
Sapa: A Domain-Independent Heuristic Metric Temporal Planner

Minh B. Do & Subbarao Kambhampati ∗

Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

{binhminh,rao}@asu.edu
http://rakaposhi.eas.asu.edu/sapa.html

Abstract
Many real world planning problems require goals with dead-
lines and durative actions that consume resources. In this pa-
per, we present Sapa, a domain-independent heuristic forward
chaining planner that can handle durative actions, metric re-
source constraints, and deadline goals. The main innovation
of Sapa is the set of distance based heuristics it employs to
control its search. We consider both optimizing and satisfic-
ing search. For the former, we identify admissible heuristics
for objective functions based on makespan and slack. For sat-
isficing search, our heuristics are aimed at scalability with
reasonable plan quality. Our heuristics are derived from the
“relaxed temporal planning graph” structure, which is a gen-
eralization of planning graphs to temporal domains. We also
provide techniques for adjusting the heuristic values to ac-
count for resource constraints. Our experimental results in-
dicate that Sapa returns good quality solutions for complex
planning problems in reasonable time.

Introduction
For most real world planning problems, the STRIPS model
of classical planning with instantaneous actions is inade-
quate. We normally need plans with durative actions that
execute concurrently. Moreover, actions may consume re-
sources and the plans may need to achieve goals within
given deadlines. While there have been efforts aimed at
building metric temporal planners that can handle different
types of constraints beyond the classical planning specifica-
tions (Penberthy and Weld 1994; Laborie and Ghallab 1995;
Muscettola 1994), most such planners either scale up poorly
or need hand-coded domain control knowledge to guide
their search. The biggest problem faced by existing tempo-
ral planners is thus the control of search (c.f. (Smith, Frank,
and Jonsson 2000)). Accordingly, in this paper, we address
the issues of domain independent heuristic control for metric
temporal planners.

At first blush search control for metric temporal planners
would seem to be a very simple matter of adapting the work

∗We thank David E. Smith, Terry Zimmerman and three anony-
mous reviewers for useful comments on the earlier drafts of this
paper. We also thank Patrick Haslum for his helps with the TP4
planner. This research is supported in part by the NSF grant IRI-
9801676, and the NASA grants NAG2-1461 and NCC-1225.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in heuristic planners in classical planning (Bonet, G., and
Geffner 1997; Nguyen, Kambhampati, and Nigenda 2002;
Hoffmann and Nebel 2001). The adaptation however does
pose several challenges. To begin with, metric temporal
planners tend to have significantly larger search spaces than
classical planners. After all, the problem of planning in the
presence of durative actions and metric resources subsumes
both the classical planning and scheduling problems. Sec-
ondly, the objective of planning may not be limited to simple
goal satisfaction, and may also include optimization of the
associated schedule (such as maximum lateness, weighted
tardiness, weighted completion time, resource consumption
etc. (Pinedo 1995)). Finally, the presence of metric and tem-
poral constraints, in addition to subgoal interactions, opens
up many more potential avenues for extracting heuristics
(based on problem relaxation). Thus, the question of which
relaxations provide best heuristics has to be carefully inves-
tigated.

In this paper, we present Sapa, a heuristic metric tempo-
ral planner that we are currently developing. Sapa is a for-
ward chaining metric temporal planner, whose basic search
routines are adapted from Bacchus and Ady’s(Bacchus and
Ady 2001) recent work on temporal TLPlan. We consider
a forward chaining planner because of the advantages of-
fered by the complete state information in handling metric
resources (Smith, Frank, and Jonsson 2000). Unlike tempo-
ral TLPlan, which relies on hand-coded control knowledge
to guide the planner, the primary focus of our work is on
developing distance based heuristics to guide the search. In
Sapa, we estimate the heuristic values by doing a phased re-
laxation: we first derived heuristics from a relaxation that ig-
nores the delete effects and metric resource constraints, and
then adjust these heuristics to better account for resource
constraints. In the first phase, we use a generalization of
the planning graphs (Blum and Furst 1997), called relaxed
temporal planning graphs (RTPG), as the basis for deriv-
ing the heuristics. Our use of planning graphs is inspired
by (and can be seen as an adaptation of) the recent work
on AltAlt (Nguyen, Kambhampati, and Nigenda 2002) and
FF (Hoffmann and Nebel 2001). We consider both optimiz-
ing and satisficing search scenarios. For the former, we de-
velop admissible heuristics for objective functions based on
makespan or slack. For the latter, we develop very effective
heuristics that use the characteristics of a “relaxed” plan de-

57

Proceedings of the Sixth European Conference on Planning



rived from the planning graphs. Finally, we present a way of
improving the informedness of our heuristics by accounting
for the resource constraints (which are ignored in construct-
ing the relaxed planning graphs).

Sapa is implemented in Java. Our empirical studies in-
dicate that Sapa can solve planning problems with complex
temporal and resource constraints quite efficiently. Sapa also
returns good quality solutions with short makespans and
very few irrelevant actions. This is particularly encourag-
ing given that temporal TLPlan, the leading contender of
Sapa that uses hand-coded control knowledge, tends to out-
put many irrelevant actions.

The rest of this paper describes the development and eval-
uation of Sapa. We start with a discussion of action repre-
sentation and the general search algorithm used in Sapa. We
then present the relaxed planning graph structure and discuss
different heuristics extracted from it. We also describe how
to adjust the heuristic values based on the metric resource
constraints. Finally, we present empirical results and con-
clude the paper with a discussion of related work and future
work.

Handling concurrent actions in a forward
state space planner

Sapa addresses planning problems that involve durative ac-
tions, metric resources, and deadline goals. In this section,
we describe how such planning problems are represented
and solved in Sapa. We will first describe the action rep-
resentation, and will then present the forward chaining state
search algorithm used by Sapa.

