution plan. Immediately stacking B on D
from the initial state will achieve one of the top level goals
of the task but it will result in wasted effort if clear(C) is not
achieved first. The ordering clear(C)≤ on(B D) is, however,
not reasonable in terms of Koehler and Hoffmann’s defini-
tion yet it is a sensible order to impose if we wish to re-
duce wasted effort during plan generation. We introduce the
notion of weakly reasonable orderings, which captures this
situation. Two landmarks L and L′ are also often ordered
in the sense that all valid solution plans make L true before
they make L′ true. We call such ordering relations natural.
For example, clear(C) is naturally ordered before holding(C)
in the above Blocksworld task.

We introduce techniques for extracting landmarks to a
given planning task, and for approximating natural and
weakly reasonable orderings between those landmarks. The
resulting information can be viewed as a tree structure,
which we call the landmark generation tree. This tree can
be used to decompose the planning task into small chunks.
We propose a method that does not depend on any particu-
lar planning framework. To demonstrate the usefulness of
the approach, we have used the technique for control of
both the forward planner FF(v1.0) (Hoffmann 2000) and
the GRAPHPLAN-style planner IPP(v4.0) (Koehler et al.
1997), yielding significant performance improvements in
both cases.

The paper is organised as follows. Section gives the ba-
sic notations. Sections to explain how landmarks can be

174

Proceedings of the Sixth European Conference on Planning

extracted, ordered, and used, respectively. Empirical results
are discussed in Section and we conclude in Section .

Notations
We consider a propositional STRIPS (Fikes and Nilsson
1971) framework.

Definition 1 A state S is a finite set of logical facts. An
action o is a triple o = (pre(o), add(o), del(o)) where pre(o)
are the preconditions, add(o) is the add list, and del(o) is the
delete list, each being a set of facts. The result of applying a
single action to a state is:

Result(S, 〈o〉) =
{

(S ∪ add(o)) \ del(o) pre(o) ⊆ S
undefined otherwise

The result of applying a sequence of more than one action to
a state is recursively defined as Result(S, 〈o1, . . . , on〉) =
Result(Result(S, 〈1, . . . , on−1〉), 〈on〉). A planning task
P = (O, I,G) is a triple where O is the set of actions, and
I (the initial state) and G (the goals) are sets of facts. A
plan for a task P is an action sequence P ∈ O∗ such that
G ⊆ Result(I, P).

Extracting Landmarks
In this section, we will focus on the landmarks extraction
process and its properties. First of all, we define what a
landmark is.

Definition 2 Given a planning task P = (O, I,G). A fact
L is a landmark inP iff L is true at some point in all solution
plans, i.e., iff for all P = 〈o1, . . . , on〉,G ⊆ Result(I, P) :
L ∈ Result(I, 〈o1, . . . , oi〉) for some 0 ≤ i ≤ n.

All initial facts are trivially landmarks (let i = 0 in the
above definition). For the final search control, they are not
considered. They can, however, play an important role for
extracting ordering information. In the Blocksworld task
shown in Figure 1, clear(C) is a landmark, but on(A B), for
example, is not. In general, it is PSPACE-hard to decide
whether an arbitrary fact is a landmark.

Definition 3 Let LANDMARK RECOGNITION denote
the following problem.

Given a planning task P = (O, I,G), and a fact L. Is L
a landmark in P?

Theorem 1 Deciding LANDMARK RECOGNITION is
PSPACE-hard.

Proof Sketch: By a reduction of (the complement of)
PLANSAT, the problem of deciding whether an arbitrary
STRIPS planning task is solvable (Bylander 1994): add an
artificial by-pass to the task, on which a new fact L must be
added.

Due to space restrictions, we include only short proof
sketches in this paper. The complete proofs can be found in
a technical report (Porteous, Sebastia, and Hoffmann May
2001). The following is a simple sufficient condition for a
fact being a landmark.

Proposition 1 Given a planning task P = (O, I,G), and a
fact L. Define PL = (OL, I,G) as follows.
OL := {(pre(o), add(o), ∅) |(pre(o), add(o), del(o)) ∈ O,

L 6∈ add(o)}
If PL is unsolvable, then L is a landmark in P .

Deciding about solvability of planning tasks with empty
delete lists can be done in polynomial time by a
GRAPHPLAN-style algorithm (Blum and Furst 1997; Hoff-
mann and Nebel 2001). An idea is, consequently, to evaluate
the above sufficient condition for each non-initial state fact
in turn. However, this can be costly when there are many
facts in a task. We use the following two-step process.

1. First, a backward chaining process extracts landmark can-
didates.

2. Then, evaluating Proposition 1 eliminates those candi-
dates that are not provably landmarks.

The backward chaining process can select initial state
facts, but does not necessarily select all of them. In veri-
fication, initial (and goal) facts need not be considered as
they are landmarks by definition.

