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Abstract
We present a random generator of partially complete round
robin timetables that produces exclusively satisfiable in-
stances, and provide experimental evidence that there is an
easy-hard-easy pattern in the computational difficulty of com-
pleting partially complete timetables as the ratio of the num-
ber of removed entries to the total number of entries of the
timetable is varied. Timetables in the hard region provide a
suitable test-bed for evaluating and fine-tuning local search
algorithms.

Introduction
Local search algorithms (LSA’s) are widely used to effi-
ciently solve planning and scheduling problems (Béjar, &
Manyà 2000; Kautz, & Selman 1999). One difficulty with
LSA’s is that they are incomplete and cannot prove unsatisfi-
ability. Thus, benchmark instances for measuring the perfor-
mance of LSA’s have to be satisfiable. Unfortunately, it has
proven to be surprisingly difficult to develop random gen-
erators of hard satisfiable instances of combinatorial prob-
lems (Achlioptas et al. 2000).

Given a set of candidate benchmark instances, unsatisfi-
able instances are generally filtered out with complete algo-
rithms, and then only satisfiable instances are used to eval-
uate and fine-tune LSA’s. However, this approach is prob-
lematic in problems where incomplete algorithms can solve
larger instances than complete algorithms because the latter
cannot identify hard satisfiable instances.

In this paper we describe a random generator of satisfi-
able scheduling instances which are computationally diffi-
cult to solve with LSA’s for SAT. Our generator starts by
randomly creating a timetable T for a temporally dense sin-
gle round robin tournament using the incomplete satisfiabil-
ity solver WalkSAT (Selman, Kautz, & Cohen 1994). Then,
it generates a partially complete round robin timetable T ′ by
randomly removing a given number of entries of T in such
a way that the number of removed entries in each column
and each row are approximately equal. The underlying gen-
eration model guarantees that T ′ can be completed into a
feasible timetable, and has the advantage that the expected
hardness of completing a partially complete timetable can be
finely controlled by tuning the number of removed entries.
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In order to investigate the hardness of the instances of our
generator we conducted a comprehensive experimental in-
vestigation. We observed that there is an easy-hard-easy pat-
tern in the computational difficulty of completing partially
complete timetables with LSA’s for SAT as the ratio of the
number of removed entries to the total number of entries is
varied. Timetables in the hard region provide a suitable set
of randomly generated satisfiable scheduling benchmarks.

We considered the generic problem solving approach that
consists in modeling combinatorial problems as SAT in-
stances and then solving the resulting instance with a SAT
solver. In the last years the planning as satisfiability ap-
proach has gained popularity and has allowed the creation
of planning systems like Blackbox (Kautz, & Selman 1999).
The scheduling as satisfiability approach was used by Craw-
ford & Baker (Crawford, & Baker 1994) to solve the job
shop problem and by Béjar & Manyà (Béjar, & Manyà
1999; 2000) to create timetables for a variant of round
robin tournaments. The generation of satisfiable instances
for the quasigroup completion problem was investigated
by Achlioptas, Gomes, Kautz & Selman (Achlioptas et al.
2000; Gomes, & Selman 1997), as well as in (Kautz et al.
2001). Their papers inspired our work on the round robin
completion problem.

The paper is structured as follows. Firstly, we introduce
the round robin problem. Secondly, we describe the ran-
dom generator of partially complete timetables. Thirdly, we
present and discuss the experimental investigation.

The round robin problem
In this paper we consider the timetabling problem for tempo-
rally dense single round robin tournaments (DSRR): given
an even number of teams n, the DSRR problem consists in
distributing n(n−1)/2 matches in n−1 rounds in such a way
that each team plays each other team exactly once during the
competition. Figure 1 shows a 6-team DSRR timetable. We
represent DSRR timetables for n teams by an n × (n − 1)
matrix o of variables, where variables ot,r tell the opponent
team against which team t plays in round r.