To illustrate the representation and the search algorithm
used in Sapa, we will use a small example from the flying
domain discussed in (Penberthy and Weld 1994). In this do-
main, which we call zeno-flying, airplanes move passengers
between cities. An airplane can choose between “slow fly-
ing” and “fast flying” actions. “Slow flying” travels at 400
miles/hr and consumes 1 gallon of fuel for every 3 miles.
“Fast flying” travels at 600 miles/hr and consumes 1 gallon
of fuel every 2 miles. Passengers can be boarded in 30 min-
utes and deplaned in 20 minutes. The fuel capacity of the
airplane is 750 gallons and it takes 60 minutes to refuel it.
Figure 1 shows a simple problem from this domain that we
will use as a running example throughout the paper. In this
problem, Person1 and the Airplane are at cityA, Person2 is
at cityB and the plane has 500 gallons of fuel in the ini-
tial state. The goals are to get both Person1 and Person2 to
cityC in 6.5 hours. One solution for this problem, shown in
the lower half of Figure 1, involves first boarding Person1
at cityA, and then slow-flying to cityB. While boarding Per-
son2 at cityB, we can refuel the plane concurrently. After
finishing refueling, the plane will have enough fuel to fast-
fly to cityC and deplane the two passengers.

Action representation
Planning is the problem of finding a set of actions and their
respective execution times to satisfy all causal, metric, and
resource constraints. Therefore, action representation has in-
fluences on the representation of the plans and on the plan-

ning algorithm. In this section, we will discuss the action
representation used in Sapa. Our representation is influenced
by the PDDL+ language proposal(Fox and Long 2003) and
the representations used in Zeno(Penberthy and Weld 1994)
and LPSAT(Wolfman and Weld 1999) planners.

Unlike actions in classical planning, in planning prob-
lems with temporal and resource constraints, actions are not
instantaneous but have durations. Their preconditions may
either be instantaneous or durative and their effects may
occur at any time point during their execution. Each ac-
tion A has a duration DA, starting time SA, and end time
(EA = SA + DA). The value of DA can be statically de-
fined for a domain, statically defined for a particular plan-
ning problem, or can be dynamically decided at the time of
execution.1 Action A have preconditions Pre(A) that may
be required either to be instantaneously true at the time point
SA, or required to be true starting at SA and remain true for
some duration d ≤ DA. The logical effects Eff(A) of A will
be divided into three sets Es(A), Ee(A), and Em(A, d) con-
taining respectively instantaneous effects at time points SA,
EA and SA + d (0 < d < DA).

Figure 2 illustrates the actual representations used in
Sapa for actions boarding and slow-flying in the zeno-
flying domain. Here, st and et denote the starting and
ending time points of an action, while #t represents
a time instant between st and et. While the action
boarding(person, airplane, city) requires a person to be at
the location city only at its starting time point st, it requires
an airplane to stay there the duration of its execution. This
action causes an instant effect (not(at(?person, ?city)))
at the starting time point st and the delayed effect
in(?person, ?airplane) at the ending time point et.

Actions can also consume or produce metric resources
and their preconditions may also well depend on the value
of the corresponding resource. For resource related pre-
conditions, we allow several types of equality or inequal-
ity checking including ==, <, >, <=, >=. For resource-
related effects, we allow the following types of change (up-
date): assignment(=), increment(+=), decrement(-=), multi-
plication(*=), and division(/=). In Figure 2, the action slow-
flying requires the fuel level to be greater than zero over the
entire duration of execution and consumes the fuel at a con-
stant rate while executing.

Currently we only model and test domains in which ef-
fects occur at the start or end time points, and preconditions
are required to be true at the starting point or should hold
true throughout the duration of that action. Nevertheless, the
search algorithm and the domain representation schema used

1For example, in the zeno-flying domain discussed earlier, we
can decide that boarding a passenger always takes 10 minutes for
all problems in this domain. Duration of the action of flying an air-
plane between two cities will depend on the distance between these
two cities. Because the distance between two cities will not change
over time, the duration of a particular flying action will be totally
specified once we parse the planning problem. However, refueling
an airplane may have a duration that depends on the current fuel
level of that airplane. We may only be able to calculate the dura-
tion of a given refueling action according to the fuel level at the
exact time instant when we execute that action.

58



Refuel(Airplane,B)
Fast-flight(B,C)

A C
1000

Airplane

Init Goals Deadline

t0 t1 t2 t3 t4 t5 tg

B

Sample Problem Description

1200 At(Person2,C)
Goals:  At(Person1,C)

Person2

Person1

Board(P1) Slow-flight(A,B) Board(P2) Deplane(P1)

Deplane(P2)

t6

Solution for the Sample Problem

Figure 1: Sample problem description and its solution.

in Sapa are general enough to represent and handle actions
with effects occurring at any time point during their dura-
tions and preconditions that are required to hold true for any
arbitrary duration between the start and end time points of
an action. In the near future, we intend to test our planner in
domains that have more flexible temporal constraints on the
preconditions and effects of actions.

A forward chaining search algorithm
Even though variations of the action representation scheme
described in the previous section have been used in the
partial order temporal planners such as IxTeT(Laborie and
Ghallab 1995) and Zeno(Penberthy and Weld 1994) before,
Bacchus and Ady (Bacchus and Ady 2001) are the first to
propose a forward chaining algorithm capable of using this
type of action representation and allow concurrent execu-
tion of actions in the plan. We adapt their search algorithm
in Sapa.