Extracting Landmark Candidates
Candidate landmarks are extracted using what we call the
relaxed planning graph (RPG): relax the planning task by
ignoring all delete lists, then build GRAPHPLAN’s plan-
ning graph, chaining forward from the initial state of the
task to a graph level where all goals are reached. Because
the delete lists are empty, the graph does not contain any
mutex relations (Hoffmann and Nebel 2001). Once the RPG
has been built, we step backwards through it to extract what
we call the landmark-generation tree (LGT). This is a tree
(N,E) where the nodes N are candidate landmarks and
an edge (L,L′) ∈ E indicates that L must be achieved
as a necessary prerequisite for L′. Additionally, if several
nodes L1, . . . , Lk are ordered before the same node L′, then
L1, . . . , Lk are grouped together in an AND-node in the
sense that those facts must be true together at some point
during the planning process. The root of the tree is the AND-
node representing the top level goals.

The extraction process is straightforward. First, all top
level goals are added to the LGT and are posted as goals
in the first level where they were added in the RPG. Then,
each goal is solved in the RPG starting from the last level.
For each goal g in a level, all actions achieving g are grouped
into a set and the intersection I of their preconditions is com-
puted. For all facts p in I we: post p as a goal in the first RPG
level were it is achieved; insert p as a node into the LGT; in-
sert an edge between p and g into the LGT. When all goals
in a level are achieved, we move on to the next lower level.
The process stops when the first (initial) level is reached.

We also use the following technique, to obtain a larger
number of candidates: when a set of actions solves a goal,
we also compute the union of the preconditions that are not
in the intersection. We then consider all actions achieving
these facts. If the intersection of those action’s preconditions
is non-empty, we take the facts in that intersection as candi-
date landmarks as well. For example, say we are solving a

175

L0 A1 L1 A2 L2 A3 L3

on-table A pick-up A holding A stack B A on B A stack C A on C A
on-table B pick-up B holding B stack B D on B D stack C B on C B
on-table C unstack D C holding D stack B C on B C stack C D on C D

on D C clear C put-down B
clear A . . .
clear B pick-up C holding C
clear D

arm-empty

Figure 2: Summarised RPG for the Blocksworld example shown in Figure 1.

Logistics task where there are two planes and a package to
be moved from la-post-office to boston-post-office. While
extracting landmarks, we will find that at(pack1 boston-
airport) is a candidate landmark. The intersection of the ac-
tions achieving it is empty, but the union consists of in(pack1
plane1) and in(pack1 plane2). The intersection of the pre-
conditions of the first actions in the RPG adding these facts
is at(pack1 la-airport), which is a landmark that would not
have been found without this more sophisticated process.
More details about the process (which are not necessary for
understanding the rest of this discussion) are described by
Porteous and Sebastia (Porteous and Sebastia 2000).

Let us illustrate the extraction process with the
Blocksworld example from Figure 1. The RPG correspond-
ing to this task is shown in Figure 2. As we explained
above, the extraction process starts by adding two nodes
representing the goals on(C A) and on(B D) to the LGT
(N = {on(C A),on(B D)}, E = ∅). It also posts on(C
A) as goal in level 3 and on(B D) in level 2. There is
only one action achieving on(C A) in level 3: stack C A.
So, holding(C) and clear(A) are new candidates. holding(C)
is posted as a goal in level 2, clear(A) is initially true and
does therefore not need to be posted as a goal. The new
LGT is: N = {on(C A),on(B D),holding(C),clear(A)}, E =
{((holding C),on(C A)), ((clear A),on(C A)}. As there are
no more goals in level 3, we move downwards to solve the
goals in level 2. We now have two goals: on(B D) and
holding(C). In both cases, there is only one action adding
each fact (stack B D and pick-up C), so their precondi-
tions holding(B), clear(C), on-table(C), and arm-empty(),
as well as the respective edges, are included into the LGT.
The goals at level 1 are holding(B) and clear(C), which are
added by the single actions pick-up B and unstack D C. The
process ends up with the following LGT, where we leave
out, for ease of reading, the initial facts and their respec-
tive edges: N = {on(C A), on(B D), holding(C), hold-
ing(B), clear(C), . . . } and E = {(holding(C),on(C A)),
(holding(B),on(B D)), (clear(C),holding(C)), . . . }. Among
the parts of the LGT concerning initial facts, there is the
edge (clear(D),clear(C)) ∈ E. As we explain in Section ,
this edge plays an essential role for detecting the ordering
constraint clear(C) ≤ on(B D) that was mentioned in the in-
troduction. The edge is inserted as precondition of unstack
D C, which is the first action in the RPG that adds clear(C).

Verifying Landmark Candidates
Say we want to move from city A to city D on the road
map shown in Figure 3, using a standard move operator.
Landmarks extraction will come up with the following LGT:
N = {at(A), at(E), at(D)}, E = {(at(A), at(E)), (at(E),
at(D))}—the RPG is only built until the goals are reached
the first time, which happens in this example before move
C D comes in. However, the action sequence 〈move(A,B),
move(B,C), move(C,D)〉 achieves the goals without making
at(E) true. Therefore, the candidate at(E) ∈ N is not really
a landmark.

A B C D

E

Figure 3: An example road map.

