
OBDD-Based Optimistic and Strong Cyclic Adversarial Planning

Rune M. Jensen and Manuela M. Veloso and Michael H. Bowling
Computer Science Department,Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh,PA 15213-3891, USA

Abstract
Recently, universal planning has become feasible through the
use of efficient symbolic methods for plan generation and
representation based on reduced ordered binary decision dia-
grams (OBDDs). In this paper, we address adversarial univer-
sal planning for multi-agent domains in which a set of uncon-
trollable agents may be adversarial to us (as in e.g. robotics
soccer). We present two new OBDD-based universal plan-
ning algorithms for such adversarial non-deterministic finite
domains, namely optimistic adversarial planning and strong
cyclic adversarial planning. We prove and show empirically
that these algorithms extend the existing family of OBDD-
based universal planning algorithms to the challenging do-
mains with adversarial environments. We further relate ad-
verserial planning to positive stochastic games by analyzing
the properties of adversarial plans when these are considered
policies for positive stochastic games. Our algorithms have
been implemented within the Multi-agent OBDD-based Plan-
ner, UMOP, using the Non-deterministic Agent Domain Lan-
guage, NADL.

Introduction
Universal planning, as originally developed by Schoppers
(1987), is an approach for handling environments with con-
tingencies. Universal planning is particularly appealing for
active environments causing actions to be non-deterministic.
A universal plan associates each possible world state with
actions relevant in that state for achieving the goal. Due to
the non-deterministic outcome of actions, a universal plan is
executed by iteratively observing the current state and exe-
cuting an action in the plan associated with that state.

In the general case the non-determinism forces a uni-
versal plan to cover all the domain states. Since plan-
ning domains traditionally have large state spaces, this con-
straint makes the representation and generation of univer-
sal plans nontrivial. Recently, reduced ordered binary de-
cision diagrams (OBDDs, Bryant 1986) have been shown
to be efficient for synthesizing and representing univer-
sal plans (Cimatti, Roveri, and Traverso 1998a; 1998b;
Jensen and Veloso 2000). OBDDs are compact representa-
tions of Boolean functions that have been successfully ap-
plied in symbolic model checking (McMillan 1993) to im-
plicitly represent and traverse very large state spaces. Using

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

similar techniques, a universal plan represented as an OBDD
can be efficiently synthesized by a backward breadth-first
search from the goal to the initial states in the planning do-
main.1

There are three OBDD-based planning algorithms: strong,
strong cyclic and optimistic planning. Strong and strong
cyclic planning were contributed within the MBP plan-
ner (Cimatti, Roveri, and Traverso 1998a; 1998b). MBP
specifies a planning domain in the action description lan-
guage AR (Giunchiglia, Kartha, and Lifschitz 1997). The
strong planning algorithm tries to generate a strong plan, i.e.,
a plan where all possible outcomes of the actions in the plan
change the state to a new state closer to the goal. The strong
cyclic planning algorithm returns a strong plan, if one exists,
or otherwise tries to generate a plan that may contain loops
but is guaranteed to achieve the goal, given that all cyclic
executions eventually terminate.

Optimistic planning was contributed within the UMOP
planner (Jensen and Veloso 2000). UMOP specifies a plan-
ning domain in the non-deterministic agent domain lan-
guage, NADL , that explicitly defines a controllable sys-
tem and an uncontrollable environment as two sets of syn-
chronous agents. Optimistic planning tries to generate a re-
laxed plan where the only requirement is that there exists an
outcome of each action that leads to a state nearer the goal.

None of the previous algorithms are generally better than
the others. Their strengths and limitations depend on the
structure of the domain (Jensen and Veloso 2000). How-
ever, a limitation of the previous algorithms is that they can
not reason explicitly about environment actions, due to their
usage of an implicit representation of the effect of these
actions. 2 This is an important restriction for adversar-
ial domains, as for the strong cyclic and optimistic algo-
rithms, an adversarial environment may be able to prevent
goal achievement.

