Proceedings of the Twenty-Second International FLAIRS Conference (2009)

Responding to Sneaky Agents in Multi-agent Domains

*

Richard S. Seymour and Dr Gilbert L. Peterson
Department of Electrical and Computer Engineering
Air Force Institute of Technology, 2950 Hobson Way
Wright-Patterson AFB, OH 45433, United States

Abstract

This paper extends the concept of trust modeling within a
multi-agent environment. Trust modeling often focuses on
identifying the appropriate trust level for the other agents in
the environment and then using these levels to determine how
to interact with each agent. However, this type of modeling
does not account for sneaky agents who are willing to coop-
erate when the stakes are low and take selfish, greedy actions
when the rewards rise. Adding trust to an interactive partially
observable Markov decision process (I-POMDP) allows trust
levels to be continuously monitored and corrected enabling
agents to make better decisions. The addition of trust mod-
eling increases the decision process calculations, but solves
more complex trust problems that are representative of the
human world. The modified I-POMDP reward function and
belief models can be used to accurately track the trust lev-
els of agents with hidden agendas. Testing demonstrates that
agents quickly identify the hidden trust levels to mitigate the
impact of a deceitful agent.

Introduction

The concept of trust is central to agent interactions in much
the same way as human interactions. Just as a person re-
fuses to buy a car from a salesman he does not trust, an au-
tonomous agent refuses to cooperate with an agent it does
not trust. Trust can be thought of as the fundamental differ-
ence between a cooperative and a competitive environment.
In a completely cooperative environment, the agents trust
and rely on one another to accomplish their goals. In a com-
petitive environment, agent a believes that agent b will act
in its own best interests to the detriment of agent a. In be-
tween lies a gray area where agents must choose whether
to cooperate based on their belief in the trustworthiness of
others.

The typical trust modeling problem treats trust as a hid-
den rating (Rettinger, Nickles, and Tresp 2007; Wong and
Sycara 2000; Song, Phoha, and Xu 2004). Once an agent

*The views expressed in this paper are those of the authors
and do not endorse, or reflect the official policy or position of the
United States Air Force, Department of Defense, or the United
States Government. The authors thank representatives of the
United States Air Force Research Laboratory for their professional
interest and support of this research effort.

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

99

identifies the appropriate rating of another agent, it uses that
rating to determine whether or not to interact with the other
agent. This method is similar to the eBay™ user rating sys-
tem. An eBay buyer looks at the ratings of a seller before
deciding to purchase an item. If the seller has a positive
score, the buyer can purchase with confidence. An occa-
sional pitfall with this system is a deceitful seller looking
to cash out. The seller builds a large positive rating before
selling several high priced items that he never intends to de-
liver. Buyers pay for the items and the seller vanishes with
the money.

A similar scenario plays out in a multi-agent environment
for a variety of reasons. A sneaky agent can act trustwor-
thy for a period of time to build trust until it decides to
betray the other agents around it. A hacker can alter an
agent’s programming causing it to compete instead of co-
operate. A random bit flip could corrupt an agent causing it
to behave sporadically. This paper extends the traditional
I-POMDP framework to fully incorporate trust modeling.
The enhanced trust modeling allows the agents to quickly
recognize and adapt to behavior changes to maximize their
performance.

The addition of trust modeling into the -POMDP dynam-
ically alters an agent’s reward function and indirectly alters
the other agent’s belief models concerning an agent. Within
an [-POMDP environment, an agent’s actions are governed
by its reward function. A trustworthy agent performs co-
operative actions that achieve the highest collective reward
while an untrustworthy agent subverts the collective good to
achieve higher personal rewards. Each agent maintains be-
lief models that are expanded to include the estimated trust
level of the agents it interacts with. When the agents do
not act in accordance with their model, their trust rating is
changed affecting future interactions between agents. In ini-
tial testing, the [-POMDP implementation quickly identifies
and reacts to hidden trust levels preventing additional be-
trayal.

