
DISCOPLAN: An Efficient On-Line System
for Computing Planning Domain Invariants∗

Alfonso Gerevini1 Lenhart Schubert2

1 Dipartimento di Ingegneria dell’Informazione, Università di Brescia
Via Branze 38, 25123 Brescia, Italy. E-mail: gerevini@ing.unibs.it

2 Department of Computer Science, University of Rochester
Rochester, NY 14627-0226. E-mail: schubert@cs.rochester.edu

Abstract
DISCOPLAN is an efficient system for discovering state
invariants in planning domains with conditional effects.
Among the types of invariants found are implicative con-
straints relating a fluent predication to a fluent or static pred-
ication (with allowance for static supplementary conditions),
single-valuedness constraints, exclusiveness constraints, and
several others. The algorithms used are polynomial-time for
any fixed bound on the number of literals in an invariant.
Some combinations of constraints are found by simultane-
ous induction, and the methods can be iterated by expanding
operators using previously found invariants. The invariants
found by DISCOPLAN have been shown to enable large per-
formance gains in SAT planners, and they can also be helpful
in planning domain development and debugging.

Introduction
State invariants (or state constraints) in planning are prop-
erties of objects or relationships among objects that hold in
all states reachable from the initial state. For example, a fa-
miliar invariant in a blocks world is the property that that if
one block is on another, the latter is not clear. In our termi-
nology, this is an implicative constraint. Another example
is that a block can be on at most one other block; this is a
single-valuedness constraint (sv-constraint).

A point that has become widely recognized in the plan-
ning community (and that we amplify in what follows) is
that knowledge of state invariants is important for efficient
planning. However, such knowledge cannot in general be
assumed to be available a priori in a given planning do-
main. Rather, planning domains are generally considered
fully specified once a set of operators with well-defined pre-
conditions and effects has been supplied, along with an ini-
tial state. This is defensible since state invariants are im-
plicit in the specification of the operators and initial state;
i.e., under a STRIPS assumption the only properties and re-
lationships that change when an operator is applied are those
spelled out in the effects of the operator. So a separate spec-
ification of what remains unchanged when operators are ap-
plied would be logically redundant. However, it is far from

∗The on-line DISCOPLAN system can be accessed at
http://zeus.ing.unibs.it/discoplan. DISCOPLAN is written in Com-
mon Lisp.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

obvious from inspection of a given set of planning operators
and an initial state what the invariants of the domain are. The
goal of our research has been to formulate automatic, effi-
cient methods for inferring the most important such invari-
ants, and to implement these methods in our DISCOPLAN
system.

The importance of state invariants for efficient planning
is that they can be used to radically restrict the search space.
This is so for any approach to planning that involves ex-
plicit or implicit exploration of incompletely specified possi-
ble states of the world, as is the case for deductive planning,
regression planning, bidirectional planning, and planning by
incremental constraint satisfaction (in particular, SAT-based
planning).

In our work we have focused on SAT-based planners.
These implicitly search a space of state sequences, con-
strained by disjunctions of ground literals. Their perfor-
mance depends critically on the invariants added (as ground
instances) to the mix of disjunctions, and intuitively this is
because state invariants constrain the alternative states that
are possible at each time step under consideration. Some
results showing the dramatic improvements in the perfor-
mance of SAT-based planners like SATPLAN (Kautz and
Selman 1996) and MEDIC (Ernst, Millstein, and Weld
1997) obtainable through the use of automatically inferred
invariants are included in (Gerevini and Schubert 1998).

DISCOPLAN finds a variety of different types of con-
straints, including static (type) constraints (most impor-
tantly, supertype / subtype and exclusion relations among
static monadic predicates – ones unaffected by any opera-
tor), and predicate domain constraints (sets of possible argu-
ment tuples corresponding to each predicate in the domain,
after 0, 1, ..., t actions have occurred). But the majority of its
algorithms are devoted to the discovery of state invariants,
using a hypothesize-and-test paradigm. All the algorithms
instantiating this paradigm are applicable to sets of oper-
ators conforming with UCPOP or PDDL syntax (Penberthy
and Weld 1992; Ghallab et al. 1998), allowing for when-
clauses (conditional effects) but not disjunctive or univer-
sally quantified conditions. We will be referring to the un-
conditional part of an operator as its primary when-clause.
The allowance for conditional effects is a major distinction
of DISCOPLAN from related systems.