In this paper we contribute two new planning algorithms
robust for adversarial environments: optimistic adversarial
planning and strong cyclic adversarial planning. These al-
gorithms explicitly represent environment actions. The plan-

1This work assumes that the non-deterministic domain defini-
tion is known and the focus is on the development of effective uni-
versal planning algorithms under this assumption.

2Figure 1(b) illustrates this restricted representation for an ex-
ample domain introduced in next section.

136

Proceedings of the Sixth European Conference on Planning



ner can then reason about these actions and take adversar-
ial behavior into account. We prove that, in contrast to
strong cyclic plans, strong cyclic adversarial plans guaran-
tee goal achievement independently of the environment be-
havior. Similarly, we prove that optimistic adversarial plans
improve the quality of optimistic plans by guaranteeing that
a goal state can be reached from any state covered by the
optimistic adversarial plan independently of the behavior of
the environment. The results are verified empirically in a
scalable example domain using an implementation of our
algorithms in the UMOP planning framework.

Adversarial planning is related to game theory in the sense
that both fields offer alternative approaches for generating
policies for adversarial environments. For instance we could
enumerate all policies of the environment and the system
we control creating an appropriate payoff matrix, and solve
this as a normal form matrix game (Osborne and Rubinstein
1994). Alternatively we could apply game tree algorithms
and solve the planning problem as an extensive form game
(Osborne and Rubinstein 1994). However both of these ap-
proaches are intractable due to the exponential size of the
matrix and game tree in the number of state variables. One
of the advantages of OBDD-based adversarial planning is to
avoid such explicit representations. For structured domains,
this may lead to an exponential reduction of the problem
complexity (Cimatti, Roveri, and Traverso 1998a).

The game-theoretic framework that is most related to ad-
versarial planning is stochastic games (SGs). SGs extend
Markov decision processes (MDPs) to multiple agents. They
are usually solved using value iteration algorithms that re-
quire exponential space in the number of state variables (see
e.g., Shapley 1953). Function approximation techniques
may be able to reduce the space requirements. However it
is still unclear how these methods can be applied without
sacrificing the convergence properties of the value iteration
algorithms. In this paper, we prove that an optimistic ad-
versarial plan exists, if and only if the solution to the cor-
responding positive stochastic game has a positive expected
reward. Moreover, if a strong cyclic adversarial plan exists,
then the solution to the corresponding stochastic game has a
maximum expected reward.

The remainder of the paper is organized as follows. Sec-
tion defines our representation of adversarial domains and
introduces an example domain used throughout the paper.
Section defines the optimistic and strong cyclic adversarial
planning algorithms and proves their key properties. In Sec-
tion we define and prove properties of the stochastic game
representation of the adversarial planning problems. Finally,
Section draws conclusions and discusses directions for fu-
ture work.

Adversarial Plan Domain Representation
An NADL domain3 description consists of: a definition of
state variables, a description of system and environment
agents, and a specification of initial and goal conditions.
The set of state variable assignments defines the state space

3The reader is referred to Jensen and Veloso (2000) for a formal
definition of NADL.

of the domain. An agent’s description is a set of actions.
An action has a precondition and an effect defining in which
states the action is applicable and what states the action can
lead to. At each step, all of the agents perform exactly
one action, and the resulting action tuple is a joint action.4
The system agents model the behavior of the agents control-
lable by the planner, while the environment agents model
the uncontrollable environment. There are two causes of
non-determinism in NADL domains: (1) actions having mul-
tiple possible outcomes, and (2) uncontrollable concurrent
environment actions. System and environment actions are
assumed to be independent, such that an action chosen by
the system in some state can not influence the set of actions
that can be chosen by the environment in that state and vice
versa. No assumptions are made about the behavior of en-
vironment agents. They might be adversarial, trying to pre-
vent goal achievement of the system agents.