We want to remove such candidates because they can lead
to incompleteness in our search framework, which we will
describe in Section . As was said above, we simply check
Proposition 1 for each fact L ∈ N except the initial facts and
the goals, i.e., for each such L in turn we ignore the actions
that add L, and check solvability of the resulting planning
task when assuming that all delete lists are empty. Solvabil-
ity is checked by constructing the RPG to the task. If the
test fails, i.e., if the goals are reachable, then we remove L
from the LGT. In the above example, at(A) and at(D) need
not be verified. Ignoring all actions achieving at(E), the goal
is still reachable by the actions that move to D via B and C.
So at(E) and its edges are removed, yielding the final LGT
where N = {at(A), at(D)} and E = ∅.

Ordering Landmarks
In this section we define two types of ordering relations,
called natural and weakly reasonable orders, and explain
how they can be approximated. Firstly, consider the natu-
ral orderings. As said in the introduction, two landmarks
L and L′ are ordered naturally, L ≤n L′, if in all so-
lution plans L is true before L′ is true. L is true be-
fore L′ in a plan 〈o1, . . . , on〉 if, when i is minimal with
L ∈ Result(I, 〈o1, . . . , oi〉) and j is minimal with L′ ∈
Result(I, 〈o1, . . . , oj〉), then i < j. Natural orderings are
characteristic of landmarks: usually, the reason why a fact is
a landmark is that it is a necessary prerequisite for another
landmark. For illustration consider our working example,
where clear(C) must be true immediately before holding(C)

176

in all solution plans. In general, deciding about natural or-
derings is PSPACE-hard.

Definition 4 Let NATURAL ORDERING denote the fol-
lowing problem.

Given a planning task P = (O, I,G), and two atoms
A and B. Is there a natural ordering between B and A,
i.e., does B ≤n A hold?

Theorem 2 Deciding NATURAL ORDERING is
PSPACE-hard.

Proof Sketch: Reduction of the complement of PLANSAT.
Arrange actions for two new facts A and B such that one
can either: add A, then B, then solve the original task; or
add B, then A, then achieve the goal right away.

The motivation for weakly reasonable orders has already
been explained in the context of Figure 1. Stacking B on D
from the initial state is not a good idea since clear(C) needs
to be achieved first if we are to avoid unnecessary effort.
However, the ordering clear(C) ≤ on(B D) is not reason-
able, in the sense of Koehler and Hoffmann’s formal defini-
tion (Koehler and Hoffmann 2000), since there are reachable
states where B is on D and C is not clear, but C can be made
clear without unstacking B. However, reaching such a state
requires unstacking D from C, and (uselessly) stacking A
onto C. Such states are clearly not relevant for the situation
at hand. Our definition therefore weakens the reasonable
orderings in the sense that only the nearest states are consid-
ered in which B is on D. Precisely, Koehler and Hoffmann
(Koehler and Hoffmann 2000) define SA,¬B , for two atoms
A and B, as the set of reachable states where A has just
been achieved, but B is still false. They order B ≤r A if
all solution plans achieving B from a state in SA,¬B need to
destroy A. In contrast, we restrict the starting states that are
considered to Sopt

A,¬B , defined as those states in SA,¬B that
have minimal distance from the initial state. Accordingly,
we define two facts B and A to have a weakly reasonable
ordering constraint, B ≤w A, iff

∀ s ∈ Sopt
(A,¬B) : ∀ P ∈ O

∗ : B ∈ Result(s, P)

⇒ ∃ o ∈ P : A ∈ del(o)

Deciding about weakly reasonable orderings is PSPACE-
hard.

Definition 5 Let WEAKLY REASONABLE ORDERING
denote the following problem.

Given a planning task P = (O, I,G), and two atoms A
and B. Is there a weakly reasonable ordering between B
and A, i.e., does B ≤w A hold?

Theorem 3 Deciding WEAKLY REASONABLE OR-
DERING is PSPACE-hard.

Proof Sketch: Reduction of the complement of PLANSAT.
Arrange actions for two new facts A and B such that: A is
never deleted, and achieved once before the original task can
be started; B can be achieved only when the original goal is
solved.

Approximating Natural and Weakly Reasonable
Orderings
As an exact decision about either of the above ordering rela-
tions is as hard as planning itself, we have used the approx-
imation techniques described in the following. The approx-
imation of ≤n is called ≤an, the approximation of ≤w is
called ≤aw. The orders ≤an are extracted directly from the
LGT. Recall that for an edge (L,L′) in the LGT, we know
that L and L′ are landmarks and also that L is in the inter-
section of the preconditions of the actions achieving L′ at
its lowest appearance in the RPG. We therefore order a pair
of landmarks L and L′ L ≤an L′, if LGT = (N,E), and
(L,L′) ∈ E.