Multi-agent Domains

Multi-agent environments allow a number of autonomous
agents the opportunity to achieve an expanded set of goals
through cooperation. While a single agent may not possess
all of the requisite skills to perform a complex task, a group
of agents working together can accomplish it. Task accom-

plishment requires some level of coordination between the
agents to ensure each agent performs its portion of the over-
all task.

A partially observable Markov decision process
(POMDP) (Kaelbling, Littman, and Cassandra 1996)
allows a single agent to cope with uncertainty about its
current state while operating in a stochastic environment.
Several methods, including decentralized POMDPs (DEC-
POMDP) (Bernstein et al. 2002) and I-POMDPs (Doshi
2004), extend this model to multi-agent environments
by tying a series of individual POMDPs together. The
DEC-POMDP utilizes a single group reward for all of the
agents which works well in a cooperative environment. The
I-POMDP uses individual reward functions for each agent
which are required in a trust modeling domain.

An [-POMDP, consists of the tuple

<ISi1A7TiaﬂiaOi7Ri> (1)

for each agent ¢ within the environment, where 1.5; is the
set of interactive states S x Mj, S is the set of environment
states, and M is the set of models of agent j. Each model
m; consists of the pair (f;, h;) where f; is a function that
maps the possible histories of j’s observations to its actions
and h; is one of the possible histories.

Ais the set A; x A; of joint actions of all agents.

T; is S x A x S which is the transition model that defines
the probability that an agent’s actions will change the state.

; is the set of observations an agent can make.

O, is S x A x ; which is the probability that agent taking
action a in state s will make observations (2.

R;is IS; x A — R which is the expected reward agent i
receives from taking action a in states ¢s.

An agent’s state belief is a distribution over S. The belief,
bt, in the current state being s’ encompasses the changes in
the initial belief, bf_l, as a result of taking action, af_l, at
time, ¢ — 1, resulting in the current set of observations, o‘g,
which is:

bi(s") = BOi(of, s',af™) D UM T Ti(s! af, s)

st—1eS

2

While an agent does not directly alter another agent’s be-
lief model, an agent’s actions affect the current state which
does change the other agent’s current observations. The
other agent attempts to reconcile its current observations
with its expected observations by adjusting its belief model
including the models of all of the agents in the environment.

Trust

In a cooperative environment, autonomous agents require an
implicit level of trust to work together. An agent chooses
to cooperate if it’s reward function identifies that the high-
est expected reward will come from working with another
agent. If one agent does not trust another agent, the prospect
of a reduced expected reward causes that agent to avoid co-
operating. If trust completely breaks down within the sys-
tem, all agents may choose to work independently resulting
in cooperative tasks not being accomplished.

100

The typical obstacle with trust modeling is an agent’s abil-
ity to determine the appropriate level of trust for each of the
other agents within the environment. Quickly and accurately
determining the correct trust rating allows the agent to max-
imize its expected reward and minimize the damage caused
by a deceitful agent. Failure to identify the proper trust rat-
ing results in reduced task accomplishment and lower indi-
vidual rewards. Several techniques have been used to estab-
lish trust ratings.

One common approach builds a network of trusted agents
(Wang and Singh 2006; Song, Phoha, and Xu 2004). An
agent polls its network to get recommendations about an un-
known agent, and the agents in its network return their rec-
ommendations which are then combined into a single trust
rating. If one of polled agents does not have a recommen-
dation about the unknown agent, it will poll its own trust
network for recommendations. While this method is not
demonstrated in this paper, it is a useful trust rating sys-
tem in larger multi-agent environments where an agent is
not constantly interacting with the same agent. The network
approach allows agents to pass information back and forth,
quickly propagating the outcomes of past interactions. This
method does not work for domains with only a few agents
because there is no network to build.

A second approach uses a series of nonbinding interac-
tions between agents to determine trust (Rettinger, Nickles,
and Tresp 2007). The agents communicate their intentions
to one another prior to acting. This technique mimics the hu-
man ability to get a feeling for whether or not to trust a new
acquaintance. This paper utilizes nonbinding interactions to
help determine when agent trust levels fluctuate.

