
Modeling Clairvoyance and Constraints in Real-Time Scheduling

K. Subramani ∗

LDCSEE,
West Virginia University,

Morgantown, WV
k.subramani@mail.wvu.edu

Abstract

Scheduling in Real-time systems differs from schedul-
ing in conventional models in two principal ways: (a)
Parameter variability, (b) Existence of complex con-
straints between jobs. Our work focusses on variable ex-
ecution times. Whereas traditional models assume fixed
values for job execution time, we model execution times
of jobs through convex sets. The second feature unique
to real-time systems, is the presence of temporal rela-
tionships that constrain job execution. Consider for in-
stance the requirement that job 1 should conclude 10
units before job 2. This can be modeled through a sim-
ple, linear relationship, between the start and execution
times of jobs 1 and 2. In real-time scheduling, it is im-
portant to guarantee a priori, the scheduling feasibility
of the system. Depending upon the nature of the appli-
cation involved, there are different schedulability spec-
ifications viz. Static, Co-Static and Parametric. Each
specification comes with its own set of flexibility issues.
In this paper, we present a framework that enables the
specification of real-time scheduling problems and dis-
cuss the relationship between flexibility and complexity
in the proposed model. We motivate each aspect of our
model through examples from real-world applications.

1 Introduction
In this paper, we describe the features of our real-
time scheduling framework called the E-T-C (Execution-
Time-Constraints) Real-Time Scheduling model. Real-time
scheduling differs from traditional scheduling in two fun-
damental ways, viz. non-constant execution times and the
existence of complex constraints (such as relative timing
constraints) between the constituent jobs of the underlying
system. A traditional scheduling model such as the one dis-
cussed in (Pinedo 1995) and (Brucker 1998) assumes that
the execution time of a job is a fixed constant. This assump-
tion is not borne out in practice; for instance the running
time of an input dependent loop structure such as for(i = 1
to N) will depend upon the value of N . Secondly, jobs in a

∗This research was supported in part by the National Sci-
ence Foundation through Award CCF-0827397 and through Award
CNS-0849735.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

real-time system are often constrained by complex relation-
ships such as: Start job Ja within 5 units of Job Jb complet-
ing. Traditional scheduling literature does not accommodate
constraints more complex than those that can be represented
by precedence graphs.

Our scheduling model is composed of 3 sub-models, viz.
the Job model, the Constraint model and the Query model.
The Job model describes the type of jobs that we are in-
terested in scheduling. The Constraint model is concerned
with the nature of relationships constraining the execution
of the jobs. The Query model specifies what it means for a
set of jobs to be schedulable, subject to constraints imposed
as per the Constraint model. An instance of a problem in the
E-T-C model is specified by instantiating the variables in
the sub-models.

We focus on the following issues:
(a) Designing a framework that enables specification of

real-time scheduling problems, and
(b) Studying instantiations of interest in this framework.

The rest of this paper is organized as follows: Section
§2 describes the Job model within the E-T-C scheduling
framework. The Constraint model is discussed in the suc-
ceeding section viz. Section §3. Section §4 details the Query
model and presents the 3 types of queries that we consider
in this thesis. Each aspect of the E-T-C scheduling frame-
work is motivated through an example from real-time de-
sign. A classification scheme for Scheduling problems in
the E-T-C model is introduced in §5. We discuss the dif-
ferences between Offline Analysis and Online Dispatching
in Section §6.

2 Job Model in E-T-C
Assume an infinitely extending time axis, starting at time
t = 0. This axis is divided into intervals of length L; these
intervals are ordered and each interval is called a schedul-
ing window e.g. [0, L] represents the first scheduling win-
dow, [L, 2.L] represents the second scheduling window and
in general, [(i−1).L, i.L] represents the ith scheduling win-
dow. We are given a set of ordered, non-preemptive, jobs
J = {J1, J2, . . . Jn}, with start times {s1, s2, . . . , sn} and
execution times {e1, e2, . . . , en}. L is the period of the job-
set and all jobs execute periodically in each scheduling win-
dow. We remark that non-preemptive jobs form the bulk of

Proceedings of the Sixth European Conference on Planning

263

real-time applications in mission-critical tasks (Muscettola
et al. 1997).