We represent the transition relation of an NADL domain
with a Boolean function, T (S, as, ae, S

′). S is the current
state, as and ae are system and environment actions and S′
is a next state. T (S, as, ae, S

′) is true if and only if S′ is a
possible next state when executing (as, ae) in S.

A planning problem is a tuple (T, I,G), where T is a tran-
sition relation, and I andG are Boolean functions represent-
ing the initial and goal states, respectively. A universal plan,
U , is a partial mapping from the domain states to the power
set of system actions. A universal plan would be executed by
the system agents by iteratively observing the current state
and executing one of the actions in the universal plan asso-
ciated to that state.

As an example, consider the domain shown in Figure 1.
This domain has a single system agent that can execute the
actions +s and −s, and a single environment agent that can
execute the actions +e and −e. Edges in the figure are la-
beled with the corresponding joint action. There are 5 states,
namely I, F,D,U and G. I and G are the only initial and
goal states, respectively. D is a dead end state, as the goal
is unreachable from D. This introduces an important differ-
ence between F and U , that captures a main aspect of the
adversarial planning problem. We can view the two states
F and U as states in which the system and the environ-
ment have different opportunities. Observe that the system
“wins”, i.e., reaches the goal, only if the signs of the two
actions in the joint action are different. Otherwise it “loses”,
as there is no transition to the goal with a joint action with
actions with the same sign. The goal is reachable from both
states F and U . However the result of a “losing” joint action
is different for F and U . In F , the system agent remains
in F . Thus, the goal is still reachable for a possible future
action. In U , however, the agent may transition to the dead
end state D, which makes it impossible to reach the goal in
subsequent steps.

Now consider how an adversarial environment can take
advantage of the possibility of the system reaching a dead
end from U . Since the system may end in D, when execut-
ing −s in U , it is reasonable for the environment to assume

4In the remainder of the paper we will often refer to joint-
actions as simply actions.

137



I D G

−s

+s

+s

−s

U

F

+s

−s

+s −s

+s

−s

I D G

(−s,+e)

(+s,−e)

(−s,−e)

(+s,−e)

(−s,+e)

(−s,−e)

(+s,+e)

(+s,+e) (−s,−e)

U

F

(+s,−e)

(a) (b)

Figure 1: The adversarial planning domain example. (a)
shows the explicit representation of environment, while (b)
shows the implicit representation used by previous algo-
rithms.

that the system will always execute +s in U . But now the
environment can prevent the system from ever reaching the
goal by always choosing action +e, so the system should
completely avoid the path through U .

This example domain is important as it illustrates how
an adversarial environment can act purposely to obstruct
the goal achievement of the system. We will use it in
the following sections to explain our algorithms. A uni-
versal plan, guaranteeing that G is eventually reached, is
{(I, {+s}), (F, {+s,−s})}. In contrast to any previous
universal planning algorithm, the strong cyclic adversarial
planning algorithm can generate this plan as shown in Sec-
tion .

Adversarial Planning
We introduce a generic function Plan(T, I,G) for represent-
ing OBDD-based universal planning algorithms. The algo-
rithms, including ours, only differ by definition of the func-
tion computing the precomponent (PreComp(T, V )).

The generic function performs a backward breadth-first
search from the goal states to the initial states. In each step
the precomponent, Up, of the visited states, V , is computed.
The precomponent is a partial mapping from states to the
power set of system actions. Each state in the precomponent
is mapped to a set of relevant system actions for reaching V .

function Plan(T, I,G)
U := ∅; V := G
while I 6⊂ V

Up := PreComp(T, V )
if Up = ∅ then return failure
else U := U ∪ Up

V := V ∪ states(Up)
return U

If the precomponent is empty a fixpoint of V has been
reached that does not cover the initial states. Since this
means that no universal plan can be generated that covers the
initial states, the algorithm returns failure. Otherwise, the

precomponent is added to the universal plan and the states
in the precomponent are added to the set of visited states.
All sets and mappings in the algorithm are represented by
OBDDs. In particular, the universal plan and the precompo-
nent are represented by the characteristic function of the set
of state-actions pairs in the mapping.