What about ≤aw, the approximations to the weakly rea-
sonable orderings? We are interested in pairs of landmarks L
and L′, where from all nearby states in which L′ is achieved
and L is not, we must delete L′ in order to achieve L. Our
method of approximating this looks at: pairs of landmarks
within a particular AND-node of the LGT since these must
be made simultaneously true in some state; landmarks that
are naturally ordered with respect to one of this pair since
these give an ordered sequence in which “earlier” landmarks
must be achieved; and any inconsistencies1 between these
“earlier” landmarks and the other landmark at the node of
interest. As the first two pieces of information are based on
the RPG (from which the LGT is extracted), our approxima-
tion is biased towards those states that are close to the initial
state. The situation we consider is, for a pair of landmarks in
the same AND-node in the LGT, what if a landmark that is
ordered before one of them is inconsistent with the other? If
they are inconsistent then this means that they can’t be made
simultaneously true, (ie achieving one of them will result in
the other being deleted). So that situation is used to form an
order in one of the following two ways:

1. landmarks L and L′ in the same AND-node in the LGT
can be ordered L ≤aw L′, if:

∃ x ∈ Landmarks : x ≤an L ∧ inconsistent(x, L′)

2. a pair of landmarks L and L′ can be ordered L ≤aw L′

if there exists some other landmark x which is: in the
same AND-node in the LGT as L′; and there is an ordered
sequence of ≤an orders that order L before x. In this
situation, L and L′ are ordered, if

∃ y ∈ Landmarks : y ≤an L ∧ inconsistent(y, L′)

In both cases the rationale is: look for an ordered sequence
of landmarks required to achieve a landmark x at a node.
For any landmark L in the sequence, if L is inconsistent with
another landmark L′ at the same AND-node as x then there
is no point in achieving L′ before L (effort will be wasted
since it will need to be re-achieved). If L must be achieved
before some other landmark y (its successor in the sequence)
then the order is y ≤aw L′.

1A pair of facts is inconsistent if they can’t be made simul-
taneously true. We approximate inconsistency using the respec-
tive function provided by the TIM API (Fox and Long 1998)
available from: http://www.dur.ac.uk/computer.science/research/
stanstuff/planpage.html

177

A final way in which we derive ordering constraints is
based on analysis of any ≤an and ≤aw orders already iden-
tified. A pair of landmarks L and L′ is ordered L ≤aw L′

if:
∃ x ∈ Landmarks : L ≤an x ∧ L′ ≤aw x∧

inconsistent(side effects(L′), L)

where the side effects of a landmark L′ are:
side effects(L′) := {add(o) \ {L′} | o ∈ O, L′ ∈ add(o)}

The basis for this is: L must be true in the state immediately
before x is achieved (given by ≤an) and L′ can be achieved
before x (given by ≤aw). But can L′ and L be ordered? If
the side effects of achieving L′ are inconsistent with L then
achieving L first would waste effort (it would have to be re-
achieved for x). Hence the order L′ ≤aw L.

Extracting Natural and Weakly Reasonable
Orderings
The LGT is used for extracting orders as follows: (i) identify
the ≤an orders; (ii) identify the ≤aw orders; (iii) analyse
those orders to identify remaining ≤aw orders; (iv) remove
cycles in the graph of orders; (vi) finally, add all orders as
edges in the LGT for later use during planning.

As an illustration of this process, consider again the ex-
ample shown in figure 1. First, the set of ≤an orders are
extracted directly from the LGT. The set contains, amongst
other things: clear D ≤an clear C, clear(C) ≤an holding(C),
and holding(C) ≤an on(C A) (see Section). In the next
step, the ≤aw orders are identified. Let us focus on how
the order clear(C)≤aw on(B D) (our motivating example) is
found. From the ≤an orders we have the ordered sequence
〈clear(D), clear(C), holding(C), on(C A)〉 and the fact that
on(C A) is in the same node as on(B D). Since clear(D) and
on(B D) are inconsistent and clear(D) ≤an clear(C), the or-
der clear(C) ≤aw on(B D) is imposed. Note here the crucial
point that we have the order clear(D)≤an clear(C). We have
that order because unstack D C is the first action in the RPG
that adds clear(C). The nearest possibility, from the initial
state, of clearing C is to unstack D from C. This can only
be done when D is still clear. Our approximation methods
recognise this, and correctly conclude that stacking B on D
immediately is not a good idea.

The next stage is a check to identify and remove any
cycles that appear in the graph of orderings. A cycle (or
strongly connected component) such as, L ≤an L′ and
L′ ≤aw L, might arise if a landmark must be achieved more
than once in a solution plan (for example, in the Blocksworld
domain this is frequently the case for arm empty()). At
present, any cycles in the orders are removed since they
aren’t used by the search process. They are removed by
firstly identifying for each cycle the set of articulation points
for it (a node in a connected component is an articulation
point if the component that remains, after the node and all
edges incident upon it are removed, is no longer connected).
The cycles are broken by iteratively removing the articula-
tion points and all edges incident upon these points until no
more strongly connected components remain. For our small
example no cycles are present so the final step is to add the
≤aw orders to the LGT.