3 Constraint Model in E-T-C
The executions of the jobs in the job-set J (discussed in
the above section) are constrained through relationships that
exist between their start times and execution times. In the
E-T-C model, we permit only linear relationships; thus the
constraint system on the job-set is expressed in matrix form
as :

A.[~s,~e] ≤ ~b, (1)

where,

• ~s = [s1, s2, . . . , sn] is an n−vector, representing the start
times of the jobs;

• ~e = [e1, e2, . . . , en] is an n−vector representing the exe-
cution times of the jobs;

• A is a m × 2.n matrix of rational numbers, called the
constraint matrix;

• ~b = [b1, b2, . . . , bm] is an m−vector of rational numbers,

Observe that System (1) can be rewritten in the form:

G.~s+H.~e ≤ ~b, (2)

where,
G.~s+H.~e = A.[~s,~e]

We can also use the finish times fi of jobs in relationships.
Since the jobs are non-preemptive, the relation: si+ ei = fi
holds for all jobs Ji and hence our expressiveness is not
enhanced by the inclusion.

System (1) is a convex polyhedron in the 2.n dimensional
space, spanned by the start time axes {s1, s2, . . . , sn} and
the execution time axes {e1, e2, . . . , en}.

The execution times are independent of the start times of
the jobs; however they may have complex interdependen-
cies among themselves. This interdependence is expressed
by setting

~e ∈ E (3)

where E is an arbitrary convex set. We regard the execu-
tion times as n−vectors belonging to the set E.

The ordering on the jobs is obtained by imposing the con-
straints:

si + ei ≤ si+1,∀i = 1, . . . , n− 1.

The ordering constraints are included in the A matrix in (1).
The Constraint model can be adapted to special situations

by restricting either E or A or both. The following advan-
tages result from such restrictions:

• A model that more accurately describes the requirements
of the current situation,

• Faster algorithms for schedulability queries, and

• More efficient dispatching schemes.

In §3.1, §3.2 and §3.3 we discuss restrictions to the convex
set E, while §3.4, §3.5 and §3.6 deal with restrictions to the
constraint matrix A.

3.1 The Axis-parallel Hyper-rectangle domain
As specified above, the set E in the Constraint model can
be an arbitrary convex domain. One domain that finds wide
applicability is the axis-parallel hyper-rectangle domain (
henceforth abbreviated as aph).

The Maruti Operating System (Levi et al. 1989;
Mosse, Agrawala, and Tripathi 1990; Mosse et al. 1992)
estimates running times of jobs by performing repeated
runs so as to determine upper and lower bounds on
their execution time. Accordingly, the running time of
job Ji, viz. ei, belongs to the interval [li, ui], where li
and ui denote the lower and upper bounds on the ex-
ecution time as determined by empirical observation.
These independent range variations are
the only constraints on the execution
times. Observe that during actual execution, ei can take
any value in the range [li, ui].

The aph domain possesses two useful features:
• A specification that is tractable for this domain is also

tractable for arbitrary convex domains (Subramani and
Agrawala 2000b),

• A specification that is provably “hard” for arbitrary con-
vex domains is also “hard” for this domain (Subramani
2000).
Thus when proving complexity results (especially hard-

ness results), it suffices to focus on the aph domain only.

3.2 The Polyhedral domain
A feature of machining systems such as the ones discussed
in (Y.Koren 1980) and (Koren 1983) is the active interde-
pendence of execution times on each other. For instance, the
requirement that the sum of the speeds of two axes J1 and
J2 not exceed k is captured by: e1 + e2 ≤ a. Polyhedral
domains are generalizations of the aph domains discussed
above.

3.3 Arbitrary Convex Sets
Even polyhedral domains cannot capture the requirements
of Power Systems in which there exists quadratic constraints
on the execution times. For instance, the spherical constraint
e21+e

2
2+ . . . e

2
n ≤ r, r ≥ 0 captures the requirement that the

total power spent in the system is bounded by r (Bazaraa,
Sherali, and Shetty 1993) .

