
Time-Optimal Planning in Temporal Problems

Antonio Garrido and Eva Onaindia and Federico Barber
Dpto. Sistemas Informaticos y Computacion

Universitat Politecnica de Valencia
Camino de Vera s/n, 46022, Valencia (Spain)

Abstract

This paper presents TPSYS, a Temporal Planning SYS-
tem, which arises as an attempt to combine the ideas of
Graphplan and TGP to solve temporal planning prob-
lems more efficiently. TPSYS is based on a three-stage
process. The first stage, a preprocessing stage, facili-
tates the management of constraints on duration of ac-
tions. The second stage expands a temporal graph and
obtains the set of temporal levels at which propositions
and actions appear. The third stage, the plan extraction,
obtains the plan of minimal duration by finding a proper
flow of actions.

In real world planning problems which deal with time, it
is necessary to discard the assumption that actions have the
same duration. For instance, it is clear that in a logistics do-
main the action fly plane(London, Moscow) is longer than
fly plane(London, Paris). Hence, dealing with temporal
planning problems requires to handle more complex con-
straints because it is necessary to select the right execution
times for actions. Consequently, an important issue in tem-
poral planning is to guarantee the plan which minimizes the
global duration.

This paper builds on the work of Smith and Weld (the
Temporal Graphplan algorithm, TGP, presented in (Smith
and Weld 1999)) and examines the general question of in-
cluding temporality on actions in a Graphplan-based ap-
proach (Blum and Furst 1997) by guaranteeing the plan of
minimal duration. We present a Temporal Planning SYStem
(TPSYS) which consists of three stages: a preprocessing
stage, a temporal graph expansion stage and a plan extrac-
tion stage. The main features of TPSYS are:

• It is able to handle overlapping actions of different dura-
tion and guarantees the optimal plan, i.e. the plan of min-
imal duration.

• It defines a new classification of mutual exclusion rela-
tions: static mutexes which are time independent and dy-
namic mutexes which are time dependent.

• It expands a relaxed temporal graph (from now on
TG), without maintaining no op actions nor delete-edges,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

through temporal levels. Then, it performs a plan extrac-
tion (from now on PE) stage by selecting the appropriate
actions in the TG to achieve the problem goals.

Related Work
Although temporal features in planning are not usually man-
aged by classical planners, one of the first temporal planners
on the last decade was O-Plan (Currie and Tate 1991) which
integrates both planning and scheduling processes into a sin-
gle framework. Other planners, such as IxTeT (Ghallab and
Laruelle 1994), deal with resource availability and tempo-
ral constraints to represent constraints on time points. An
attempt to integrate planning and scheduling is performed
in HSTS (Heuristic Scheduling Testbed System (Muscet-
tola 1994)) which defines an integrated framework to solve
planning and scheduling tasks. This system uses multi-level
heuristic techniques to manage resources under the con-
straints imposed by the action schedule. The parcPLAN ap-
proach (El-Kholy and Richards 1996) manages multiple ca-
pacity resources with actions which may overlap, instantiat-
ing time points in a similar way to our approach.

TGP (Smith and Weld 1999) introduces a complex mu-
tual exclusion reasoning to handle actions of differing du-
ration in a Graphplan context. TPSYS combines features
of both Graphplan and TGP and introduces new aspects to
improve performance. The reasoning on conditional mutex
(involving time mutex) between actions, propositions and
between actions and propositions is managed in TGP by
means of inequalities which get complex in some problems
and may imply an intractable reasoning on large problems
(Smith and Weld 1999). On the contrary, the reasoning pro-
cess in TPSYS is simplified thanks to the incorporation of
several improvements:

• Static mutex relations between actions and between ac-
tions and propositions are calculated in a preprocessing
stage because they only depend on the definition of the
actions.

• TPSYS uses a multi-level temporal planning graph as
Graphplan where each level represents an instant of time.
While in TGP actions and propositions are only annotated
with the first level at which they appear in the planning
graph, TPSYS annotates all different instances of actions
and propositions produced along time. The compact en-

255

Proceedings of the Sixth European Conference on Planning



Action Dur Precs Effs

ld(B1, BC, H) 5
at(B1, H)
at(BC, H)
free(BC)

in(B1, BC)
¬at(B1, H)
¬free(BC)

mv(BC, H, U) 5 at(BC, H)
at(BC, U)
¬at(BC, H)

uld(B1, BC, U) 2 in(B1, BC)
at(BC, U)

at(B1, U)
free(BC)
¬in(B1, BC)

Table 1: Simplified Briefcase domain: necessary actions to
achieve the goal at(B1, U)

coding of TGP reduces vastly the space costs but it in-
creases the complexity of the search process, which may
traverse cycles in the planning graph. However, the PE in
TPSYS is straightforward because it merely consists of
obtaining the plan as an acyclic flow of actions through-
out the TG.