Trust vectors (Ray and Chakraborty 2004) model complex
domains by tracking multiple trust values for a given agent.
The values are stored in a single vector that is normalized
to give a trust rating at a particular time. Trust vectors al-
low trust modeling to extend to multidimensional domains
where an agent is trustworthy in some aspects and deceitful
in others. If an agent is trustworthy on cleaning tasks but
deceitful on purchasing tasks, the other agents can identify
these differences and choose to cooperate on future clean-
ing tasks. A trust vector can also contain a history of an
agent’s actions with a decay rate to reduce the impact of ac-
tions further in the past. This paper utilizes trust vectors for
comparison testing against our algorithm.

Trust ratings based on fuzzy sets (Azzedin, Ridha, and
Rizvi 2007) use a series of overlapping categories to deter-
mine the trust rating of an agent. An agent’s trust rating
is based on the aggregate of the probabilities that the agent
belongs to each of the individual categories. Once again, a
time decay function can be used to reduce the impact of less
recent actions.

All of the trust techniques use the current trust value in
the decision process. This neglects the possibility that an
agent cooperates on small tasks to build a high trust rating
and takes a greedy approach when the stakes are higher. In a
dynamic trust environment, trust values can fluctuate due to
adversary hacking, software/hardware error, greed, or some
other reason. If trust values were to change, the same tech-
niques can be reused to evaluate the new trust level, but the

agent must quickly identify the change in trust. Failure to
identify the change leaves the agent open to exploitation by
the other agents.

Trust I-POMDP

Within the -POMDP framework, an agent’s trust directly af-
fects the reward of the agent and the 1.5 of the other agents.
The combination of these two factors govern the actions
of the agents within the environment. A trust rating 7 for
each agent determines which actions lead to higher rewards
at the given time. Each agent keeps a 7 estimate for the
other agents within the environment to track which agents
are trustworthy. The Trust -POMDP (TI-POMDP) tuple be-
comes

<ISi7AanaQi70iaRi7T’ia®> (3)

where A, T;, Q;, andO;, are not directly changed from the
I-POMDP model.

7; is the trust ranking for agent . The complexity of 7;
depends on the domain requirements. In the simple case, 7;
can be a single binary number representing whether agent ¢
is trustworthy or an integer representing what level agent ¢
attempts to betray. In the more complex case, 7; can be a
series of trust rankings corresponding to different types of
tasks or dimensions within the domain such as a fuzzy set or
a trust vector.

O is the probability distribution that 7; transitions to 7;’.
© is responsible for modeling the trust fluctuations within
the environment which captures the changing motives of the
individual agents.

IS, includes the 7;, the true trust level of . 1.5; is also
an expanded set of interactive states where M; is a tuple
(fj,hj, 7). f; now maps the possible histories of j’s obser-
vations and the possible trust value of j to its action.

R; is now dependent on 7; as an agent’s reward is directly
tied to its trust level.

In an environment with trust modeling an agent’s reward
function is a direct product of its trust rating. A trustwor-
thy agent values cooperative tasks while an agent that is be-
ing untrustworthy values tasks that undermine cooperation.
Within the I-POMDP framework, the reward function for an
agent with multiple potential trust levels can be thought of
as two or more separate reward functions. Each individual
function directly corresponds to a specific trust rating for the
agent.

The simplest case occurs when an agent can be either
completely trustworthy or completely deceitful. The agent
appears to have two reward functions that become inverses
of one another for interactive states that are identical other
than the agent’s trust value. For instance, if agent a has the
option of helping a trusted agent b move an object, the trust-
worthy agent a decides to move the object while the deceit-
ful agent a decides not to move the object.