Before going into the details of the search algorithm,
we need to describe some major data structures that are
used. Sapa’s search is conducted through the space of time
stamped states. We define a time stamped state S as a tuple
S = (P,M,Π, Q, t) consisting of the following structure:

• P = (〈pi, ti〉 | ti < t) is a set of predicates pi that are true
at t and the last time instant ti at which they are achieved.2

• M is a set of values of all functions representing all the
metric-resources in the planning problem. Because the
continuous values of resource levels may change over the
course of planning, we use functions to represent the re-
source values.
2For example, at time instant t1 in Figure 1,

P = {〈At(airplane,A), t0〉, 〈At(Person2, B), t0〉,
〈In(Person1, t1)〉}

• Π is a set of persistent conditions, such as action precon-
ditions, that need to be protected during a period of time.

• Q is an event queue containing a set of updates each
scheduled to occur at a specified time in the future.
An event e can do one of three things: (1) change the
True/False value of some predicate, (2) update the value
of some function representing a metric-resource, or (3)
end the persistence of some condition.

• t is the time stamp of S
In this paper, unless noted otherwise, when we say “state”

we mean a time stamped state. It should be obvious that
time stamped states do not just describe world states (or snap
shots of the world at a given point of time) as done in clas-
sical progression planners, but rather describe both the state
of the world and the state of the planner’s search.

The initial state Sinit is stamped at time 0 and has an
empty event queue and empty set of persistent conditions.
However, it is completely specified in terms of function and
predicate values. In contrast, the goals do not have to be to-
tally specified. The goals are represented by a set of n 2-
tuples G = (〈p1, t1〉...〈pn, tn〉) where pi is the ith goal and
ti is the time instant by which pi needs to be achieved.
Goal Satisfaction: The state S = (P,M,Π, Q, t) subsumes
(entails) the goal G if for each 〈pi, ti〉 ∈ G either:

1. ∃〈pi, tj〉 ∈ P , tj < ti and there is no event in Q that
deletes pi.

2. Exists an event e ∈ Q that adds pi at time instant te < ti.
Action Application: An action A is applicable in state S =
(P,M,Π, Q, t) if:

1. All instantaneous preconds of A are satisfied by P and M.
2. A’s effects do not interfere with any persistent condition

in Π and any event in Q.

59



(:action BOARD
:parameters
(?person - person ?airplane - plane ?city - city)
:duration (st, + st 30)
:precondition
(and (at ?person ?city) - (st,st)

(in-city ?airplane ?city) - (st,et))
:effect
(and (not (at ?person ?city)) - st

(in ?person ?airplane) - et))

(:action SLOW-FLYING
:parameters
(?airplane - plane ?city1 - city ?city2 - city)
:duration
(st, + st (/ (distance ?city1 ?city2)

(slow-speed ?airplane)))
:precondition
(and (in-city ?airplane ?city1) - (st,st)

(> (fuel ?airplane) 0) - (st,et))
:effect
(and (not (in-city ?airplane ?city1)) - st

(in-city ?airplane ?city2) - et
(-= (fuel ?airplane)

(* #t (sf-fuel-cons-rate ?airplane))) - #t))

Figure 2: Examples of action descriptions in Sapa

3. No event in Q interferes with persistent preconds of A.

When we apply an action A to a state S =
(P,M,Π, Q, t), all instantaneous effects of A will be
immediately used to update the predicate list P and
metric resources database M of S. A’s persistent pre-
conditions and delayed effects will be put into the
persistent condition set Π and event queue Q of S.
For example, if we apply action Board(P1,airplane) to
the initial state of our running example in Figure 1,
then the components of resulting state S will become
P = {〈At(airplane,A), t0〉, 〈In(P1, airplane), t0〉,
〈At(P2, B), t0〉}, M = {Fuel(airplane)=500},
Π = {〈At(airplane,A), t1〉}, and Q =
{〈In(P1, airplane), t1〉}.

Besides the normal actions, we will have one special ac-
tion called advance-time3 which we use to advance the time
stamp of S to the time instant te of the earliest event e in the
event queue Q of S. The advance-time action will be appli-
cable in any state S that has a non-empty event queue. Upon
applying this action, we update state S according to all the
events in the event queue that are scheduled to occur at te.

Notice that we do not consider action A to be applica-
ble if it causes some event e that interferes with an event e′
in the event queue, even if e and e′ occur at different time
points. We believe that even though an event has instant ef-
fect, there should be some underlying process that leads to
that effect.4 Therefore, we feel that if two actions cause in-
stant events that are contradicting with each other, then even
if the events occur at different time points, the underlying
processes supporting these two events may contradict each
other. Thus, these two actions are not allowed to execute
concurrently. Our approach can be considered as having a
hold process (Ghallab and Laruelle 1994) extending from
the starting point of an action to the time point at which an
event occurs. The hold process protects that predicate from

3Advance-time is called unqueue-event in (Bacchus and Ady
2001)

4For example, the boarding action will cause the event of the
passenger being inside the plane at the end of that action. However,
there is an underlying process of taking the passenger from the gate
to inside the plane that we are not mentioning about.

State Queue: SQ={Sinit}
while SQ6={}

S:= Dequeue(SQ)
Nondeterministically select A

applicable in S
S’ := Apply(A,S)
if S’|= G then

PrintSolution
else Enqueue(S’,SQ)

end while;

Figure 3: Main search algorithm

violations by conflicting events from other actions. This also
means that even though an effect of a given action A appears
to change the value of a predicate at a single time point t,
we implicitly need a duration from the starting point st of
A to t for it to happen. We are currently investigating ap-
proaches to represent constraints to protect a predicate or
resource more explicitly and flexibly. Additionally, in han-
dling metric resource interactions between two actions, Sapa
follows an approach similar to the ones used by Zeno(Pen-
berthy and Weld 1994) and RIPP(Koehler 1998): it does not
allow two actions that access the same metric resource to
overlap with each other. By not allowing two actions affect-
ing the same resource to overlap, we can safely change the
resource condition that needs to be preserved during an ac-
tion to be an instantaneous condition or an update at the start
or end point of that action. For example, the condition that
the fuel level of an airplane should be higher than 0 while
flying between two cities, can be changed to a check to see if
the level of fuel it has at the beginning of the action is higher
than the amount that will be consumed during the course of
that action. This helps in simplifying the search algorithm.
In future, we intend to investigate other ways to relax this
type of resource interaction constraints.
Search algorithm: The basic algorithm for searching in the
space of time stamped states is shown in Figure 3. We pro-
ceed by applying all applicable actions to the current state
and put the result states into the sorted queue using the
Enqueue() function. The Dequeue() function is used to

60



take out the first state from the state queue. Currently, Sapa
employs the A* search. Thus, the state queue is sorted ac-
cording to some heuristic function that measures the diffi-
culty of reaching the goals from the current state. The rest
of the paper discusses the design of heuristic functions.