The Optimistic Adversarial Precomponent
The core idea in adversarial planning is to be able to gener-
ate a plan for the system agents that ensures that the environ-
ment agents, even with complete knowledge of the domain
and the plan, are unable to prevent reaching the goals. We
formalize this idea in the definition of a fair state. A state s
is fair with respect to a set of states, V , and a universal plan,
U , if, for each applicable environment action, there exists a
system action in U such that the joint action may lead into
V . Let AT (s) denote the set of applicable environment ac-
tions in state s for transition system T . We then formally
have:

Definition 1 (Fair State) A state, s, is fair with respect to
a set of states, V , and a universal plan, U , if and only if
∀ae ∈ AT (s) .∃as ∈ U(s) .∃s′ ∈ V . T (s, as, ae, s

′).

For convenience we define an unfair state to be a state that
is not fair. The optimistic adversarial precomponent is an
optimistic precomponent pruned for unfair states. In order
to use a precomponent for OBDD-based universal planning,
we need to define it as a boolean function represented by an
OBDD. The optimistic adversarial precomponent (OAP) is
the characteristic function of the set of state-action pairs in
the precomponent:

Definition 2 (OAP) Given a transition relation, T , the opti-
mistic adversarial precomponent of a set of states, V , is the
set of state-action pairs given by the characteristic function:

OAP(T, V )(s, as) =(
∀ae . A(T )(s, ae)⇒ J(T, V )(s, ae)

)
∧ (1)(

∃ae, s′ . T (s, as, ae, s
′) ∧ s′ ∈ V ∧ s /∈ V

)
(2)

J(T, V )(s, ae) = ∃as, s′ . T (s, as, ae, s
′) ∧ s′ ∈ V(3)

A(T )(s, ae) = ∃as, s′ . T (s, as, ae, s
′). (4)

Line (1) ensures that the state is fair. It says that, for any state
in the precomponent, every applicable environment action
(defined by A(s, ae)) must also be included in a joint action
leading to V (defined by J(s, ae)). Line (2) says that every
system action as relevant for a state s /∈ V must have at least
one next state in V .

Figure 2 (a) shows the optimistic adversarial precompo-
nent of state G for the example domain (OAP(T,G) =
{(F,+s), (F,−s), (U,+s), (U,−s)}). For clarity we in-
clude the transitions of the actions in the precomponent.

The Strong Cyclic Adversarial Precomponent
A strong cyclic adversarial plan is a strong cyclic plan where
every state is fair. Thus, all the actions in the plan lead to
states covered by the plan. In particular, it is guaranteed

138



that no dead ends are reached. The strong cyclic adversar-
ial precomponent (SCAP) consists of a union of optimistic
precomponents where each state in one of the optimistic pre-
components is fair with respect to all states in the previous
precomponents and the set of visited states.

The algorithm for generating an SCAP adds one opti-
mistic precomponent at a time. After each addition, it first
prunes actions with possible next states not covered by the
optimistic precomponents and the set of visited states. It
then subsequently prunes all the states that are no longer
fair after the pruning of outgoing actions. If all the states
are pruned from the precomponent, the algorithm continues
adding optimistic precomponents until no actions are out-
going. Thus, in the final SCAP, we may have cycles due
to loops and transitions crossing the boundaries of the opti-
mistic precomponents. Again, we define the precomponent
as the characteristic function of a set of state-action pairs:

Definition 3 (SCAP) Given a transition relation, T , the
strong cyclic adversarial precomponent of a set of states,
V , is the set of state-action pairs given by the characteristic
function SCAP(T, V )(s, as).

function SCAP(T, V )
i := 0; OA0 := OAP(T, V )
while OAi 6= ∅

SCA := PruneSCA(T, V,OA, i)
if SCA 6= ∅ then

return SCA
else i := i+ 1

OAi := OAP
(
T, V ∪ (

⋃i−1
k=0 states(OAk))