3.4 Standard Constraints
The class of “standard constraints” was introduced in (Sak-
sena 1994), as a restriction to the constraint matrix A
for which the Parametric Schedulability query (see Section
§4.3) could be decided efficiently.
Definition 3.1 A constraint is said to be a standard con-
straint, if it can be expressed as a strict difference relation-
ship between at most two jobs. The relationship could be
expressed between their start or finish times.
These constraints are also known as monotone constraints
in the literature (Hochbaum and Naor 1994). Standard con-
straints serve to model relative positioning requirements be-
tween two jobs and absolute constraints on a single job.

264

When the constraints are standard, the matrix G in System
(2) is network unimodular (Dantzig 1963; Nemhauser and
Wolsey 1999) and hence the constraint system can be repre-
sented as a network graph (Subramani and Agrawala 2000a;
Cormen, Leiserson, and Rivest 1992).

The advantage of the network representation is that cer-
tain feasibility queries in the primal system can be expressed
as shortest-path queries in the corresponding dual network
(Cormen, Leiserson, and Rivest 1992). Standard constraints
are widely used to model temporal relationships in flight-
control systems (Muscettola et al. 1997; 1998).

3.5 Network Constraints

Network constraints are a straightforward generalization of
standard constraints.

Definition 3.2 A constraint is said to be a network con-
straint, if it can be put in the following form:

a.si + b.sj ≤ c.ei + d.ej + k, (4)

where a, b, c, d, k ∈ <.

Network constraints can also be represented as graphs
(Hochbaum and Naor 1994; Aspvall and Shiloach 1980);
however the relationships between adjacent vertices form
a polyhedron and are not adequately represented through
edges, as in the case of standard constraints. Once again,
the advantage of the graph representation is the existence of
faster algorithms for feasibility checking as opposed to gen-
eral constraints. Network constraints find wide applicability
in approximating certain measures (Subramani 2001).

3.6 Arbitrary Constraints

Job completion statistics such as Sum of Completion times
and Weighted Sum of Completion times of jobs are of interest
to the designers of real-time systems (Y.Koren 1980). These
statistics are aggregate constraints

∑n
i=1(si+ei) and cannot

be captured through either standard or network constraints.

4 Query model in E-T-C
Goal: We wish to determine a start time vector ~s, in each
scheduling window, such that the constraint system (1) holds
(is not violated) at run-time for any execution time vector
~e ∈ E.

The above specification (called the schedulability specifi-
cation) is rather vague and is intended to be so; in this sec-
tion, we shall present three different formalizations of the
informal specification above. Each formalization (specifica-
tion) has a different notion of what it means for a job-set
to be schedulable and is characterized by a distinct set of
complexity issues and flexibility concerns. However, in all
the specifications the guarantees provided are absolute i.e.
if the schedulability query is decided affirmatively, then the
constraint set will not be violated at run time. We also use
the terms schedulability query and schedulability predicate
to refer to the schedulability specification.

4.1 Static Scheduling
Static scheduling (also called Scheduling with no Clairvoy-
ance) is concerned with deciding the following predicate:

Ps ≡ ∃ ~s = [s1, s2, . . . , sn] ∀~e = [e1, e2, . . . , en] ∈ E

A.[~s,~e] ≤ ~b? (5)

In other words, the goal is to determine the existence of a
single start-time vector~s ∈ <n, such that the constraint sys-
tem represented by (1) holds. The only information that is
available prior to the dispatching of jobs in the ith schedul-
ing window is the knowledge of the execution time domain
E.

In (Subramani and Agrawala 2000b), we showed that the
above proposition can be decided efficiently for arbitrary
convex domains. From a computational perspective, query
(5) is the easiest to answer. Static Scheduling is the only
mode of scheduling at one’s disposal, if the dispatcher does
not have the power to perform online computations; in fact
O(1) dispatching time is one of the advantages of static
scheduling (Tsamardinos, Muscettola, and Morris 1998).