Heuristic control
For any type of planner to work well, it needs to be armed
with good heuristics to guide the search in the right direction
and to prune the bad branches early. Compared with heuris-
tic forward chaining planners in classical planning, Sapa has
many more branching possibilities. Thus, it is even more
critical for Sapa to have good heuristic guidance.

Normally, the design of the heuristics depends on the ob-
jective function that we want to optimize; some heuristics
may work well for a specific objective function but not oth-
ers. In a classical planning scenario, where actions are in-
stantaneous and do not consume resources, the quality met-
rics are limited to a mere count of actions or the parallel
execution time of the plan. When we extend the classical
planning framework to handle durative actions that may con-
sume resources, the objective functions need to take into
account other quality metrics such as the makespan, the
amount of slack in the plan and the amount of resource
consumption. Heuristics that focus on these richer objec-
tive functions will in effect be guiding both planning and
scheduling aspects. Specifically, they need to control both
action selection and the action execution time.5

In this paper, we consider both satisficing and optimiz-
ing search scenarios. In the former, our focus is on effi-
ciently finding a reasonable quality plan. In the later, we are
interested in the optimization of objective functions based
on makespan, or slack values. We will develop heuristics
for guiding both types of search. Table 1 provides a high
level characterization of the different heuristics investigated
in this paper, in terms of the objective functions that they are
aimed at, and the knowledge used in deriving them.

For any type of objective function, heuristics are gener-
ally derived from relaxed problems, with the understanding
that the more constraints we relax, the less informed the
heuristic becomes (Pearl 1984). Exploiting this insight to
control a metric temporal planner brings up the question of
what constraints to relax. In classical planning, the “relax-
ation” essentially involves ignoring precondition/effect in-
teractions between actions (Bonet, G., and Geffner 1997;
Hoffmann and Nebel 2001). In metric-temporal planning,
we can not only relax the logical interactions, but also
the metric resource constraints, and temporal duration con-
straints.

In Sapa, we estimate the heuristic values by doing a
phased relaxation: we first relax the delete effects and met-
ric resource constraints to compute the heuristic values, and
then modify these values to better account for resource con-
straints. In the first phase we use a generalization of the plan-

5In (Smith, Frank, and Jonsson 2000), Smith et. al. discuss the
importance of the choice of actions as well as the ordering between
them in solving complicated real world planning problems involv-
ing temporal and resource constraints.

while(true)
forall A 6=advance-time applicable in S

S := Apply(A,S)
if S |= G then Terminate{solution}

S’ := Apply(advance-time,S)
if ∃ 〈pi, ti〉∈G such that

ti < Time(S’) and pi /∈S then
Terminate{non-solution}

else S := S’
end while;

Figure 4: Algorithm to build the relaxed temporal planning
graph structure.

ning graphs (Blum and Furst 1997), called relaxed tempo-
ral planning graphs (RTPG), as the basis for deriving the
heuristics. Our use of planning graphs is inspired by (and
can be seen as an adaptation of) the recent work on AltAlt
(Nguyen, Kambhampati, and Nigenda 2002) and FF (Hoff-
mann and Nebel 2001). The RTPG structures are described
in next. We then describe the extraction of admissible and
effective heuristics from the RTPG. Finally, we discuss a
technique for improving the informedness of our heuristics
by adjusting the heuristic values to account for the resource
constraints (which are ignored in the RTPG).

Building the relaxed temporal planning graph
All our heuristics are based on the relaxed temporal planning
graph structure (RTPG). This is a Graphplan-style(Blum and
Furst 1997) bi-level planning graph generalized to tempo-
ral domains. Given a state S = (P,M,Π, Q, t), the RTPG
is built from S using the set of relaxed actions, which are
generated from original actions by eliminating all effects
which (1) delete some fact (predicate) or (2) reduce the level
of some resource. Since delete effects are ignored, RTPG
will not contain any mutex relations, which considerably re-
duces the cost of constructing RTPG. The algorithm to build
the RTPG structure is summarized in Figure 4. To build the
RTPG, we need three main datastructures: a fact level, an
action level, and an unexecuted event queue.6 Each fact f or
action A is marked in, and appears in the RTPG’s fact/action
level at time instant tf /tA if it can be achieved/executed at
tf /tA. In the beginning, only facts which appear in P are
marked in at t, the action level is empty, and the event queue
holds all the unexecuted events in Q that add new predicates.
Action A will be marked in if (1) A is not already marked in
and (2) all of A’s preconditions are marked in. When action
A is in, then all of A’s unmarked instant add effects will also
be marked in at t. Any delayed effect e of A that adds fact
f is put into the event queue Q if (1) f is not marked in and
(2) there is no event e′ in Q that is scheduled to happen be-
fore e and which also adds f. Moreover, when an event e is
added to Q, we will take out from Q any event e′ which is
scheduled to occur after e and also adds f.

6Unlike the initial state, the event queue of the state S from
which we build the RTPG may be.