The DSRR problem for n teams can be represented as a
constraint satisfaction problem (CSP) (Henz et al. 2001) as
follows:
• The set of variables is formed by all variables ot,r in ma-

trix o.
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teams/rounds 1 2 3 4 5
1 2 4 6 3 5
2 1 3 5 6 4
3 5 2 4 1 6
4 6 1 3 5 2
5 3 6 2 4 1
6 4 5 1 2 3

Figure 1: A 6-team DSRR timetable

1 2 3 4 5 6
1 X 1 4 2 5 3
2 1 X 2 5 3 4
3 4 2 X 3 1 5
4 2 5 3 X 4 1
5 5 3 1 4 X 2
6 3 4 5 1 2 X

Figure 2: A symmetric quasigroup

• The domain Dot,r of each variable ot,r is {1, . . . , n}.

• The set of constraints is formed by the following con-
straints:

– all-different(ot,1, . . . , ot,n−1), for every t ∈
{1, . . . , n}, and

– round-matches(o1,r, . . . , on,r), for every r ∈
{1, . . . , n− 1}.

The constraints all-different and round-matches
are defined as follows:

all-different(x1, . . . , xm) =
{(v1, . . . , vm) ∈ Dx1

× · · · ×Dxm
|∀i,j,i6=j vi 6= vj}

round-matches(x1, . . . , xm) =
{(v1, . . . , vm) ∈ Dx1

× · · · ×Dxm
|

∀i,j,i6=j vi 6= i ∧ vi = j ↔ vj = i}

The all-different constraint expresses that each
row of a DSRR timetable contains every team only once,
and the round-matches constraint expresses that each
column groups the teams into matches; each column repre-
sents all the matches of one round.

Next, we define the SAT encoding of the n-team DSRR
problem used in the experimental investigation.

1. The set {pki,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, 1 ≤ k ≤
n, i 6= k} is the set of propositional variables. The in-
tended meaning of pkij is that team i plays against team k
in round j.

2. The constraint all-different(pi,1, . . . , pi,n−1) is

defined as follows:∧
1 ≤ j < n

( ∨
1 ≤ k ≤ n

k 6= i

pki,j ∧

∧
1 ≤ k1 < k2 ≤ n

k1 6= k2 6= i

(¬pk1
i,j ∨ ¬p

k2
i,j)
)
∧

∧
1 ≤ j1 < j2 < n

j1 6= j2

∧
1 ≤ k ≤ n

k 6= i

(
¬pki,j1 ∨ ¬p

k
i,j2

)

3. The constraint round-matches(p1,j , . . . , pn,j) is de-
fined as follows:∧

1 ≤ i ≤ n

∧
1 ≤ k ≤ n

k 6= i

(
¬pki,j ∨ pik,j

)

We define the DSRR completion problem to be the prob-
lem of determining whether a partially complete DSRR
timetable can be completed into a feasible timetable. In the
experiments, we show that completing a DSRR timetable is
computationally harder than constructing a full timetable.

The DSRR completion problem is NP-complete. This fol-
lows from the fact that it is equivalent to the problem of com-
pleting partially complete symmetric quasigroups, which
is known to be NP-complete (Colbourn 1983). Figure 2
shows the symmetric quasigroup of size 6 that corresponds
to the DSRR timetable of Figure 1. We use the symbols
{1, 2, 3, 4, 5, X} to fill the entries of the quasigroup: the en-
try in row i and column j is r ∈ {1, 2, 3, 4, 5} if team i plays
against team j in round r, and the entries of the diagonal of
the quasigroup are X .

A random generator of partially complete
timetables

The random generator of partially complete DSRR timeta-
bles that we have designed and implemented has two pecu-
liarities: (i) produces exclusively satisfiable instances, and
(ii) the number of removed entries in each column and each
row are approximately equal. It has been shown recently that
removing entries in a balanced way allows one to generate
hard quasigroup completion problems (Kautz et al. 2001).