Very briefly, the hypothesize-and-test paradigm consists

Proceedings of the Sixth European Conference on Planning

284



of hypothesizing invariants Γ of some particular syntactic
type, such as implicative constraints (IMPLIES φ ψ) where
φ and ψ are literals that may contain universal variables,
augmenting these hypotheses with potential supplementary
static conditions, and then testing them against all when-
clauses of all operators and against the given initial condi-
tions. In the testing phase, minimal sets Σ of supplementary
conditions are found, up to sets of some limited size (e.g.,
2 or 3) that suffice to ensure that Σ ⇒ Γ holds in all states
reachable from the initial state. The hypothetical invariants
Γ of a particular type are chosen by inspecting the precon-
ditions and effects of particular operators, to find conditions
that appear to become or remain true when certain kinds of
effects occur. The idea is to choose the constituents of Γ
in such a way that a proof by induction of the invariance of
Γ will be at least locally enabled. In this way large num-
bers of syntactically possible invariants are eliminated from
consideration. The testing phase can be viewed as an auto-
mated inductive proof attempt (with addition of supplemen-
tary conditions as needed to allow the proof to succeed). An
important point is that Γ may actually consist of multiple
hypotheses that can be proved to be invariants by simultane-
ous induction. Typically, such multiple hypotheses consist
of an implicative hypothesis (IMPLIES φ ψ) along with sv-
hypotheses corresponding to argument positions in φ and ψ
occupied by universal variables occurring in only one of φ,
ψ. The point is important since the invariance of the individ-
ual formulas in such cases cannot be proved in isolation. Our
various hypothesize-and-test algorithms have been proved to
yield correct invariants, and run in polynomial time for fixed
bound on the number of supplementary conditions Σ added
to Γ.

In a little more detail, the hypothesize-and-test algorithms
conform with the following structure (iterating over all pos-
sible candidate constraints Γ found in the first step).

1. Hypothesize a constraint Γ based on co-occurrences of
literals in a when-clause w of an operator and in the cor-
responding primary when-clause w1 (if different). For
example, effects φ and ψ might lead to an implicative
hypothesis (IMPLIES φ ψ), and possibly sv-hypotheses
about the predicates involved.

2. Add a set of candidate supplementary conditions
{σ1, ..., σn}, consisting of the static preconditions of w
and w1 and if w 6= w1, the negations of static precondi-
tions of other when-clauses (except ones that unify with
static preconditions of w or w1 or their negations).

3. Test hypothesis Γ relative to each when-clause of each op-
erator, using the relevant verification conditions; for each
apparent violation of Γ find the corresponding possible
“excuses” for the violation. An excuse is a set of provi-
sos {σ′

1, ..., σ
′
m}, chosen from the candidate supplemen-

tary conditions, that weaken the hypothesis sufficiently to
maintain its truth. If a violation has no excuses, abandon
the hypothesis Γ, otherwise record the set of possible ex-
cuses of the violation on a global list.

4. Find all minimal subsets (up to a given size, e.g., 3) of
{σ1, ..., σn} that “cover” all apparent violations of Γ; a
subset of {σ1, ..., σn} covers an apparent violation of Γ if

(define (operator Put)
:parameters (?x ?y ?z)
:precondition (and (on ?x ?z) (clear ?x)

(neq ?x Table) (neq ?y ?z) (neq ?x ?y))
:effect (and (when (eq ?y Table)

(and (on ?x ?y) (clear ?z) (not (on ?x ?z))))
(when (and (neq ?y Table) (clear ?y))
(and (on ?x ?y) (clear ?z) (not (on ?x ?z))

(not (clear ?y))))) )

Figure 1: A Formalization of the blocks world.

it contains all elements of at least one “excuse” for that
violation;

5. Check hypothesis (Γ σ′
1..., σ

′
m) (i.e., the original hypothe-

sis together with added provisos) for each of the minimal
subsets {σ′

1, ..., σ
′
m} of {σ1, ..., σn} found in the previous

step for truth in the initial conditions of the problem being
solved; return the variant hypotheses that pass this test as
the verified hypotheses.