)
return ∅

function PruneSCA(T, V,OA, i)
repeat

SCA := ∪ik=0OAk
VC := V ; VT := V ∪

(⋃i
k=0 states(OAk)

)
for j = 0 to i

P := PruneOutgoing(T, VT ,OAj)
OAj := PruneUnfair(T, VC , P )
VC := VC ∪ states(OAj)

until SCA = ∪ik=0OAk
return SCA

PruneOutgoing(T, V,OA) =

OA(s, as) ∧
(
∀ae, s

′ . T (s, as, ae, s
′)⇒ V (s′)

)
PruneUnfair(T, V,OA) =

OA(s, as) ∧
(
∀ae . A(T )(s, ae)⇒ J(T ∧OA, V )(s, ae)

)
SCAP(T, V ) adds an optimistic adversarial precomponent

until the pruning function PruneSCA(T, V,OA, i) returns
a non-empty precomponent. The pruning function keeps a
local copy of the optimistic adversarial precomponents in
an array OA. SCA is the precomponent found so far. The
pruning continues until SCA reaches a fix point. VT is the
set of states in the current precomponent. In each iteration
transitions leading out of VT are pruned. States turning un-
fair with respect to VC , because of this pruning, are then
removed. VC is the union of all the states in the previous
optimistic precomponents and the set of visited states V .

G

(+s,−e)
(−s,+e)

(+s,−e)
(−s,+e)

(+s,+e)

(−s,−e)
(+s,+e)

(−s,−e)

F

U

G

(+s,+e)

(−s,−e)
(+s,+e)

F

U

(+s,−e)

(−s,+e)
(+s,−e)

G

(−s,−e)
(+s,+e)

F

(+s,−e)
(−s,+e)

(a) (b) (c)

Figure 2: (a) The OAP of G for the example of Figure 1; (b)
The OAP pruned for actions with outgoing transitions; (c)
The SCAP of G, for the example of Figure 1.

For an illustration, consider again the OAP of G (see Fig-
ure 2). Action −s would have to be pruned from U since
it has an outgoing transition. The pruned OAP is shown
in Figure 2(b). Now there is no action leading to G in
U when the environment chooses +e. U has become un-
fair and must be pruned from the precomponent. Since
the precomponent is non-empty no more optimistic precom-
ponents have to be added. The resulting precomponent,
SCAP(G) = {(F,+s), (F,−s)}, is shown in Figure 2(c).

Properties of the Algorithms
Optimistic and strong cyclic adversarial planning ex-
tend the previous OBDD-based universal planning
algorithms by pruning unfair states from the plan.
For example, for the domain of Figure 1, the strong
cyclic planning algorithm would generate the plan
{(I, {+s,−s}), (F, {+s,−s}), (U, {+s})}, while the
strong cyclic adversarial planning algorithm, as introduced
above, generates the plan {(I, {+s}), (F, {+s,−s})}. It
is capable of pruning U from the plan, since it becomes
unfair. Also note that the plan is not a plain strong plan
since progress towards the goal is not guaranteed in every
state. It is easy to verify that there actually is no strong plan
for this domain.

In order to state formal properties of adversarial planning,
we define the level of a state to be the number of optimistic
adversarial precomponents from the goal states to the state.
We can now prove the following theorem:

Theorem 1 (SCA Termination) The execution of a strong
cyclic adversarial plan eventually reaches a goal state if it
is initiated in some state covered by the plan and actions in
the plan are chosen randomly.