The pseudo-code is shown in Figure 3: we represent en-
tries by ot

′
t,r and refer to removed entries as holes. The in-

tended meaning of ot
′
t,r is that team t plays against team t′ in

round r.
In the experimental investigation, we used WalkSAT and

the above defined SAT encoding to randomly generate a
complete DSRR timetable. SAT encodings of partially com-
plete timetables were obtained by adding the list of holes to
the SAT encoding of the corresponding complete timetable.
As the resulting encodings had a considerable number of
unit clauses, they were first simplified by applying unit prop-
agation and then solved with WalkSAT.

It is worth mentioning that WalkSAT takes less than 1
minute to find a complete timetable for 40 teams. Systematic
satisfiability algorithms like Satz (Li, & Anbulagan 1997)
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procedure Random-Generator
input: an even number of teams n and an even number of holes h
output: an n-team partially complete timetable with h holes

h′ := b h
n−1
c+ 1

T := a randomly generated n-team complete DSRR timetable
while h > 0 do

S := set of non-empty entries ot
′
t,r of T such that rows t, t′ have

less than h′ + 1 holes and column r has less than h′ holes;
ot

′
t,r := a randomly selected entry of S;
T := T with entries ot

′
t,r and ott′,r removed;

h := h− 2;
endwhile
return(T );

Figure 3: Random generator of partially complete timetables
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Figure 4: Computational cost profiles for 30, 32 and 36
teams

are not able to solve complete DSRR timetable for 14 teams
after 48 hours.

Experimental results
In the experimental investigation we first used the random
generator of partially complete timetables to produce sets of
instances for different number of teams: n = 30, 32, 36; we
considered these values of n in order to get experimental
results in a reasonable amount of time. For all the sets, we
varied the ratio of the number of holes (h) to the total num-
ber of entries of the timetable (n × (n − 1)) from 0.350 to
0.420 for n = 30, 32, and from 0.320 to 0.400 for n = 36;
we incremented that ratio by 0.001 in each step. At each set-
ting we ran WalkSAT on 20 partially complete timetables.
Each instance was executed until 25 solutions were found
using no cutoff (maxflips), 30% noise for n = 30, 26% noise
for n = 32, and 20% noise for n = 36. We used approxi-
mately optimal noise parameter settings for each timetable
size. Such experiments were performed on PC’s with 500
MHz Pentium III Processors under Linux Operating System.
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Figure 5: Normalized computational cost profiles for 30, 32
and 36 teams
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Figure 6: Mean and median number of seconds for 32 teams

Figure 4 visualizes the easy-hard-easy pattern in the
computational difficulty of completing partially complete
timetables with WalkSAT for n = 30, 32, 36. Along the hor-
izontal axis is the ratio of the number of holes to the total
number of entries of the timetable, and along the vertical
axis is the median number of flips needed to solve an in-
stance.

Figure 5 is like Figure 4 but the median number of flips
are normalized. One can observe that there is a shift in the
location of the hardness peak as a function of the number of
teams.

Figure 6 visualizes the easy-hard-easy pattern for n = 32
showing seconds instead of flips. Along the vertical axis are
the mean and median number of seconds needed to solve an
instance.

From the experimental results we can conclude that, when
we use our random generator of partially complete timeta-
bles, there is an easy-hard-easy pattern in the computational
difficulty of completing partially complete timetables with
LSA’s for SAT as the ratio of the number of removed entries
to the total number of entries is varied. Thus, the expected
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hardness of completing a timetable can be finely controlled
by tuning the number of removed entries, and timetables
in the hard region provide a source of suitable scheduling
benchmarks to evaluate and fine-tune LSA’s.

Taking into account the existing work on the quasi-
group completion problem (Achlioptas et al. 2000; Kautz
et al. 2001), and the equivalence between the DSRR com-
pletion problem and the problem of completing partially
complete symmetric quasigroups, we conjecture that the
easy-hard-easy pattern could also be observed if we use non-
Boolean encodings as well as algorithms other than Walk-
SAT. A crucial point for obtaining this difficulty profile was
the generation model of partially complete timetables.
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