Using Landmarks
Having settled on algorithms for computing the LGT, there
is still the question of how to use this information during
planning. For use in forward state space planning, Porteous
and Sebastia (Porteous and Sebastia 2000) have proposed a
method that prunes states where some landmark has been
achieved too early. If applying an action achieves a land-
mark L that is not a leaf of the current LGT, then do not use
that action. If an action achieves a landmark L that is a leaf,
then remove L (and all ordering relations it is part of) from
the LGT. In short, do not allow achieving a landmark unless
all of its predecessors have been achieved already.

Here, we explore an idea that uses the LGT to decompose
a planning task into smaller sub-tasks, which can be handed
over to any planning algorithm. The idea is similar to the
above described method in terms of how the LGT is looked
at: each sub-task results from considering the leaf nodes of
the current LGT, and when a sub-task has been processed,
then the LGT is updated by removing achieved leaf nodes.
The main problem is that the leaf nodes of the LGT can of-
ten not be achieved as a conjunction. The main idea is to
pose those leaf nodes as a disjunctive goal instead. See the
algorithm in Figure 4.

S := I, P := 〈 〉
remove from LGT all initial facts and their edges
repeat

Disj := leaf nodes of LGT
call base planner with actions O, initial state S and

goal condition
∨
Disj

if base planner did not find a solution P ′ then fail endif
P := P ◦ P ′, S := result of executing P ′ in S
remove from LGT all L ∈ Disj with

L ∈ add(o) for some o in P ′

until LGT is empty
call base planner with actions O, initial state S

and goal
∧
G

if base planner did not find a solution P ′ then fail endif
P := P ◦ P ′, output P

Figure 4: Disjunctive search control algorithm for a plan-
ning task (O, I,G), repeatedly calling an arbitrary planner
on a small sub-task.

The depicted algorithm keeps track of the current state S,
the current plan prefix P , and the current disjunctive goal
Disj, which is always made up out of the current leaf nodes
of the LGT. The initial facts are immediately removed be-
cause they are true anyway. When the LGT is empty—all
landmarks have been processed—then the algorithm stops,
and calls the underlying base planner from the current state
with the original (top level) goals. The algorithm fails if at
some point the planner did not find a solution.

Looking at Figure 4, one might wonder why the top level
goals are no sooner given special consideration than when
all landmarks have been processed. Remember that all top
level goals are also landmarks. An idea might be to force
the algorithm, once a top level goal G has been achieved,
to keep G true throughout the rest of the process. We have
experimented with a number of variations of this idea. The

178

problem with this is that one or a set of already achieved
original goals might be inconsistent with a leaf landmark.
Forcing the achieved goals to be true together with the dis-
junction yields in this case an unsolvable sub-task, making
the control algorithm fail. In contrast to this, we will see
below that the simple control algorithm depicted above is
completeness preserving under certain conditions fulfilled
by many of the current benchmarks. Besides this, keeping
the top level goals true did not yield better runtime or solu-
tion length behaviour in our experiments. This may be due
to the fact that, unless such a goal is inconsistent with some
landmark ahead, it is kept true anyway.

Theoretical Properties
The presented disjunctive search control is obviously
planner-independent in the sense that it can be used within
any (STRIPS) planning paradigm—a disjunctive goal can
be simulated by using an artificial new fact G as the goal,
and adding one action for each disjunct L, where the ac-
tion’s precondition is {L} and the add list is {G} (this
was first described by Gazen and Knoblock (Gazen and
Knoblock 1997)). The search control is obviously correct-
ness preserving—eventually, the planner is run on the orig-
inal goal. Likewise obviously, the method is not optimality
preserving.

With respect to completeness, matters are a bit more com-
plicated. As it turns out, the approach is completeness pre-
serving on the large majority of the current benchmarks. The
reasons for this are that there, no fatally wrong decisions can
be made in solving a sub-task, that most facts which have
been true once can be made true again, and that natural or-
dering relations are respected by any solution plan. We need
two notations.

1. A dead end is a reachable state from which the goals can
not be reached anymore (Koehler and Hoffmann 2000), a
task is dead-end free if there are no dead ends in the state
space.

2. A fact L is recoverable if, when S is a reachable state with
L ∈ S, and S′ with L 6∈ S′ is reachable from S, then a
state S′′ is reachable from S′ with L ∈ S′′.

Many of the current benchmarks are invertible in the sense
that every action o has a counterpart o that undoes o’s ef-
fects (Koehler and Hoffmann 2000). Such tasks are dead-
end free, and all facts in such tasks are recoverable. Com-
pleteness is preserved under the following circumstances.

Theorem 4 Given a solvable planning task (O, I,G), and
an LGT (N,E) where each L ∈ N is a landmark such that
L 6∈ I. If the task is dead-end free, and for L′ ∈ N it holds
that either L′ is recoverable, or all orders L ≤ L′ in the tree
are natural, then running any complete planner within the
search control defined by Figure 4 will yield a solution.

Proof Sketch: If search control fails, then the current state
S is a dead end. If it is not, an unrecoverable landmark L′ is
added by the current prefix P (L′ 6∈ I so it must be added at
some point). L′ was not a leaf node at the time it was added,
so there is a landmark L with L ≤ L′ that gets added after
L′ in contradiction.