Proof: Since all unfair states and actions with transitions
leading out of the strong cyclic adversarial plan have been
removed, all the visited states will be fair and covered by the
plan. From the random choice of actions in the plan it then
follows that each execution of a plan action has a non-zero
probability of leading to a state at a lower level. Let m
be the maximum level of some state in the strong cyclic
adversarial plan (m exists since the state space is finite). Let

139



p denote the smallest probability of progressing at least one
level for any state in the plan. Then, from every state in the
plan, the probability of reaching a goal state in m steps is
at least pm. Thus, the probability of reaching a goal state
in mn steps is at least 1 − (1 − pm)n, which approaches 1
for n→∞ . Thus, a goal state will eventually be reached. 2

The termination theorem makes strong cyclic adversarial
plans more powerful than strong cyclic plans since termina-
tion of strong cyclic plans only can be guaranteed by assum-
ing no infinite looping (i.e. a “friendly” environment). For
optimistic adversarial plans, termination can not be proved
since dead ends may be reached. However, since optimistic
plans only consist of fair states, there is a chance of pro-
gressing towards the goal in each state:

Theorem 2 (OA Progress) The execution of an optimistic
adversarial plan has a non-zero probability of eventually
reaching the goal from each state covered by the plan if the
actions in the plan are chosen randomly.

Proof: This follows directly from the fact that each state in
the plan is fair. 2

Optimistic plans do not have this property since unfair states
may be included in the plans. Thus, it may be possible for
the environment to prevent the system from progressing to-
wards the goal either by forcing a transition to a dead end or
by making transitions cyclic.

Empirical Results
The adversarial and previous OBDD-based universal plan-
ning algorithms have been implemented in the publicly
available UMOP planning framework. In order to illustrate
the scalability of our approach, we use a general version of
the example domain of Figure 1, as shown in Figure 3(a).
The domain has a single system and environment agent with
actions {+s,−s, l} and {+e,−e}, respectively. The system
progresses towards the goal if the signs of the two actions
in the joint action are different. At any time, it can switch
from the lower to the upper row of states by executing l. In
the upper row, the system can only execute +s. Thus, in
these states an adversarial environment can prevent further
progress by always executing +e.

Figure 3(b) shows, in a double logarithmic scale, the run-
ning time and the plan size as a function of the number of
domain states when finding strong cyclic and strong cyclic
adversarial plans.5 In this domain both algorithms scale
well. The experiment indicate a polynomial time complex-
ity for both algorithms. For the largest domain with 65,536
states the CPU time is less than 32 seconds for generating the
strong cyclic adversarial plan. The results also demonstrate
the efficiency of OBDDs for representing universal plans in
structured domains. The largest plan consists of only 38
OBDD nodes.

The strong cyclic adversarial plans only consider exe-
cuting −s and +s, while the strong cyclic plans consider

5The experiment was carried out on a 500 MHz Pentium III PC
with 512 MB RAM running Red Hat Linux 5.2.

...

...

I

(+s,+e) (+s,+e)

(+s,−e)

(−s,+e)

(+s,−e)(+s,−e)

(+s,−e)

(−s,+e)

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

G

(+s,+e)

G
(l,+e)

(l,−e)

(l,+e)

(l,−e)

(+s,+e)
(−s,−e)

(l,+e)

(l,−e)

(a)

0.01

0.1

1

10

100

4 16 64 256 1024 4096 16384 65536

Number of States

SCAP CPU Time/sec.

SCP CPU Time/sec.

SCAP Plan Size/OBDD nodes

SCP Plan Size/OBDD nodes

(b)

Figure 3: (a) A general version of the domain shown in Fig-
ure 1; (b) CPU time and plan size of strong cyclic and strong
cyclic adversarial plans as a function of domain size.

all applicable actions. Hence, the strong cyclic adversar-
ial plans have about twice as many OBDD nodes and take
about twice as long time to generate. But this slightly higher
cost of generating a strong cyclic adversarial plan pays off
well in plan quality. The strong cyclic adversarial plan is
guaranteed to achieve the goal when choosing actions in
the plan randomly. In contrast, the probability of achieving
the goal in the worst case for the strong cyclic plan is less
than ( 2

3 )N/2−1, where N is the number of states in the do-
main. Thus, for an adversarial environment the probability
of reaching the goal with a strong cyclic plan is practically
zero, even for small instances of the domain.