Our Temporal Planning SYStem
In TPSYS, a temporal planning problem is specified as a
4-tuple {Is,A,Fs,Dmax}, where Is and Fs represent the
initial and final situation respectively, A represents the set
of actions (with positive duration), and Dmax stands for the
maximal duration of the plan required by the user. Time is
modelled by R+ and their chronological order. A tempo-
ral proposition is represented by 〈p, t〉 where p denotes the
proposition and t ∈ R+ represents the time at which p is
produced. Hence, Is and Fs are formed by two set of tem-
poral propositions {〈pi, ti〉�ti ≤ Dmax}.

We will make use of the action domain defined in Table 1,
which presents a description of the actions of the Briefcase
domain, to show the behaviour of our system. Only three ac-
tions are defined, those which are necessary to transport a
book (B1) from home (H) to university (U) by using a brief-
case (BC).

First Stage: Preprocessing
TPSYS calculates the static mutual exclusions which will
allow us to speed up the following two stages. A mutex rela-
tionship between actions is defined as in Graphplan (Blum
and Furst 1997). Mutex between propositions appears as a
consequence of mutex between actions. Thus, two proposi-
tions p and q are mutex if all actions that achieve p are mutex
with all actions that achieve q.

Definition. Static mutex between actions. Actions a and
b are statically mutex if they cannot be executed in paral-
lel (Graphplan’s interference). For instance, in Table 1, ac-
tions ld(B1, BC, H) and uld(B1, BC, U) are statically mutex
because of the conflicting effect in(B1, BC).

Definition. Static ap-mutex (static action/proposition
mutex). One action a is statically ap-mutex with a propo-
sition p iff p ∈ del effs(a). For instance, ld(B1, BC, H) is
ap-mutex with at(B1, H) and free(BC) in Table 1.

Second Stage: Temporal Graph Expansion

Definition. Temporal graph (TG). A TG is a directed,
layered graph with proposition and action nodes, and
precondition- and add-edges following the same structure as
Graphplan. Each level is labelled with a number represent-
ing the instant of time at which propositions are present and
actions start their execution. Levels are ordered by their in-
stant of time.

Definition. Instance of an action. We define an in-
stance of an action a as the triple 〈a,s,e〉 where a de-
notes the action and s,e ∈ R+ represent the time when
the instance starts and ends executing, respectively (e =
s+ duration(a)).

Definition. Proposition level. A proposition level P[t] is
formed by the set of temporal propositions {〈pi,ti〉�ti ≤
t} present at time t which verify 〈pi,ti〉∈ Is ∨
∃〈ai,si,ei〉�pi ∈ add effs(ai), ei = ti.

Definition. Dynamic mutex between temporal proposi-
tions at P[t]. Let {〈ai,si,ti〉} and {〈bj,sj,tj〉} be two
sets of instances of actions which achieve 〈p,ti〉,〈q,tj〉
∈ P[t] respectively. Temporal propositions 〈p,ti〉 and
〈q,tj〉 are dynamically mutex at P[t] iff i) ∀α, β�α ∈
{〈ai,si,ti〉}, β ∈ {〈bj,sj,tj〉}, α and β overlap and ii)
ai and bj are statically mutex. A dynamic mutex expires as
new levels are expanded further in the TG.

Definition. Action level. An action levelA[t] is formed by
the set of instances of actions {〈ai,t,ei〉} which start their
execution at time t.

Proposition. Let P[t] (t ≤ Dmax) be the earliest propo-
sition level at which all temporal propositions in Fs are not
pairwise dynamically mutex. Under this assumption, no cor-
rect plan can be found before time t.

TPSYS adopts the same conservative model of action as
TGP (Smith and Weld 1999). The second stage expands
the TG by alternating proposition and action levels through
a forward-chaining process. Starting at P[0], the algorithm
moves incrementally in time throughout the TG generating
new action and proposition levels. At each action level A[t],
the algorithm generates the entire set of instances of actions
which start their execution at t because their preconditions
are not dynamically mutex at P[t]. After generating each in-
stance of an action, the propositions in add effs are added
into the proper proposition level (according to the duration
of each action). The TG expansion terminates once all tem-
poral propositions in the final situation are present in P[t] and
none are pairwise dynamically mutex (i.e. Fs is satisfied in
P[t]). If t > Dmax the algorithm outputs ‘Failure’ because
no feasible plan can be found earlier than Dmax.

The resulting TG for the domain defined in Table 1 is
shown in Figure 1. Action uld(B1, BC, U) cannot start atA[5]

because its preconditions in(B1, BC) and at(BC, U) are dy-
namically mutex at P[5] and they cannot be simultaneously
available until P[10]. At A[10], uld(B1, BC, U) is applicable
thus obtaining the goal at(B1, U) at P[12] (terminating the
second stage).