Verifying landmarks with Proposition 1 ensures that all
facts in the LGT really are landmarks; the initial facts are
removed before search begins. The tasks contained in do-
mains like Blocksworld, Logistics, Hanoi and many others
are invertible (Koehler and Hoffmann 2000). Examples of
dead-end free domains with only natural orders are Gripper
and Tsp. Examples of dead-end free domains where non-
natural orders apply only to recoverable facts are Miconic-
STRIPS and Grid. All those domains (or rather, all tasks in
those domains) fulfill the requirements for Theorem 4.

Results
We have implemented the extraction, ordering, and usage
methods presented in the preceding sections in C, and used
the resulting search control mechanism as a framework for
the heuristic forward search planner FF-v1.0 (Hoffmann
2000), and the GRAPHPLAN-based planner IPP4.0 (Blum
and Furst 1997; Koehler et al. 1997). Our own implemen-
tation is based on FF-v1.0, so providing FF with the sub-
tasks defined by the LGT, and communicating back the re-
sults, is done via function parameters. For controlling IPP,
we have implemented a simple interface, where a proposi-
tional encoding of each sub-task is specified via two files in
the STRIPS subset of PDDL (McDermott and others 1998;
Bacchus 2000). We have changed the implementation of
IPP4.0 to output a results file containing the spent running
time, and a sequential solution plan (or a flag saying that no
plan has been found). The running times given below have
been measured on a Linux workstation running at 500 MHz
with 128 MBytes main memory. We cut off test runs after
half an hour. If no plan was found within that time, we indi-
cate this by a dash. For IPP, we did not count the overhead
for repeatedly creating and reading in the PDDL specifica-
tions of propositional sub-tasks—this interface is merely a
vehicle that we used for experimental implementation. In-
stead, we give the running time needed by the search control
plus the sum of all times needed for planning after the in-
put files have been read. For FF, the times are simply total
running times.

Figure 5 shows running time and solution length for FF-
v1.0, FF-v1.0 controlled by our landmarks mechanism (FF-
v1.0 + L), and FF-v2.2. The last system FF-v2.2 is Hoff-
mann and Nebel’s successor system to FF-v1.0, which goes
beyond the first version in terms of a number of goal or-
dering techniques, and a complete search mechanism that is
invoked in case the planner runs into a dead end (Hoffmann
and Nebel 2001). Let us consider the domains in Figure 5
from top to bottom. In the Blocksworld tasks taken from the
BLACKBOX distribution, FF-v1.0 + L clearly outperforms
the original version. The running time values are also better
than those for FF-v2.2. Solution lengths show some vari-
ance, making it hard to draw conclusions. In the Grid exam-
ples used in the AIPS-1998 competition, running time with
landmarks control is better than that of both FF versions on
the first four tasks. In prob05, however, the controlled ver-
sion takes much longer time, so it seems that the behaviour
of our technique depends on the individual structure of tasks
in the Grid domain. Solution length performance is again
somewhat varied, with a tendency to be longer when us-

179

FF-v1.0 FF-v1.0 + L FF-v2.2
domain task time steps time steps time steps

Blocksworld bw-large-a 0.01 12 0.17 16 0.01 14
Blocksworld bw-large-b 1.12 30 0.18 24 0.01 22
Blocksworld bw-large-c - - 0.24 38 1.02 44
Blocksworld bw-large-d 7.03 56 0.31 48 0.78 54
Grid prob01 0.07 14 0.26 16 0.07 14
Grid prob02 0.46 39 0.44 26 0.47 39
Grid prob03 3.01 58 1.30 79 2.96 58
Grid prob04 2.75 49 1.30 54 2.70 49
Grid prob05 28.42 149 390.01 161 29.39 145
Logistics prob-38-0 38.03 223 5.93 285 39.61 223
Logistics prob-39-0 101.37 244 6.22 294 98.26 239
Logistics prob-40-0 69.03 245 7.49 308 31.68 251
Logistics prob-41-0 129.15 255 7.73 320 29.85 248
Tyreworld fixit-1 0.01 19 0.18 19 0.01 19
Tyreworld fixit-10 26.87 118 3.01 136 0.71 136
Tyreworld fixit-20 - - 26.24 266 10.16 266
Tyreworld fixit-30 - - 157.74 396 46.65 396
Freecell prob-7-1 11.87 56 2.05 44 4.96 48
Freecell prob-7-2 4.18 50 1.99 45 4.58 52
Freecell prob-7-3 2.29 43 1.88 46 4.07 42
Freecell prob-8-1 19.31 63 (2.17) - 11.32 60
Freecell prob-8-2 9.89 57 2.48 49 35.52 61
Freecell prob-8-3 2.64 50 2.28 51 4.16 54
Freecell prob-9-1 145.60 84 3.33 72 9.55 73
Freecell prob-9-2 49.17 64 3.22 60 6.77 59
Freecell prob-9-3 3.29 55 2.95 54 5.53 54
Freecell prob-10-1 21.89 84 (3.48) - 61.85 87
Freecell prob-10-2 15.70 70 (2.95) - 8.45 66
Freecell prob-10-3 7.68 56 3.63 61 9.32 64
Freecell prob-11-1 (222.48) - (3.78) - - (160.91) -
Freecell prob-11-2 (17.76) - (3.42) - 117.62 (5.62) 74
Freecell prob-11-3 (35.13) - (4.39) - 10.52 83