The verification conditions referred to in step 3 depend
on the form of Γ, and are designed to ensure that if Γ to-
gether with specified supplementary conditions holds in a
given state, it also holds in every possible successor state.
For example, in the case of a simple implicative constraint
(IMPLIES φ ψ) together with a set of static supplementary
conditions, the verification conditions say (roughly) that any
operator effect matching φ must be accompanied by an ef-
fect or persistent precondition matching ψ, or else the pre-
conditions must entail the falsity of a supplementary con-
dition; and similarly for the contrapositive, (IMPLIES ¬ψ
¬φ). (The conditions are actually slightly more complicated
because of the allowance for conditional effects.)

Types of DISCOPLAN Invariants
The input of DISCOPLAN is a domain description consist-
ing of the specification of an initial state and a set of ex-
tended STRIPS operators which may involve conditional ef-
fects, negated preconditions, constants, typed and untyped
parameters (Figure 1 gives a very simple formalization of
the blocks world containing some of these fetures). In the
following we describe the types of invariants that are dis-
covered by the current version of DISCOPLAN (for a more
detailed description the reader is referred to (Gerevini and
Schubert 1998; 2000)).

Predicate Domain Constraints. Predicate domain con-
straints are sets of possible argument tuples corresponding
to each predicate in the domain after 0, 1, ..., t actions have
occurred. These constraints are computed using a simplified
version of the planning graph for the given problem (Blum
and Furst 1995).

Static Predicates and Static Constraints. Static con-
straints are invariants involving type-predicates, i.e., static
monadic predicates that occur positively in the initial state –
ones unaffected by any operator. Static constraints consist of
a (possibly empty) set of objects for each type-predicate and
a list of supertype, subtype, and incompatible relationships
between type-predicates.

285



Simple Implicative Constraints. Simple Implicative
Constraints are constraints of form ((φ ⇒ ψ) σ1...σk),
where φ, ψ, and σ1, ..., σk are function-free literals, i.e.,
negated or unnegated atomic formulas whose arguments are
constants or variables. Such constraints are to be interpreted
as saying “In every state, for all values of the variables, if
φ then ψ, provided that σ1, ..., and σk”. We assume that
the variables occurring in φ include all those occurring in ψ
and in the supplementary conditions σ1, ..., σk. The pred-
icate in φ is a fluent predicate, while ψ may be fluent or
static. However, if φ contains variables that do not occur
in ψ, then ψ is required to be “upward monotonic”, in the
sense that no instances of it can become false (¬ψ does
not unify with effect of any operator; this is certainly true
if ψ is static). Finally, we require σ1, ..., σk to be static.
The following is an example of this type of constraint in the
blocks world stating that the table cannot be on any block:
∀x, y ON (x, y)⇒ NEQ(x,TABLE ).

Single-valuedness Constraints. An sv-constraint states
that the value of a certain predicate argument is unique for
any given values of the remaining arguments. An example
of an sv-constraint is the following blocks-world constraint
stating that any object can be ON at most one other object:
∀x, y, z.(ON (x, y) ∧ON (x, z))⇒ y = z.

Implicative Constraints + Single-Valuedness Con-
straints. These invariants are formed by an implicative
constraint and a set of sv-constraints that are simultaneously
discovered by DISCOPLAN. We distinguish two cases
which require different verification conditions: the case of
subsumed variables and the case of non-subsumed variables.
The blocks-world constraint
((IMPLIES(ON?*X?Y)(NOT(CLEAR?Y)))

(NEQ?YTABLE))
is an example of a combined implicative and sv-constraint
for the first case. In general, the implicative constraints we
are considering here have as their antecedent a positive lit-
eral that contains at least one “starred” variable not occur-
ring in the consequent, and zero or more “unstarred” vari-
ables occurring in the consequent. The stars indicate that for
all values of the unstarred variables, the antecedent holds for
at most one tuple of values of the starred variables.