61



Heuristic Objective Function Basis Adm. Use res-infor
Max-span minimize makespan RTPG Yes No
Min-slack maximize minimum slack RTPG Yes No
Max-slack maximize maximum slack RTPG Yes No
Sum-slack maximize sum-slack RTPG Yes No
Sum-action minimize number of actions relaxed plan No No

Sum-duration minimize sum of action durations relaxed plan No No
Adj. sum-act. minimize number of actions relaxed plan No Yes
Adj. sum-dur. minimize sum of action durations relaxed plan No Yes

Table 1: Different heuristics investigated in Sapa. Columns titled “objective function”, “basis”, “adm” and “use res-infor” show
respectively the objective function addressed by each heuristic, the basis to derive the heuristic values, the admissibility of the
heuristic, and whether or not resource-related information is used in calculating the heuristic values.

When there are no more unmarked applicable actions in
S, we will stop and return no-solution if either (1) Q is empty
or (2) there exists some unmarked goal with a deadline that
is smaller than the time of the earliest event in Q. If none
of the situations above occurs, then we will apply advance-
time action to S and activate all events at time point te′ of the
earliest event e’ in Q. The process above will be repeated
until all the goals are marked in or one of the conditions
indicating non-solution occurs. Figure 5 shows the RTPG
for the state S at time point t1 (refer to Figure 1) after we
apply action Board(P1) to the initial state and advance the
clock from t0 to t1.

In Sapa, the RTPG is used to:

• Prune the states that can not lead to any solution.

• Use the time points at which goals appear in the RTPG as
the lower bounds on their time of achievements in the real
plans.

• Build a relaxed plan that achieves the goals, which can
then be used as a basis to estimate the distance from S to
the goals.

For the first task, we will prune a state if there is some
goal 〈pi, ti〉 such that pi does not appear in the RTPG before
time point ti.

Proposition 1: Pruning a state according to the relaxed
temporal planning graph (RTPG) preserves the complete-
ness of the planning algorithm.

The proof is quite straight forward. Since we relaxed the
delete effects and resource related constraints of all the ac-
tions when building the graph structure, and applied all ap-
plicable actions to each state, the time instant at which each
predicate appears in the RTPG is a lower bound on its real
time of achievement. Therefore, if we can not achieve some
goal on time in the relaxed problem, then we definitely will
not be able to achieve that goal with the full set of con-
straints.

In the next several sections, we will discuss the second
task, that of deriving different heuristic functions from the
RTPG structure.

Admissible heuristics based on action durations
and deadlines

In this section, we will discuss how several admissible
heuristic functions can be derived from the RTPG. First,
from the observation that all predicates appear at the earliest
possible time in the relaxed plan graph, we can derive
an admissible heuristic which can be used to optimize the
makespan of the solution. The heuristic is defined as follows:

Max-span heuristic: Distance from a state to the goals is
equal to the length of the duration between the time-instant
of that state and the time the last goal appears in the RTPG.

The max-span heuristic is admissible and can be used to
find the smallest makespan solution for the planning prob-
lem. The proof of admissibility is based on the same ob-
servation made in the proof of Proposition 1. Because all
the goals appear in the RTPG at the time instants that are
lower bounds on the their real time of achievements, the
time instant at which the last goal appears in the RTPG will
be the lower bound on the actual time point at which we
can achieve all the goals. Thus, it is a lower bound on the
makespan of the solution.

The max-span heuristic discussed so far can be thought of
as a generalized version of the max-action heuristic used in
HSP (Bonet, G., and Geffner 1997) or max-level heuristic in
AltAlt (Nguyen, Kambhampati, and Nigenda 2002). One of
the assumptions in classical planning is that the goals have
no deadlines and they need only be achieved by the end of
the plan. Therefore, all heuristics concentrate on measuring
how far the current state is to the point by which all the goals
are achieved. However, in temporal planning with deadline
goals, we can also measure the ‘slack’ values for the goals
as another plan quality measurement (where slack is the dif-
ference in time between when the goal was achieved in the
paln, and the deadline specified for its achievement). The
slack values for a given set of goals can also be a good in-
dication on how hard it is to achieve those goals, and thus,
how hard it is to solve a planning problem from a given state.
Moreover, slack-based objective functions are common in
scheduling.

We will consider objective functions to maximize the
minimum, maximum, or summation of slack values of all

62



Deplane(P1,A)

Deplane(P1,B)

SlowFlight(A,B)
Board(P1,A)

tg

Deplane(P1,C)

Deplane(P2,C)

SlowFlight(B,C)
FastFlight(B,C)

Board(P2,B)
FastFlight(A,B)

t0 t1 t2 t3 t4 t5 t6 t7 t8

Sinit S

Relaxed Planning GraphPartial Plan

Figure 5: Sample relaxed temporal planning graph for durative actions. Shaded actions are the ones appear in the relaxed plan.

the goals for the temporal planning problems. In our case,
the slack value for a given goal g is estimated from the
RTPG by taking the difference between the time instant
at which g appears in the RTPG and its deadline. We now
present admissible heuristics for these three slack based
objective functions.

Min-slack heuristic: Distance from a state to the goals is
equal to the minimum of the slack estimates of all individual
goals.7

Max-slack heuristic: Distance from a state to the goals is
equal to the maximum of slack estimates of all individual
goals.

Sum-slack heuristic: Distance from a state to the goals is
equal to the summation of slack estimates for all individual
goals.

The min-slack, max-slack, and sum-slack heuristics target
the objective functions of maximizing the minimum slack,
maximum slack, and the summation of all slack values. The
admissibility of the three heuristics for the respective objec-
tive functions can be proven using the same argument we
made for the max-span heuristic. Specifically, we use the
observation that all goals appear in the RTPG at time in-
stants earlier than the actual time instants at which they can
be achieved, to prove that the slack estimated calculated us-
ing the RTPG for any goal will be the upper bound on its
actual slack value for the non-relaxed problem.