Figure 5: Running time (in seconds) until a solution was found, and sequential solution length for FF-v1.0, FF-v1.0 with
landmarks control (FF-v1.0 + L), and FF-v2.2. Times in brackets specify the running time after which a planner failed because
search ended up in a dead end.

ing landmarks. In Logistics, where we look at some of the
largest examples from the AIPS-2000 competition, the re-
sults are unmistakable: the control mechanism dramatically
improves runtime performance, but degrades solution length
performance. The increase in solution length is due to un-
necessarily many airplane moves: once the packages have
arrived at the nearest airports, they are transported to their
destination airports one by one (we outline below an ap-
proach how this can be overcome). In the Tyreworld, where
an increasing number of tyres need to be replaced, runtime
performance of FF-v1.0 improves dramatically when using
landmarks. FF-v2.2, however, is still superior in terms of
running time. In terms of solution lengths our method and
FF-v2.2 behave equally, i.e., slightly worse than FF-v1.0.

We have obtained especially interesting results in the
Freecell domain. Data is given for some of the larger ex-
amples used in the AIPS-2000 competition. In Freecell,
tasks can contain dead ends. Like our landmarks control, the
FF search mechanism is incomplete in the presence of such
dead ends (Hoffmann 2000; Hoffmann and Nebel 2001).
When FF-v1.0 or our enhanced version encounter a dead

end, they simply stop without finding a plan. When FF-v2.2
encounters a dead end, it invokes a complete heuristic search
engine that tries to solve the task from scratch (Hoffmann
and Nebel 2001). This is why FF-v2.2 can solve prob-11-
2. For all planners, if they encountered a dead end, then
we specify in brackets the running time after which they
did so. The following observations can be made: on the
tasks that FF-v1.0 + L can solve, it is much faster than both
uncontrolled FF versions; with landmarks, some more tri-
als run into dead ends, but this happens very fast, so that
one could invoke a complete search engine without wasting
much time; finally, solution length with landmarks control is
in most cases better than without.

Figure 6 shows the data that we have obtained by running
IPP against a version controlled by our landmarks algorithm.
IPP normally finds plans that are guaranteed to be optimal in
terms of the number of parallel time steps. Using our land-
marks control, there is no such optimality guarantee. As a
measure of solution quality we show, like in the previous
figure, the number of actions in the plans found. Quite ob-
viously, our landmarks control mechanism speeds IPP up

180

IPP IPP + L
domain task time steps time steps

Blocksworld bw-large-a 0.17 12 0.36 16
Blocksworld bw-large-b 11.05 18 0.79 26
Blocksworld bw-large-c - - 3.17 38
Blocksworld bw-large-d - - 11.73 54
Grid prob01 1.84 14 1.15 14
Grid prob02 30.61 29 5.11 30
Grid prob03 - - 56.08 79
Gripper prob01 0.02 11 0.20 15
Gripper prob03 3.25 23 0.29 31
Gripper prob20 - - 20.85 167
Logistics log-a - - 1.42 61
Logistics log-b - - 0.91 45
Logistics log-c - - 1.54 56
Logistics log-d - - 6.80 80
Tyreworld fixit-1 0.20 19 0.23 19
Tyreworld fixit-2 18.55 30 0.67 32
Freecell prob-2-1 8.98 9 0.48 10
Freecell prob-2-2 9.73 8 0.52 10
Freecell prob-2-3 8.37 9 0.53 11
Freecell prob-2-4 9.17 8 0.49 10
Freecell prob-2-5 8.78 9 0.53 10
Freecell prob-3-1 - - 1.15 21
Freecell prob-4-1 - - 1.92 29
Freecell prob-5-1 - - 3.01 36
Freecell prob-6-1 - - 3.76 45

Figure 6: Running time (in seconds) until a solution was
found, and sequential solution length for IPP and IPP with
landmarks control (IPP + L).

by some orders of magnitude across all listed domains. In
the Blocksworld, solutions appear to get slightly longer. In
Grid, solution length differs only by one more action used in
prob02. Running IPP + L on the larger examples prob04 and
prob05 failed due to a parse error, i.e., IPP’s parsing routine
failed when reading in one of the sub-tasks specified by our
landmarks control algorithm. This is probably because IPP’s
parsing routine is not intended to read in propositional en-
codings of planning tasks, which are of course much larger
than the uninstantiated encodings that are usually used. So
this failure is due to the preliminary implementation that we
used for experimentation. In Gripper, the control algorithm
comes down to transporting the balls one by one, which is
why IPP + L can solve even the largest task prob-20 from
the AIPS-1998 competition, but returns unnecessarily long
plans. In the Logistics examples from the BLACKBOX dis-
tribution, the solutions contain—like we observed for FF in
the experiments described above—unnecessarily many air-
plane moves; those tasks were, however, previously unsolv-
able for IPP. In one long testing run, IPP + L solved even the
comparatively large Logistics task prob-38-0 (shown above
for the FF variants) within 6571 seconds, finding a plan with
251 steps. In the Tyreworld, there is a small increase in solu-
tion length to be observed (probably the same increase that
we observed in our experiments with FF). Running fixit-3
failed due to a parse error similar to the one described above
for the larger Grid tasks. In Freecell, where we show some of
the smaller tasks from the AIPS-2000 competition, the plans

found by IPP + L are only slightly longer than IPP’s ones for
those few small tasks that IPP can solve. Running IPP + L
on any task larger than prob-6-1 produced parse errors.