In the second case we have implications in which both an-
tecedent and consequent contain variables not contained in
the other. All such variables are “starred”, while the shared
variables are unstarred. An example is the following con-
straint from the Logistics domain:
((IMPLIES (AT?X?*Y) (NOT(IN?X?*Z)))

(OBJECT?X)).
This is an exclusive state constraint, i.e., it states that no ob-
ject can simultaneously be AT something and IN something
(and in addition an object can be AT no more that one thing,
and IN no more than one thing).

Antisymmetry Constraints. Antisymmetry constraints
are particular implicative constraints of the form

((IMPLIES (P t1 t2) (NOT (P t2 t1))) σ1 σ2...σn),
where t1 and t2 can be constants or universally quanti-
fied variables, and σ1, ..., σn are supplementary conditions

whose variables are a subset of {t1, t2}. An example of an
antisymmetry constraint in the blocks world is
∀x, y. ON (x, y)⇒ ¬ON (y, x),

i.e., if one object is on another, then the second is not on the
first.

OR and XOR Constraints. OR and XOR-constraints are
state constraints of the form

(([X]OR φ ψ) σ1 σ2...σn),
where φ and ψ are positive fluent literals, such that non-
shared variables are existentially quantified, while shared
variables are universally quantified, and where the variables
in σ1, σ2, ..., σn can only be variables shared by φ and ψ.
An example of an XOR-constraint in the logistics domain is
((XOR (AT?X?Y) (IN?X?Z)) (OBJECT?X)),

stating that in any reachable state, any object is either at
some place or in something.

Strict Single-Valuedness and n-Valuedness Constraints.
This type of invariant is a generalization of sv-constraints.
A nv-constraint states that a certain predicate can be bound
to at most n arguments for any given values of the remain-
ing arguments. A strict nv-constraint states that a certain
predicate is bound to exactly n arguments for any given val-
ues of the remaining arguments. An example of a strict nv-
constraint with n = 1 in the blocks world is the invariant
stating that any block is on exactly one thing (either another
block or the table).

Using “Expanded Operators” to Infer Further Con-
straints. DISCOPLAN’s package includes routines for ex-
panding an operator with a set of given invariants. The op-
erator expansion consists of enriching the operator descrip-
tion with additional preconditions and effects that are en-
tailed by the given invariants. By using expanded operators
DISCOPLAN may infer new invariants, which can be used
to expand the operators again. This can be iterated until no
new constraints are inferred.

Constraints with Exceptions. Some hypotheses are re-
jected by DISCOPLAN only because they are not veri-
fied against the initial state. For example, consider the
blocks world formalization of Figure 1, where we have just
one operator in which the parameters are not typed. If
we have the simple initial state ((ONATABLE) (ON CA)
(CLEARC) (ONBTABLE) (CLEARB)), DISCOPLAN dis-
covers (ON?X?*Y), which then becomes a hypothesis with
a strict sv-constraint ((ON?X?Y!1) in DISCOPLAN format).
But (ON?X?Y!1) is not confirmed because the test against
the initial state fails. This is because the object TABLE is on
nothing in the initial state. In order to deal with these excep-
tions, we have recently weakened the test against the initial
state, so that a hypothesis can be verified by restricting the
domain of certain variables. In our example (ON?X?Y!1)
can be satisfied in the initial state, provided that ?X is not
instantiated to TABLE. Hence, DISCOPLAN weakens the hy-
pothesis by excluding TABLE from the domain of ?X, and
derives ((ON?X?Y!1) (NOT(MEMBER?X(TABLE)))).