4.2 Co-Static Scheduling
Static scheduling is unduly restrictive in that even simple
constraint sets will fail to have static schedules (Subramani
and Agrawala 2000c). The restrictiveness of Static Schedul-
ing stems from the insistence on rational solution vectors.
If however, the solution vector is allowed to be a function
of the execution time vector, then a greater amount of flexi-
bility results. In Co-Static Scheduling (also called Schedul-
ing with total Clairvoyance), the assumption is that the ex-
ecution time vector is known at the start of the scheduling
window, although it may be different in different windows.
Accordingly, we wish to decide the following predicate:

Pc ≡ ∀~e = [e1, e2, . . . , en] ∈ E ∃~s = [s1, s2, . . . , sn]

A.[~s,~e] ≤ ~b (6)

Co-static scheduling permits maximum flexibility during
the dispatching phase, in that if a constraint system is not
co-statically schedulable, then it is not schedulable. How-
ever, query (6) is coNP-complete for arbitrary constraint
sets, as shown in (Subramani and Agrawala 2000c). We have
recently shown that the co-static schedulable query is solv-
able in polynomial time for standard and network constraints
(Subramani 2005). Co-static scheduling queries are applica-
ble in Flow-shops (Pinedo 1995).

4.3 Parametric Scheduling
Co-static scheduling requires knowledge of the execution
time vector for a particular scheduling window, prior to de-
termining the start time vector for that window. This may
not be feasible in all real-time systems. Parametric schedul-
ing Calso called Scheduling with limited Clairvoyance) at-
tempts to provide a balance between the Static an Co-Static
scheduling modes. In a parametric schedule, the start time
of a job is permitted to depend upon the start and execu-
tion times of jobs that have been sequenced before it and
only on those times. In this mode, we restrict our discussion

265

to aph domains, inasmuch as this simple domain preserves
the hardness of schedulability queries. Thus, the parametric
schedulability predicate is:

Pp ≡ ∃s1 ∀e1 ∈ [l1, u1] ∃s2 ∀e2 ∈ [l2, u2] . . .

∃sn ∀en ∈ [ln, un]

A.[~s,~e] ≤ ~b (7)

5 A Taxonomy of Scheduling problems
From the discussion in the above sections, it is clear that in
order to specify an instance of a scheduling problem in the
E-T-C scheduling framework, it is necessary to specify:

• The nature of the execution time domain C (E),

• The type of constraints on the jobs CA), and

• A description of the schedulability query (Ps,Pc,Pp).

Thus, a problem instance can be specified by instantiating
the tuples in the 〈α |β | γ〉 triplet, where,

• α represents the execution time domain E - The following
values are permissible for α:

– aph - E is an axis-parallel hyper-rectangle,
– poly - E is a polyhedron
– arb - E is an arbitrary convex domain.

Clearly aph is the weakest domain in terms of what can
be specified and arb is the strongest.

• β represents the constraint matrix A(G,H) - β can as-
sume the following values:

– stan - The constraints are standard which implies that
G and H are network, unimodular matrices.

– net - The constraints are network which implies that
G and H have at most two non-zero entries in any row

– arb - G and H are an arbitrarym×n rational matrices

Once again stan is the weakest constraint class, in terms
of real-time constraints that it can model, whereas arb is
the strongest.

• γ represents the schedulability predicate - The schedula-
bility predicate specifies what it means for a set of jobs to
be schedulable; the following values are permitted:

– stat - The query is concerned with static schedulabil-
ity,

– co-stat - The query is concerned with co-static
schedulability,

– param - The query is concerned with parametric
schedulability.

Clearly co-stat is the most flexible query and stat is
the least flexible.

Accordingly, 〈aph | arb | stat〉 represents an instance of a
real-time scheduling problem, in which the execution time
domain is an axis-parallel hyper-rectangle, the constraints
are arbitrary and the schedulability predicate is static. Our
notation scheme is similar to the 〈α |β | γ〉 scheme for tra-
ditional scheduling models (Pinedo 1995; Brucker 1998).

6 Offline Analysis versus Online Dispatching
Scheduling algorithms in the E-T-C model possess an of-
fline schedulability analyzer and an online dispatching com-
ponent The analyzer examines the constraints on the system
and the type of schedulability query involved, to determine
whether a feasible schedule is possible. This analysis is al-
ways carried out offline. The dispatching component is con-
cerned with determining the exact start times of the jobs in
the current scheduling window. Dispatching is always car-
ried out online.

For a given instance of a scheduling problem, the offline
analyzer is executed exactly once. If the schedulability query
is decided affirmatively, the online dispatcher is executed in
every scheduling window.