256



Figure 1: Temporal Graph for the Briefcase problem defined
in Table 1

Third Stage: Plan Extraction
This stage is a backward search process throughout the TG
to extract a feasible plan. Two data structures PlannedActs
and GoalsToSatisfy, which are indexed by a level, are
used. PlannedActs, which is initialized empty, stores
the instances of actions planned at each action level.
GoalsToSatisfy stores the temporal propositions to be sat-
isfied at each proposition level, and it is initialized by insert-
ing all the temporal propositions in Fs.

Assuming the PE process starts from the proposition level
P[t] (that is, the search starts from time t in the TG), where
all temporal goals in Fs are not dynamically mutex, the al-
gorithm proceeds in the following way:

1. If t = 0 and GoalsToSatisfy[t ] * Is, then fail (back-
track) –this is the base case for the recursive process.

2. If GoalsToSatisfy[t ] = φ then move backwards in time
(t =previous level in the TG) and go to step 1 to satisfy
the goals at t.

3. Extract a temporal proposition 〈p,t〉 from
GoalsToSatisfy[t ].

4. Select an instance of an action α =〈ai,si,ei〉�p ∈
add effs(ai), ei ≤ t (backtracking point to guar-
antee completeness). In order to guarantee the cor-
rectness of the plan, α is discarded (selecting an-
other instance of an action by backtracking to step 4)
if at least one of the following conditions holds; i)
∃β =〈bj,sj,ej〉∈ PlannedActs�α and β overlap
and ai and bj are statically mutex, or ii) ∃〈q,ei〉∈
GoalsToSatisfy�ai is statically ap-mutex with q. Oth-
erwise, p is satisfied and the structures PlannedActs[si]
and GoalsToSatisfy[si] are updated with α and
precs(ai) respectively. Then, the algorithm goes to step
2 to satisfy another (sub)goal.

Proposition. TPSYS is complete and optimal. In
TPSYS, all levels at which propositions and actions appear
are all generated during the TG expansion. Therefore, if a
plan exists for the problem, it will be found in the TG. Addi-
tionally, since all instances of actions are considered in the

Problem TPSYS TGP
tgp-AB-q 4 60
tgp-AB-pq 5 90
tgp-AC-r 4 80
tgp-AC-pr 5 80
tgp-ABDE-r 4 70

Table 2: Results of comparison between TPSYS and TGP
(times are in milliseconds)

PE process and the TG is expanded through time, the first
solution TPSYS finds is the plan of minimal duration.

Some Experimental Results
Although comparison between our approach and other plan-
ning systems is quite difficult because they are based on dif-
ferent algorithms, we made a comparison between TPSYS
and TGP on the examples provided by TGP. The exper-
iments (Table 2) were performed in a Celeron 400 MHz
with 64 Mb and show the performance of TPSYS is better
than TGP for these problems. Consequently, TPSYS seems
quite promising to deal with temporal planning problems.

Conclusions and Future Work
In this paper we have presented TPSYS, a system for deal-
ing with temporal planning problems. TPSYS contributes
on a classification into static and dynamic mutual exclu-
sion relations. This allows to perform a preprocessing stage
which calculates static mutexes between actions and be-
tween actions and propositions to speed up the following
stages. The second stage expands a TG with features of
both Graphplan and TGP planning graphs. The third stage
guarantees that the first found plan has the minimal dura-
tion. From our experience and the obtained results we think
TPSYS is promising to solve temporal planning problems.

The presented work constitutes a first step towards an in-
tegrated system for planning and scheduling. Such a system
will be able to manage temporal constraints on actions and
to reason on shared resource utilization. Additionally, the
system will apply several optimization criteria to obtain the
plan of minimal duration or the plan of minimal cost.

Acknowledgments
This work has been partially supported by the Project n.
20010017 - Navigation of Autonomous Mobile Robots of the
Universitad Politecnica de Valencia.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:281–300.
Currie, K., and Tate, A. 1991. O-plan: the open planning
architecture. Artificial Intelligence 52(1):49–86.
El-Kholy, A., and Richards, B. 1996. Temporal and resource
reasoning in planning: the parcPLAN approach. In Proc.
12th European Conference on Artificial Intelligence (ECAI-
96), 614–618.

257



Ghallab, M., and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In Proc. 2nd Int. Conf.
on AI Planning Systems, 61–67. Hammond.
Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Zweben, M., and Fox, M., eds., Intelligent
Scheduling. San Mateo, CA: Morgan Kaufmann. 169–212.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. In Proc. 16th Int. Joint Conf.
on AI (IJCAI-99), 326–337.

258