7If all the goals have the same deadlines, then maximizing the
minimum slack is equal to minimizing the makespan of the plan
and the two heuristic values (max-span and min-slack) can be used
interchangably.

Heuristics for efficient satisficing search
We now focus on efficiently finding reasonable quality
plans. In the last section, we discussed several admissible
heuristics which can be used to find optimal solution
according to some objective functions. However, admissible
heuristics such as max-span and slack-based heuristics
are only concerned about the time points at which goals
are achieved, and not the length of the eventual plan. In
classical planning, heuristics that use an estimate on the
length of the plan have been shown to be more effec-
tive in controlling search (Hoffmann and Nebel 2001;
Nguyen, Kambhampati, and Nigenda 2002). To estimate
the length of the solution, these planners typically use a
valid plan extracted from the relaxed planning graph (the
relaxation typically involves ignoring negative interactions).
We can use a similar heuristic for temporal planning.

Sum-action heuristic: Distance from a state to the goals is
equal to the number of actions in the relaxed plan.

The relaxed plan can be built backward from the goals in a
manner nearly identical to the procedure used in Graphplan
algorithm(Blum and Furst 1997) in classical planning. We
first start with the goals and add actions that support them
to the solution. If we add an action to the solution, then its
preconditions are also added to the set of current goals. The
search continues until we “reach” the initial state (i.e the
goals are entailed by the initial state). In our continuing ex-
ample, the shaded actions in Figure 5 are the ones that ap-
pear in the relaxed plan when we search backward.

Finally, since actions have different durations, the sum of
the durations of actions in the relaxed plan is another way to
measure the difficulty in achieving the goals.
Sum-duration heuristic: Distance from a state to the goals
is equal to the sum of durations of actions in the relaxed
plan.

63



If all actions have the same durations, then the sum of du-
rations of all actions in the relaxed plan will be equivalent to
taking the number of actions in the plan. Thus, in this case,
sum-action and sum-duration will perform exactly the same.
Neither of these heuristics are admissible; searches using
the sum-action or sum-duration heuristics do not guarantee
to return the solutions with smallest number of actions, or
solutions with smallest summation of action durations. The
reason is that these two heuristics have their values based on
a first (relaxed) plan found. There is no guarantee that that
first relaxed plan will be smaller than the smallest real (non-
relaxed) plan in terms of number of actions, or summation
of durations of actions in the plan.

Using metric resource constraints to adjust
heuristic values
The heuristics discussed in the last two sections have used
the knowledge about durations of actions and deadline goals
but not about resource consumption. By ignoring the re-
source related effects when building the relaxed plan, we
may miss counting actions whose only purpose is to give
sufficient resource-related conditions to other actions.8 Con-
sequently, ignoring resource constraints may reduce the
quality of heuristic estimate based on the relaxed plan. We
are thus interested in adjusting the heuristic values discussed
in the last two sections to account for the resource con-
straints.

In real-world problems, most actions consume resources,
while there are special actions that increase the levels of re-
sources. Since checking whether the level of a resource is
sufficient for allowing the execution of an action is simi-
lar to checking the predicate preconditions, one obvious ap-
proach to adjust the relaxed plan would be to add actions
that provide that resource-related condition to the relaxed
plan. For reasons discussed below, it turns out to be too dif-
ficult to decide which actions should be added to the relaxed
plan to satisfy the given resource conditions. First, actions
that consume/produce the same metric-resource may over-
lap over the RTPG and thus make it hard to reason about the
resource level at each time point. In such cases, the best we
can do is to find the upper bound and lower bound values
on the value of some specific resource. However, the bounds
may not be very informative in reasoning about the exact
value. Second, because we do not know the values of met-
ric resources at each time point, it is difficult to reason as
to whether or not an action needs another action to support
its resource-related preconditions. For example, in Figure 5,
when we add the action fast-flying(B,C) to the relaxed plan,
we know that that action will need fuel(airplane) > 400
as its precondition. However, without the knowledge about
the value (level) of fuel(airplane) at that time point, we
can hardly decide whether or not we need to add another ac-
tion to achieve that precondition. If we reason that the fuel
level at the initial state (fuel(airplane) = 500) is suffi-

8For example, if we want to drive a truck to some place and the
fuel level is low, by totally ignoring the resource related conditions,
we will not realize that we may need to refuel the truck before
driving it.

cient for that action to execute, then we already miss one
unavoidable refuel(airplane) action (because most of the
fuel in the initial state has been used for the other flying ac-
tion, fast-flying(A,B)). A final difficulty is that because of
the continuous nature of the metric resources, it is harder
to reason if an action gives a resource-related effect to an-
other action and whether or not it is logically relevant to
do so. For example, suppose that we need to fly an air-
plane from cityA to cityB and we need to refuel to do so.
Action refuel(airplane, cityC) gives the fuel that the air-
plane needs, but it is totally irrelevant to the plan. Adding
that action to the relaxed plan (and its preconditions to the
goal set) will lead to the addition of irrelevant actions, and
thus reduce the quality of heuristic estimates it provides.

In view of the above complications, we introduce a new
way of readjusting the relaxed plan to take into account the
resource constraints as follows: we first preprocess the prob-
lem specifications and find for each resource R an action
AR that can increase the amount of R maximally. Let ∆R

be the amount by which AR increases R, and let Dur(AR)
be the duration of AR. Let Init(R) be the level of re-
source R at the state S for which we want to compute the
relaxed plan, and Con(R), Pro(R) be the total consump-
tion and production of R by all actions in the relaxed plan.
If Con(R) > Init(R) + Pro(R), we use the following
formula to adjust the heuristic values of the sum-action and
sum-duration according to the resource consumption.