In a more complex case, agent a can appear to have a
series of reward functions due to a larger range of trust rat-
ings. Scenarios where an agent has multidimensional trust
ratings (Rettinger, Nickles, and Tresp 2007) also increase

101

the reward function complexity. Multidimensional trust oc-
curs when an agent is trustworthy in some aspects within the
environment, but not trustworthy in others. Ultimately, what
appears to be two or more reward functions is actually one
large reward function where the interactive state depends on
the trust rating for the agent.

The other agents within the environment adjust their indi-
vidual belief models based on the actions of a given agent.
If an agent carries out actions consistent with a trusted agent
the other agents will associate higher probabilities to the in-
teractive states that trust that agent.

If agent a’s current belief model trusts agent b, agent a
assigns higher probabilities to the states with a high 7. After
the next action, if agent b is where agent a expected, agent
a continues to trust agent b. If agent b is not where agent a
expected, agent a alters (in this case reduces) 7, during its
belief model update in Equation 2. Agent a’s belief model
now assigns higher probabilities to the states with a lower
Tb.

The 7 update is simple in the binary case. An untrusted
agent that does not take an expected action becomes trusted,
similarly a trusted agent becomes untrusted. When 7 can
take on more values, the update becomes more difficult. If
agent a’s belief model has a 7;, of 0.5 and agent b’s next ac-
tion is unexpected, does agent b become more or less trusted
and by how much? Agent a must try to judge agent b’s in-
tent.

To judge agent b’s intent, agent a runs two additional be-
lief model updates from the previous interactive state. The
first update assumes agent b is trustworthy while the second
update assumes agent b should not be trusted. Agent a at-
tempts to determine the accuracy of both model updates by
measuring difference of each model’s expected observations
with agent a’s actual observations. If the first model up-
date is more accurate than the original model and the second
model, then 7, is increased. If the second model update is
more accurate, 7, is decreased.

It is important to note that the addition of trust expands
the I-POMDP problem space. A problem with two agents
and three trust values has twenty-seven times the state space
as the same two agent problem without trust because every
state now must account for all of the combinations of trusted,
not trusted, and neither for the two agents and estimations
of the other agent’s belief model about the first agent. In a
problem with n agents and m trust settings, the state space

expands by a factor of mnt(n=1?*, Ultimately, this is an
exponential expansion to a problem that is already NEXP-
complete (Seuken and Zilberstein 2008).

The regular I-POMDP is actually a special case of the TI-
POMDP where each agent has a constant 7. This reduces the
number of interactive states since each agent does not have
states with a different 7 values. The reduction in interactive
states also reduces the size of the reward function.

Despite the I-POMDP problem complexity, several ap-
proximation techniques can provide timely solutions. Be-
havioral equivalence (Rathnasabapathy, Doshi, and Gmy-
trasiewicz 2006) collapses states into a manageable search
space. Particle filtering (Doshi and Gmytrasiewicz 2005)
uses particles to represent possible interactive states and

carries a subset of particles forward in time. A modi-
fied A* search (Szer, Charpillet, and Zilberstein 2005) and
dynamic programming (Hansen, Bernstein, and Zilberstein
2004) have been used to quickly prune dominated branches
of the search tree. In addition, problem domain dimensional-
ity can be reduced using principal component analysis (Roy,
Gordon, and Thrun 2004). The reduced problem dimension-
ality of this paper did not require utilization of an approxi-
mation technique.

The Cooperative Tiger Game

To illustrate the nuances of the sneaky agent problem, the
TI-POMDP is demonstrated on a modified version of the
Tiger Game introduced by Kaelbling (1996) and expanded
into a multiagent game by Doshi (Doshi 2004). Two agents
must choose which of two doors to open. Opening one door
provides a reward while the other frees a tiger that penal-
izes the agent. Agents may open the left door, open the right
door, or listen. Listening has a probability of correctly hear-
ing which door hides the tiger. Opening a door resets the
location of the tiger and the reward, starts a new game, and
results in a squeak that lets the other agent know the game
was reset. The Cooperative Tiger Game (CTG) domain is
limited to two agents to reduce the decision complexity and
eliminate observability issues created by including a larger
number of agents.