In Gripper, and partly also in Logistics, the disjunctive
search control from Figure 4 results in a trivialisation of the
planning task, where goals are simply achieved one by one.
While this speeds up the planning process, the usefulness of
the found solutions is questionable. The problem is there
that our approximate LGT does not capture the structure of
the tasks well enough—some goals (like a ball being in room
B in Gripper) become leaf nodes of the LGT though there
are other subgoals which should be cared for first (like some
other ball being picked up in Gripper). One way around this
is trying to improve on the information that is provided by
the LGT (we will say a few words on this in Section). An-
other way is to change the search strategy: instead of posing
all leaf nodes to the planner as a disjunctive goal, one can
pose a disjunction of maximal consistent subsets of those
leaf nodes (consistency of a fact set here is approximated as
pairwise consistency according to the TIM API). In Gripper,
FF and IPP with landmarks control find the optimal solu-
tions with that strategy, in Logistics, the solutions are similar
to those found without landmarks control. This result is of
course obtained at the cost of higher running times than with
the fully disjunctive method. What’s more, posing maximal
consistent subsets as goals can lead to incompleteness when
an inconsistency remains undetected.

Conclusion and Outlook
We have presented a way of extracting and using informa-
tion on ordered landmarks in STRIPS planning. The ap-
proach is independent of the planning framework one wants
to use, and maintains completeness under circumstances ful-
filled by many of the current benchmarks. Our results on a
range of domains show that significant, sometimes dramatic,
runtime improvements can be achieved for heuristic forward
search as well as GRAPHPLAN-style planners, as exempli-
fied by the systems FF and IPP. The approach does not main-
tain optimality, and empirically the improvement in runtime
behaviour is sometimes (like in Logistics) obtained at the
cost of worse solution length behaviour. There are however
(like in Freecell for FF) also cases where our technique im-
proves solution length behaviour.

Possible future work includes the following topics: firstly,
one can try to improve on the landmarks and orderings in-
formation, for example by taking into account the different
“roles” that a top level goal can play (i.e. as a top level goal,
or as a landmark for some other goal), or by a more informed
treatment of cycles. Secondly, post-processing procedures
for improving solution length in cases like Logistics might
be useful for getting better plans after finding a first plan
quickly. Finally, we want to extend our methodology so that
it can handle conditional effects.

References
Bacchus, F. 2000. Subset of PDDL for the AIPS2000
Planning Competition. The AIPS-00 Planning Competition
Comitee.

181

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-2):279–
298.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.
Gazen, B. C., and Knoblock, C. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In
Steel and Alami (1997), 221–233.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2000. A heuristic for domain independent
planning and its use in an enforced hill-climbing algorithm.
In Ras, Z. W., and Ohsuga, S., eds., Proceedings of the 12th
International Symposium on Methodologies for Intelligent
Systems (ISMIS-00), 216–227. Charlotte, NC: Springer-
Verlag.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven plan-
ning algorithm. Journal of Artificial Intelligence Research
12:338–386.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning graphs to an ADL subset. In
Steel and Alami (1997), 273–285.
Koehler, J. 1998. Solving complex planning tasks through
extraction of subproblems. In Simmons, R.; Veloso, M.; and
Smith, S., eds., Proceedings of the 4th International Confer-
ence on Artificial Intelligence Planning Systems (AIPS-98),
62–69. Pittsburgh, PA: AAAI Press, Menlo Park.
McCluskey, T. L., and Porteous, J. M. 1997. Engineering
and compiling planning domain models to promote validity
and efficiency. Artificial Intelligence 95.
McDermott, D., et al. 1998. The PDDL Planning Domain
Definition Language. The AIPS-98 Planning Competition
Comitee.
Porteous, J., and Sebastia, L. 2000. Extracting and ordering
landmarks for planning. In Proceedings UK Planning and
Scheduling SIG Workshop.
Porteous, J.; Sebastia, L.; and Hoffmann, J. May 2001. On
the extraction, ordering, and usage of landmarks in planning.
Technical Report 4/01, Department of Computer Science,
University of Durham, Durham, England.
Steel, S., and Alami, R., eds. 1997. Recent Advances in AI
Planning. 4th European Conference on Planning (ECP’97),
volume 1348 of Lecture Notes in Artificial Intelligence.
Toulouse, France: Springer-Verlag.

182