Sum-action heuristic value h:

h← h +
∑
R

⌈
Con(R)− (Init(R) + Pro(R))

∆R

⌉
Sum-duration heuristic value h:

h← h+
∑
R

Con(R)− (Init(R) + Pro(R))

∆R
∗Dur(AR)

We will call the newly adjusted heuristics adjusted sum-
action and adjusted sum-duration. The basic idea is that
even though we do not know if an individual resource-
consuming action in the relaxed plan needs another action
to support its resource-related preconditions, we can still ad-
just the number of actions in the relaxed plan by reasoning
about the total resource consumption of all the actions in the
plan. If we know how much excess amount of a resource
R the relaxed plan consumes and what is the maximum in-
crement of R that is allowed by any individual action in the
domain, then we can infer the minimum number of resource-
increasing actions that we need to add to the relaxed plan to
balance the resource consumption.

For example, in the relaxed plan for our sample problem,
we realize that the two actions fast-flying(A,B) and fast-
flying(B,C) consume a total of: 1000/2 + 1200/2 = 1100
units of fuel, which is higher than the initial fuel level of
500 units. Moreover, we know that the maximum increment
for the airplane’s fuel is 750 for the refuel(airplane) ac-
tion. Therefore, we can infer that we need to add at least

64



sum-act sum-act adjusted sum-dur sum-dur adjusted
prob time (s) node time (s) node time (s) node time (s) node

zeno1 0.272 14/48 0.317 14/48 0.35 20/67 0.229 9/29
zeno2 92.055 304/1951 61.66 188/1303 - - - -
zeno3 23.407 200/996 38.225 250/1221 7.72 60/289 35.757 234/1079
zeno4 - - 37.656 250/1221 7.76 60/289 35.752 234/1079
zeno5 83.122 575/3451 71.759 494/2506 - - - -
zeno6 64.286 659/3787 27.449 271/1291 - - 30.530 424/1375
zeno7 1.34 19/95 1.718 19/95 1.374 19/95 - -
zeno8 1.11 27/87 1.383 27/87 1.163 27/87 1.06 14/60
zeno9 52.82 564/3033 16.310 151/793 130.554 4331/5971 263.911 7959/10266
log p1 2.215 27/159 2.175 27/157 2.632 33/192 2.534 33/190
log p2 165.350 199/1593 164.613 199/1592 37.063 61/505 - -
log p3 - - 20.545 30/215 - - - -
log p4 13.631 21/144 12.837 21/133 - - - -
log p5 - - 28.983 37/300 - - - -
log p6 - - 37.300 47/366 - - - -
log p7 - - 115.368 62/531 - - - -
log p8 - - 470.356 76/788 - - - -
log p9 - - 220.917 91/830 - - - -

Table 2: Solution times and explored/generated search nodes for Sapa in the zeno-flying and temporal logistics domains with
sum-action and sum-duration heuristics with/without resource adjustment technique. Times are in seconds. All experiments are
run on a Sun Ultra 5 machine with 256MB RAM. “-” indicates that the problem can not be solved in 500 seconds.

d(1100 − 500)/750e = 1 refueling action to make the re-
laxed plan consistent with the resource consumption con-
straints. The experimental results show that the metric re-
source related adjustments are quite important in domains
which have many actions consuming different types of re-
sources.

The adjustment approach described above is useful for
improving the sum-action and sum-duration heuristics, but it
can not be used for the max-span and slack-based heuristics
without sacrificing their admissibility. In future, we intend
to investigate the resource constraint-based adjustments for
those heuristics that still preserve their admissibility.

Experimental results
We have implemented Sapa in Java. To date, our implemen-
tation of Sapa has been primarily used to test the perfor-
mance of different heuristics and we have spent little effort
on code optimization. We were primarily interested in seeing
how effective the heuristics were in controlling the search. In
the case of heuristics for satisficing search, we were also in-
terested in evaluating the quality of the solution. We evaluate
the performance of Sapa on problems from two metric tem-
poral planning domains to see how well it performs in these
complex planning problems. The first one is the zeno-flying
domain(Penberthy and Weld 1994) discussed earlier. The
second is our version of the temporal and metric resource
version of the logistics domain. In this domain, trucks move
packages between locations within one city, and planes carry
them from one city to another. Different airplanes and trucks
move with different speeds, have different fuel capacities,
different fuel-consumption-rates, and different fuel-fill-rates
when refueling. The temporal logistics domain is more com-

plicated than the zeno-flying domain because it has more
types of resource-consuming actions. Moreover, the refuel
action in this domain has a dynamic duration, which is not
the case for any action in the zeno-flying domain. Specifi-
cally, the duration of this action depends on the fuel level of
the vehicle and can only be decided at the time we execute
that action.

Table 2 and 3 summarize the results of our empirical
studies. Before going into the details, we should mention
that among the different types of heuristics discussed in the
earlier sections, max-span and slack-value based heuristics
are admissible. However, they do not scale up to reasonable
sized problems. As a matter of fact, the max-span heuris-
tic can not solve any problems in Table 2 in the allotted
time. The sum-slack heuristic returns an optimal solution
(in terms of makespan and sum-slack values) for the prob-
lem Zeno1 in zeno-flying domain in 7.3 seconds, but can not
solve any other problems. However, both are able to solve
smaller problems that are not listed in our result tables. Be-
cause of this, most of our remaining discussion is directed
towards sum-action and sum-duration heuristics.