In the CTG both agents must cooperate to open the door
with the reward. Every time the agents cooperate, the reward
value doubles for the next game. One agent can betray the
other by opening the tiger door when the other agent tries to
open the reward door. The betraying agent receives double
the reward value while the betrayed agent is penalized. An
agent that believes the other agent is going to betray him
can reset the reward back to its original level. Agent trust
levels can fluctuate which changes the probability that one
agent will betray another. Agents communicate prior to each
turn to reach a non-binding agreement on which action to
take. The CTG used in the demonstration had ten separate
trust levels, corresponding to the number of times an agent
cooperates before betraying the other agent. An agent’s trust
level could transition to any other trust level. For most of the
simulations, the probability of transition was 0.05, but a 0.1
and 0.2 probability were also used for comparison in Table
1.

Figure 1 shows the changes in trust levels as agents coop-
erate and compete with each other. Agent 2’s betrayal level
limits the amount of cooperation between the agents and in-
directly causes Agent 1’s trust level to change. Agent 2’s
betrayal level changes due to random corruption or redemp-
tion.

Figure 2 illustrates the state transition process an agent
undergoes. It does not include the belief model update the
agent uses to transition between Trusting and Not Trusting
beliefs. It is important to note that the Not Trusting belief
applies if the agent has been corrupted or the agent believes
the other agent has been corrupted. In either situation, the
agent chooses to open door with the tiger to maximize its
reward.

102

I Agent1’s
sl Trust Level
8 —_— === Agent2’s
G — ' BetrayLlevel
] 7 [Jn— etray Level
9 —_— -
% 6 [T— L f Cooperate
a5 T T
e @® Betray
o ' °
© t —:0A t Redeem
2 1t 1t 1t 1t 1t 1t O Reset
1|t 1 T T 1T 1

Figure 1: The trust interactions between agents playing the
CTG.

I-POMDP Applied to the CTG

During the game, the individual agents must update their
beliefs about the location of the tiger as well as their model
of the other agent. The agents start each game with no prior
knowledge about the location of the tiger. Hearing the tiger
growl on a given side causes the agent to increase its belief
that the tiger is on that side and decrease its belief in the
tiger being on the other side. Attempting to open a door or
hearing a door creak causes the agent to reset its belief about
the location of the tiger to not prefer either side.

Agent a’s model of agent b is updated after each turn. If
agent b’s actions correspond to the model, then agent a’s
model does not change. If agent b’s actions do not corre-
spond to the model, then agent a’s model is changed, switch-
ing agent b’s trust rating.

When neither agent is corrupted and their belief models
trust the other agent, both agents listen until they agree on
the reward’s location and then open the corresponding door.
This sequence of actions maximizes the expected reward for
both agents and follows the belief update pattern utilized by
Doshi.

As the game progresses agent b randomly becomes cor-
rupted and the reward level reaches agent b’s betrayal thresh-
old. Agent b continues to listen until it can determine where
the tiger is. If agent b believes that agent a trusts it, agent
b announces that it wants to open the door with the reward.
Once agent a agrees, agent a attempts to open the door with
the reward and agent b opens the door with the tiger result-
ing in a large penalty for agent a and a double reward for
agent b.

Based on the penalty, agent a determines that agent b lied
and opened the door with the tiger. At this point, agent a
updates its model to not trust agent b at the previous reward
value and agent b’s model is updated to assume that agent
a no longer trusts it. The game effectively becomes capped
as agent a will always reset the game prior to reaching the
reward value it was betrayed at.