These exceptions are computed during the test against the
initial state by keeping track of unifiers that assign anoma-
lous tuples of values to the unconstrained variables, i.e.,

286



PDDL
to

UCPOP
compiler

DISCOPLAN
to

F.O.L.
compiler

PLANNER

Operators and
Init/goal states

(PDDL or UCPOP)

DISCOPLAN
HUMAN USER

PDDL UCPOP

Figure 2: General scheme of DISCOPLAN’s input/output

tuples for which strict single-valuedness is violated (e.g.,
TABLE/?X in the previous example), and weakening the
constraint by excluding these values from the domains of
the relevant variables.

This analysis of the initial state is also used to de-
rive additional supplementary conditions rescuing hypothe-
ses that were rejected because a required simultaneous
sv-constraint was not satisfied in the initial state (while
all the other required verification conditions were satis-
fied). For example, if in the logistics domain the initial
state of a problem contains the facts (AT ORANGES MIAMI),
(AT ORANGES ORLANDO) and (OBJECT ORANGES), then
the invariants
((IMPLIES(AT?X?*Y)(NOT(IN?X?*Z)))

(OBJECT ?X))
cannot be inferred. However, DISCOPLAN infers
((IMPLIES (AT?X?*Y) (NOT(IN?X?*Z)))

(OBJECT?X) (NOT(MEMBER?X(ORANGES)))).1

Interacting with DISCOPLAN on-line
The general input/output scheme of DISCOPLAN is depicted
in Figure 2. The input domain and problem descriptions
can be specified using the syntax of either UCPOP or PDDL.
Since the core functions of DISCOPLAN assume UCPOP de-
scriptions, when the input is specified using PDDL, it is au-
tomatically translated into a UCPOP set of operators.

The output of DISCOPLAN can be given as input to ei-
ther a planner that can exploit this information, or to a do-
main developer, as an aid to domain specification and de-
bugging. The syntax of the output can be either FOL or the
compact format using implicit quantification and “starred”
variables as in the previous sections. The compactness of
the starred-variable format is due to the fact that it allows
an implicative or exclusive constraint to be augmented with
simultaneously dicovered sv-constraints merely by starring
some variables, rather than adding explicit FOL formulas.
The FOL description of the state constraints is obtained by a
postprocessing step translating the constraints computed in
DISCOPLAN format into FOL.

DISCOPLAN on-line is a version of the system that can be
remotely run through any web browser. In particular, from

1The complete output for these examples can be
seen by running DISCOPLAN on-line at the web site
http://zeus.ing.unibs.it/discoplan.

the “test and demo” page of the web site of DISCOPLAN
the user can run DISCOPLAN either on a set of predefined
domains and problems, or on any other domain and prob-
lem that is supplied by the user from her/his local machine
(see Figure 3). Before running the system, the user can set
some parameters, such as the style of the output, the maxi-
mum number of supplementary conditions an invariant can
have, the automatic computation of the operator parameter
domains using techniques described in (Gerevini and Schu-
bert 1996), etc. Finally, the user can inspect the domain and
problem selected.

Related Work and Conclusions
We have sketched how many natural types of state invari-
ants in planning domains with conditional effects can be
efficiently inferred, and have described the implemention
of our techniques in the DISCOPLAN system. The invari-
ants inferred include predicate domain constraints, relations
among static type predicates, implicative constraints, strict
and non-strict sv-constraints, combinations of implicative
and sv-constraints (where these cannot be inferred in isola-
tion), and OR and XOR constraints. All invariants are found
by algorithms that are polynomial-time for any fixed bound
on the number of literals in an invariant, and the algorithms
can be iterated to find additional invariants after expanding
operators using previously found invariants. The outputs can
be presented as FOL formulas or in a concise format with
implicit universal quantification and “starred” variables indi-
cating single-valuedness. The automatically derived invari-
ants have been shown to radically boost the performance of
SAT planners, and are also potentially useful for other plan-
ning styles, and as a help in domain analysis and debugging.