References
Aspvall, B., and Shiloach, Y. 1980. A fast algorithm for
solving systems of linear equations with two variables per
equation. Linear Algebra and its Applications 34:117–124.
Bazaraa, M. S.; Sherali, H. D.; and Shetty, C. M. 1993. Non-
linear Programming: Theory and Algorithms. New York:
John Wiley, second edition.
Brucker, P. 1998. Scheduling Algorithms. New York:
Springer. 2nd edition.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1992. In-
troduction to Algorithms. Boston, Massachusetts: MIT Press
and McGraw-Hill Book Company, 2nd edition.
Dantzig, G. B. 1963. Linear Programming and Extensions.
Princeton, NJ: Princeton University Press.
Hochbaum, D. S., and Naor, J. S. 1994. Simple and fast al-
gorithms for linear and integer programs with two variables
per inequality. SIAM Journal on Computing 23(6):1179–
1192.
Koren, Y. 1983. Computer Control of Manufacturing Sys-
tems. New York: McGraw-Hill.
Levi, S. T.; Tripathi, S. K.; Carson, S. D.; and Agrawala,
A. K. 1989. The Maruti Hard Real-Time Operating Sys-
tem. ACM Special Interest Group on Operating Systems
23(3):90–106.
Mosse, D.; Agrawala, A. K.; and Tripathi, S. K. 1990.
Maruti a hard real-time operating system. In Second
IEEE Workshop on Experimental Distributed Systems, 29–
34. IEEE.
Mosse, D.; Ko, K.-T.; Agrawala, A. K.; and Tripathi, S. K.
1992. Maruti: An Environment for Hard Real-Time Appli-
cations. In Agrawala, A. K.; Gordon, K. D.; and Hwang, P.,
eds., Maruti OS. IOS Press. 75–85.
Muscettola, N.; Smith, B.; Chien, S.; Fry, C.; Rabideau, G.;
Rajan, K.; and Yan, D. 1997. In-board planning for au-
tonomous spacecraft. In The Fourth International Sympo-
sium on Artificial Intelligence, Robotics, and Automation for
Space (i-SAIRAS).
Muscettola, N.; Morris, P.; Pell, B.; and Smith, B. 1998. Is-
sues in temporal reasoning for autonomous control systems.
In The Second International Conference on Autonomous
Agents.

266

Nemhauser, G. L., and Wolsey, L. A. 1999. Integer
and Combinatorial Optimization. New York: John Wi-
ley & Sons.
Pinedo, M. 1995. Scheduling: theory, algorithms, and sys-
tems. Prentice-Hall, Englewood Cliffs.
Saksena, M. 1994. Parametric Scheduling in Hard Real-
Time Systems. Ph.D. Dissertation, University of Maryland,
College Park.
Subramani, K., and Agrawala, A. 2000a. A dual interpre-
tation of “standard constraints” in parametric scheduling. In
Joseph, M., ed., Proceedings of the 6th International Sympo-
sium on Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT), volume 1926 of Lecture Notes in Com-
puter Science, 121–133. Springer-Verlag.
Subramani, K., and Agrawala, A. 2000b. The static polytope
and its applications to a scheduling problem. In Proceedings
of the 3rd International Workshop on Factory Communica-
tion Systems (IWFCS).
Subramani, K., and Agrawala, A. K. 2000c. The parametric
polytope and its applications to a scheduling problem. Tech-
nical Report CS-TR-4116, University of Maryland, College
Park, Department of Computer Science.
Subramani, K. 2000. Duality in the Parametric Polytope
and its Applications to a Scheduling Problem. Ph.D. Disser-
tation, University of Maryland, College Park.
Subramani, K. 2001. Parametric scheduling - algorithms
& complexity. In Burkhard Monien, e. a., ed., Proceedings
of the 8th International Conference on High-Performance
Computing (Hi-PC), volume 2228 of Lecture Notes in Com-
puter Science, 36–46. Springer-Verlag.
Subramani, K. 2005. An analysis of totally clairvoyant
scheduling. Journal of Scheduling 8(2):113–133.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
The Fifteenth National Conference on Artificial Intelligence
(AAAI-98).
Y.Koren. 1980. Cross-coupled biaxial computer control for
manufacturing systems. ASME Journal of Dynamic Systems,
Measurement and Control 102:265–272.

267