Eventually, agent b’s corruption is removed and agent b
must now reestablish its trust with agent a. When the re-
ward approaches the level that a does not trust b, agent b can
immediately announce that it is going to open a door prior
to listening to determine which side holds the tiger. Agent b

Believe
Tiger Left

L = Listen

OL = Open Left
Betraying

OR = Open Right

No Location

Belief

S =Squeak
GL = Growl Left

GR = Growl Right
R = Reset

Believe
Tiger Right

T =Trusting
NT/B = Not Trusting or

NR = Not Ready (Other Agent)

Figure 2: The state-action-observation transitions for the Cooperative Tiger Game

is guaranteed to take a penalty, either for releasing the tiger
or for trying to open the reward without agent a’s help, but
agent b’s trust rating is restored and the two agents start co-
operating again.

To aid agent decisions, a horizon was used to look ahead.
An agent examined the possible outcomes for a specified
number of decisions and chose the decision path that led to
the highest expected reward. An agent’s decision was based
on maximizing its future reward, not the necessarily the im-
mediate reward for that decision. A horizon of one results in
an agent always making a greedy, immediate choice while
a larger horizon attempts to find a better end game solu-
tion at the cost of increased computation. All agents used
the same horizon level to eliminate the horizon effect where
one agent consistently outperforms another by conducting a
deeper search.

A CTG simulation was used to demonstrate the algorithm.
The agents played one hundred iterations of a fifty game
series using a horizon of ten games. Each time the agents
cooperated, the reward level increased, while any other out-
come reset the reward level to one. If the reward level was
greater than or equal to an agent’s betrayal level, the agent
attempted to betray. If the reward level was greater than or
equal to an agent’s trust level of the other agent, the agent
refused to cooperate. During simulation, the agents cooper-
ated 77 percent of the time, betrayed each other 8.5 percent
of the time, and spent 14.5 percent of the simulation either
redeeming themselves or reseting the game. Agents consis-
tently cooperated when the stakes were low (the first three
consecutive games), but rarely went past five consecutive

103

games before betraying each other or refusing to cooperate.
Agents did have trouble detecting when the other agent was
corrupted to lower level in the game. If the agents had coop-
erated five consecutive times before agent a was corrupted,
and agent a’s new betrayal level was set at three, then agent
a would betray agent b during the next (sixth) game. Agent
b believed agent a’s corruption level was six giving agent a
the opportunity to betray agent b at during the third game
after the reward reset.

Table 1 shows the percentage of time the agents take a
particular action. As the probability of an agent being cor-
rupted increases, the agents cooperate slightly less while the
number of betrayal, redemption, and reset occurrences in-
crease. Table 2 shows the different reward levels obtained
by three separate algorithms and the typical difference in re-
wards achieved by the two agents during the same game.
All three algorithms used ten trust levels and a horizon of
ten. The memory function in the trust vector approach re-
duced the effect of an event five percent each time step.
If the higher scoring agent achieved 100 points using the
TI-POMDP algorithm, the other agent’s score was twenty-
nine points lower. On average, TI-POMDP agents scored
higher than both I-POMDP and trust vector agents. The
TI-POMDP algorithm reduced the number of reset and re-
demption occurrences at lower reward levels which allowed
more cooperation and higher scores. The I-POMDP algo-
rithm didn’t utilize the reset option, leading to an increase
of betrayals. The vector trust had a large increase of resets
because the memory function would make the agent suspi-
cious. Table 3 shows the percentage of time the agents take

Agent Action | Agent Corruption Rate
0.05 0.1 0.2
Cooperate 795 768 747
Betray 74 88 94
Redeem 10.1 106 114
Reset 30 38 45

Table 1: Percentage of agent actions with various rates of

agent corruption

Average Reward
Average Reward Difference
Between Agents
TI-POMDP 1.0 0.29
I-POMDP 0.57 0.37
Vector Trust 0.86 0.23

Table 2: Normalized average rewards and the average dif-
ference between agent rewards.

a particular action for each of the three algorithms with a
corruption rate of 0.05.