Other approaches for the automatic inference of state in-
variants have been proposed including (Kelleher and Cohn
1992; Kelleher 1996; Fox and Long 1998; Rintanen 1998;
2000; Scholz 2000), but to the best of our knowledge the
only other implemented system that is available is Fox and
Long’s TIM. A major difference between the DISCOPLAN
and these approaches is that DISCOPLAN can process do-
mains specified using a more expressive planning language.
In particular, TIM does not handle operators with conditional
effects and negated preconditions. Moreover, DISCOPLAN
infers some types of constraints that are not inferred by
TIM, such as antisymmetry constraints, XOR-constraints
and some implicative constraints involding variable bind-
ing constraints or predicates without parameters.2 On the
other hand, some of TIM’s “state membership invariants”
and “uniqueness invariants” are not inferred by the currently
implemented version of DISCOPLAN.

It remains unclear how important the “omissions” in each
system, relative to the other, are for planning and domain
analysis purposes. In any case a reasonable strategy at this
time, for builders of planning systems that can benefit from
state invariants, would be to combine the invariants found by

2Examples of these constraints are: ((IMPLIES
(ON?X?Y) (NEQ?X?Y))) in the blocks works, and
((IMPLIES (HASBANANAS) (HASKNIFE)) in the Monkey
domain.

287



Figure 3: Test and Demo page of DISCOPLAN on-line

TIM and DISCOPLAN.
We have developed some further algorithms for inferring

invariants, beyond those implemented in DISCOPLAN. The
most general of these is an algorithm for inferring n-ary dis-
junctions of fluent literals, together with sv-constraints and
static supplementary conditions, for n not limited to 2 (as at
present). This algorithm is a candidate for future implemen-
tation.

References
Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
95), 1636–1642. Montreal, CA: Morgan Kaufmann.
Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic
SAT-compilation of planning problems. In Proceedings of
the Fifteenth International Joint Conference on Artificial In-
telligence (IJCAI-97), 1169–1176. Morgan Kaufmann.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research (JAIR) 9:367–421.
Gerevini, A., and Schubert, L. 1996. Accelerating Partial-
Order Planners: Some Techniques for Effective Search Con-
trol and Pruning. Journal of Artificial Intelligence Research
(JAIR) 5:95–137.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proceedings of
the Fifteenth National Conference of the American Associ-
ation for Artificial Intelligence (AAAI-98), 905–912. AAAI
Press/The MIT press.
Gerevini, A., and Schubert, L. 2000. Inferring state con-
straints in DISCOPLAN: Some new results. In Proceed-
ings of the Seventeenth National Conference of the American
Association for Artificial Intelligence (AAAI-00), 761–767.
AAAI press / The MIT Press.
Ghallab, M.; Howe, A.; Knoblock, G.; McDer-
mott, D.; Ram, A.; Veloso, M.; Weld, D.; and

Wilkins, D. 1998. PDDL – planning domain
definition language. Technical report, Available at
http://cs-www.cs.yale.edu/homes/dvm/.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In Pro-
ceedings of the Thirteenth National Conference of the Amer-
ican Association for Artificial Intelligence (AAAI-96).
Kelleher, J., and Cohn, A. 1992. Automatically synthesising
domain constraints from operator descriptions. In Proceed-
ings of the Tenth European Conference on Artificial Intelli-
gence (ECAI-92), 653–655. Wiley.
Kelleher, G. 1996. Determining general consequences of
sets of actions. Technical Report TR CMS.14.96, Liverpool
Moores University.
Penberthy, J., and Weld, D. 1992. UCPOP: A sound, com-
plete, partial order planner for ADL. In Proceedings of the
Third International Conference on Principles of Knowledge
Representation and Reasoning (KR’92), 103–114. Boston,
MA: Morgan Kaufmann.
Rintanen, J. 1998. A planning algorithm not based on di-
rectional search. In Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and
Reasoning (KR’98), 617–624. Morgan Kaufmann.
Rintanen, J. 2000. An iterative algorithm for synthesiz-
ing invariants. In Proceedings of the Seventeenth National
Conference of the American Association for Artificial Intel-
ligence (AAAI-00), 806–811. AAAI press / The MIT Press.
Scholz, U. 2000. Extracting state constraints from PDDL-
like planning domains. In Working Notes of the AIPS00
Workshop on Analyzing and Exploiting Domain Knowledge
for Efficient Planning, 43–48. AAAI press.

288