Relation to Stochastic Games
A stochastic game is a tuple (n, S,A1...n, T,R1...n), where
n is the number of agents, S is the set of states, Ai is the
set of actions available to player i (and A is the joint action
space A1 × . . .×An), T is the transition function S ×A×
S → [0, 1], and Ri is a reward function for the ith agent
S → R. A solution to a stochastic game is a stationary
and possibly stochastic policy, ρ : S → PD(Ai), for an
agent in this environment that maps states to a probability
distribution over its actions. The goal is to find such a policy
that maximizes the agent’s future discounted reward. In a
zero-sum stochastic game, two agents have rewards adding
up to a constant value, in particular, zero. The value of a
discounted stochastic game with discount factor γ is a vector

140



of values, one for each state, satisfying the equation:
Vγ(s) = max

σ∈PD(As)
min
ae∈Ae

∑
as∈As

σ(as)(∑
s′∈S

T (s, as, ae, s
′) (R(s′) + γVγ(s′))

)
.

For positive stochastic games, the payoffs are summed with-
out a discount factor, which can be computed as V (s) =
limγ→1− Vγ(s).

The derived stochastic game from a universal planning
problem is given by the following definition:
Definition 4 A derived stochastic game from a planning
problem, (T, I,G), is a zero-sum stochastic game with states
and actions identical to those of the planning problem. Re-
ward for the system agent is one when entering a state in G,
zero otherwise. Transition probabilities, T̄ , are any assign-
ment satisfying,

T̄ (s, as, ae, s
′) ∈ (0, 1] if T (s, as, ae, s

′)
T̄ (s, as, ae, s

′) = 0 otherwise

We can now prove the following two theorems:
Theorem 3 An optimistic adversarial plan exists if and only
if, for any derived stochastic game, the value at all initial
states is positive.
Proof: (⇒) We prove by induction on the level of a state.
For a state, s, at level one, we know the state is fair with
respect to the goal states. So, for every action of the envi-
ronment, there exists an action of the system that transitions
to a goal state with some non-zero probability. If Tmin is
the smallest transition probability, then if the system sim-
ply randomizes among its actions, it will receive a reward of
one with probability Tmin

|As| . Therefore, V (s) ≥ Tmin

|As| > 0.
Consider a state, s, at level n. Since s is fair, we can use
the same argument as above that the next state will be at a
level less than n with probability Tmin

|As| . With the induction
hypothesis, we get,

V (s) ≥ Tmin
|As|

V (s′) > 0.

Therefore, all states in the set V have a positive value. Since
the algorithm terminates with I ⊆ V , then all initial states
have a positive value.
(⇐) Assume for some derived stochastic game that the value
at all initial states is positive. Consider running the opti-
mistic adversarial planning algorithm and for, the purpose of
contradiction, assume the algorithm terminates with I 6⊆ V .
Consider the state s∗ /∈ V that maximizes Vγ(s∗). We know
that, since the algorithm terminated, s∗ must not be fair with
respect to V . So there exists an action of the environment,
ae, such that, for all as, the next state will not be in V . So we
can bound the value equation by assuming the environment
selects action ae,

Vγ(s∗) ≤ max
σ

∑
as∈As

σ(as)(∑
s′ /∈V

T (s∗, as, ae, s
′) (γVγ(s′))

)

Notice that we do not have to sum over all possible next
states since we know the transition probabilities to states in
V are zero (by the selection of ae). We also know that im-
mediate rewards for states not in V are zero, since they are
not goal states. By our selection of s∗ we know that Vγ(s′)
must be smaller than the value of s∗. By substituting this
into the inequality we can pull it outside of the summations
which now sum to one. So V (s∗) = 0, as we need to satisfy:

Vγ(s∗) ≤ γVγ(s∗) · 1

Since any initial state is not in V , V (s∗) must have value
equal to zero, which is a contradiction to our initial assump-
tion. So, the algorithm must terminate with I ⊆ V , and
therefore an optimistic adversarial plan exists. 2

Theorem 4 If a strong cyclic adversarial plan exists, then
for any derived stochastic game, the value at all initial states
is 1.