Conclusion

The addition of trust to multi-agent environments allows
modeling of higher complexity interactions between agents.
Sneaky agents further increase the complexity by adding ex-
tra uncertainty to the environment as a helpful agent can
quickly become a hindering agent. The reward function
and state representation make the I-POMDP framework a
suitable method to capture trust modeling. A major draw-
back to [-POMDP approach is the intractable nature of the
problem, but approximation techniques can provide satisfac-
tory results. The cooperative tiger game demonstrates the
trust based I-POMDP’s ability to quickly react to a corrupt
agent, mitigate the damage inflicted, and maintain a consis-
tent level of cooperation within the system. Future work for
this research is to expand the problem domain to a less ob-
servable environment to test an agent’s ability to pinpoint the
cause of betrayal in a noisy environment. In addition, test-
ing on larger problems that include more agents is needed to
determine the computation requirements and limits of this
method.

Agent Action | TI-POMDP I-POMDP Vector
Trust
Cooperate 79.5 70.0 73.1
Betray 7.4 14.6 3.1
Redeem 10.1 154 2.4
Reset 3.0 0.0 214

Table 3: Percentage of agent actions for different trust algo-
rithms

104

References

Azzedin, F;; Ridha, A.; and Rizvi, A. 2007. Fuzzy trust for
peer-to-peer based systems. Proc. WASET 21:123-127.

Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilber-
stein, S. 2002. The complexity of decentralized control of
markov decision processes. Math. Oper. Res. 27(4):819—
840.

Doshi, P., and Gmytrasiewicz, P. J. 2005. A particle filter-
ing based approach to approximating interactive pomdps.
In Veloso, M. M., and Kambhampati, S., eds., AAAI, 969—
974. AAAI Press / The MIT Press.

Doshi, P. 2004. A framework for optimal sequential plan-
ning in multiagent settings. In McGuinness, D. L., and
Ferguson, G., eds., AAAI, 985-986. AAAI Press / The MIT
Press.

Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In McGuinness, D. L., and Ferguson, G., eds.,
AAAI, 709-715. AAAI Press / The MIT Press.

Kaelbling, L. P;; Littman, M. L.; and Cassandra, A. R.
1996. Planning and acting in partially observable stochas-
tic domains. Technical Report CS-96-08.

Rathnasabapathy, B.; Doshi, P.; and Gmytrasiewicz, P. J.
2006. Exact solutions of interactive pomdps using be-
havioral equivalence. In Nakashima, H.; Wellman, M. P,;
Weiss, G.; and Stone, P, eds., AAMAS, 1025-1032. ACM.

Ray, I., and Chakraborty, S. 2004. A vector model of trust
for developing trustworthy systems. In Samarati, P.; Ryan,
P. Y. A.; Gollmann, D.; and Molva, R., eds., ESORICS,
volume 3193 of Lecture Notes in Computer Science, 260—
275. Springer.

Rettinger, A.; Nickles, M.; and Tresp, V. 2007. Learn-
ing initial trust among interacting agents. In Klusch, M.;
Hindriks, K. V.; Papazoglou, M. P.; and Sterling, L., eds.,
CIA, volume 4676 of Lecture Notes in Computer Science,
313-327. Springer.

Roy, N.; Gordon, G.; and Thrun, S. 2004. Finding ap-

proximate POMDP solutions through belief compression.
Journal of Artificial Intelligence Research. To appear.

Seuken, S., and Zilberstein, S. 2008. Formal models and
algorithms for decentralized decision making under uncer-
tainty. Journal of Autonomous Agents and Multi-Agent Sys-
tems (JAAMAS).

Song, W.; Phoha, V. V.; and Xu, X. 2004. An adaptive
recommendation trust model in multiagent system. In /AT,
462-465. IEEE Computer Society.

Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. Maa*:
A heuristic search algorithm for solving decentralized
pomdps. In UAI, 576-590. AUAI Press.

Wang, Y., and Singh, M. P. 2006. Trust representation and
aggregation in a distributed agent system. In AAAI. AAAI
Press.

Wong, H. C., and Sycara, K. P. 2000. Adding security and
trust to multiagent systems. Applied Artificial Intelligence
14(9):927-941.