Proof: Consider a policy π that selects actions with equal
probability among the unpruned actions of the strong cyclic
adversarial plan. For states not in the adversarial plan select
an action arbitrarily. We will compute the value of executing
this policy, V πγ .

Consider a state s in the strong cyclic adversarial plan
such that V πγ (s) is minimal. Let L(s) = N be the level of
this state. We know that this state is fair with respect to the
states at level less than N , and therefore (as in Theorem 1)
the probability of reaching a state s′ with L(s′) ≤ N − 1
when following policy π is at least p = Tmin

|As| > 0. This
same argument can be repeated for s′, and so after two
steps, with probability at least p2, the state will be s′′ where
L(s′′) ≤ L(s′) − 1 ≤ N − 2. Repeating this, after
N steps with probability pN , the state will be sN where
L(sN ) ≤ L(s) − N ≤ 0, so sN must be a goal state and
the system received a reward of one.

So we can consider the value at state s when following
the policy π. We know after N steps if it has not reached
a goal state it must be in some state still in the adversarial
plan due to the enforcement of the strong cyclic property. In
essence, all actions with outgoing transitions are pruned and
therefore are never executed by π. The value of this state by
definition must be larger than V πγ (s). Therefore,

V πγ (s) ≥ pNγN · 1 + (1− pN )γNV πγ (s)

lim
γ→1

V πγ (s) ≥ pN

1− (1− pN )
≥ 1

So V π(s) = 1 and since s is the state with minimal value,
for any initial state si, V π(si) = 1. Since V (si) maximizes
over all possible policies, V (si) = 1. 2

Conclusion
This paper contributes two new OBDD-based universal plan-
ning algorithms, namely optimistic and strong cyclic adver-
sarial planning. These algorithms naturally extend the pre-
vious optimistic and strong cyclic algorithms to adversar-
ial environments. We have proved that, in contrast to op-
timistic plans, optimistic adversarial plans always have a

141



non-zero probability of reaching a goal state. Furthermore,
we have proved and shown empirically that, in contrast to
strong cyclic plans, a strong cyclic adversarial plan always
eventually reach the goal. Finally, we introduced and proved
several relations between adversarial universal planning and
positive stochastic games. An interesting direction for future
work is to investigate if adversarial planning can be used to
scale up the explicit-state approaches for solving stochastic
games by pruning states and transitions irrelevant for finding
an optimal policy.

Acknowledgments
This research is sponsored in part by the Danish Research
Agency and the United States Air Force under Grants Nos
F30602-00-2-0549 and F30602-98-2-0135. The views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force, or the US Government.

References
Bryant, R. 1986. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers 8:677–
691.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998a. OBDD-
based generation of universal plans in non-deterministic do-
mains. In Proceedings of AAAI-98, 875–881. AAAI Press.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998b. Strong
planning in non-deterministic domains via model checking.
In Proceedings of the 4th International Conference on Artifi-
cial Intelligence Planning System (AIPS’98), 36–43. AAAI
Press.
Giunchiglia, E.; Kartha, G.; and Lifschitz, Y. 1997. Rep-
resenting action: Indeterminacy and ramifications. Artificial
Intelligence 95:409–438.
Jensen, R., and Veloso, M. 2000. OBDD-based universal
planning for synchronized agents in non-deterministic do-
mains. Journal of Artificial Intelligence Research 13:189–
226.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publ.
Osborne, M. J., and Rubinstein, A. 1994. A course in game
theory. MIT Press.
Schoppers, M. 1987. Universal planning for reactive robots
in unpredictable environments. In Proceedings of IJCAI-87,
1039–1046.
Shapley, L. S. 1953. Stochastic games. PNAS 39:1095–
1100.

142