Table 2 shows the running times of Sapa for the sum-
action and sum-duration heuristics with and without metric
resource constraint adjustment technique in the two plan-
ning domains discussed above. We tested with 9 problems
from each domain. Most of the problems require plans of
10-30 actions, which are quite big compared to problems
solved by previous domain-independent temporal planners
reported in the literature. The results show that most of the
problems are solved within a reasonable time (e.g under
500 seconds). More importantly, the number of nodes (time-
stamped states) explored, which is the main criterion used

65



sum-act sum-act adjusted sum-dur sum-dur adjusted
prob #act duration #act duration #act duration #act duration

zeno1 5 320 5 320 5 320 5 320
zeno2 23 1020 23 950 - - - -
zeno3 22 890 13 430 13 450 17 400
zeno4 - - 13 430 13 450 17 400
zeno5 20 640 20 590 - - - -
zeno6 16 670 15 590 - - 14 440
zeno7 10 370 10 370 10 370 - -
zeno8 8 320 8 320 8 320 8 300
zeno9 14 560 13 590 13 460 13 430
log p1 16 10.0 16 10.0 16 10.0 16 10.0
log p2 22 18.875 22 18.875 22 18.875 - -
log p3 - - 12 11.75 - - - -
log p4 12 7.125 12 7.125 - - - -
log p5 - - 16 14.425 - - - -
log p6 - - 21 18.55 - - - -
log p7 - - 27 24.15 - - - -
log p8 - - 27 19.9 - - - -
log p9 - - 32 26.25 - - - -

Table 3: Number of actions and duration (makespan) of the solutions generated by Sapa in the zeno-flying and logistics domains
with sum-action and sum-duration heuristics with/without resource adjustment technique.

to decide how well a heuristic does in guiding the search, is
quite small compared to the size of the problems. In many
cases, the number of nodes explored by the best heuristic is
only about 2-3 times the size of the plan.

In general, the sum-action heuristic performs better than
the sum-duration heuristic in terms of planning time, espe-
cially in the logistics domain. However, there are several
problems in which the sum-duration heuristic returns better
solving times and smaller number of nodes. The metric
resource adjustment technique greatly helps the sum-action
heuristic, especially in the logistics domain, where without
it Sapa can hardly solve the bigger problems. We still do
not have a clear answer as to why the resource-adjustment
technique does not help the sum-duration heuristic.

Plan Quality: Table 3 shows the number of actions and the
duration (makespan) of the solution for the two heuristics
analyzed in Table 2. These categories can be seen as indica-
tive of the problem’s difficulty, and the quality of the solu-
tions. By closely examining the solutions returned, we found
that the solutions returned by Sapa have quite good quality in
the sense that they rarely have many irrelevant actions. The
absence of irrelevant actions is critical in the metric tempo-
ral planners as it will both save resource consumption and
reduce execution time. It is interesting to note here that the
temporal TLPlan(Bacchus and Ady 2001), whose search al-
gorithm Sapa adapts, usually outputs plans with many more
irrelevant actions. Interestingly, Bacchus & Ady mention
that their solutions are still better than the ones returned by
LPSAT(Wolfman and Weld 1999), which makes our solu-
tions that much more impressive compared to LPSAT.

Sum-action heuristic without resource adjustment nor-
mally outputs plans with slightly higher number of actions,
and longer makespans than the sum-duration heuristic. In
some cases, the sum-action heuristic guides the search into

paths that lead to very high makespan values, thus violating
the deadline goals. After that, the planner has harder time
getting back on the right track. Examples of this are zeno-4
and log-p3 which cannot be solved with sum-action heuris-
tic if the deadlines are about 2 times smaller than the opti-
mal makespan (because the search paths keep extending the
time beyond the deadlines). The resource adjustment tech-
nique not only improves the sum-action heuristic in solution
times, but also generally shortens the makespan and occa-
sionally reduces the number of actions in the plan as well. As
mentioned earlier, the adjustment technique generally does
not help the sum-duration heuristics in solving time, but it
does help reduce the makespan of the solution in most of the
cases where solutions can be found. However, the set of ac-
tions in the plan is generally still the same, which suggests
that the adjustment technique does not change the solution,
but pushes the actions up to an earlier part of the plan. Thus,
it favors the execution of concurrent actions instead of using
the special action advance-time to advance the clock.

When implementing the heuristics, one of the decisions
we had to make was whether to recalculate the heuristic
value when we advance the clock, or to use the same value
as that of the parent node. On the surface, this problem
looks trivial and the correct way seems to be to recalcu-
late the heuristic values. However, in practice, keeping the
parent node’s heuristic value when we advance the clock al-
ways seems to lead to solutions with equal or slightly better
makespan. We can explain the improved makespan by the
fact that recalculating the heuristic value normally favors
the advance-clock action by outputting a smaller heuristic
value for it than the parent. Using many such advance-clock
actions will lead to solutions with higher makespan values.
The solving time comparison is somewhat mixed. Keeping
the parent heuristics value speeds up 6 of the 9 problems
tested in the logistics domain by average of 2x and slows

66



(a) Trucks are allowed to drive inter-city. (b) Trucks are not allowed to drive inter-
city.

Figure 6: Comparison of Sapa, TGP, and TP4 on the set of 80 random temporal logistics problems. A point 〈x, y〉 on the curve
indicates y percentages of problems were solved in x seconds or less.

down about 1.5x in the 3 zeno-flying problems. We do not
have a clear answer for the solution time differences between
the two approaches. In the current implementation of Sapa,
we keep the parent node’s heuristic value when we advance
the clock.

Figure 6 shows the comparison results of Sapa with
TGP(Smith and Weld 1999) and TP4(Haslum and Geffner
2001) on the set of 80 random generated temporal (non-
resource) logistics problems, which come with TP4. The re-
sults show that without the drive inter-city action (which is
not allowed in the original logistics domain), Sapa solves all
100% of the problems very fast while TGP peaks at around
88% and TP4 at 35% within the given time limit of 1000
seconds. If we allow the drive inter-city action, which has
very long duration compared to others, TGP and TP4 output
better results while Sapa solves less number of problems in
more time. Nevertheless, it’s still be able to solve the most
number of problems in the alloted time limit. In (Do and
Kambhampati 2001), we introduce some more sophisticated
ways to derive the heuristics in Sapa. As the result, Sapa is
able to solve all 80 problems in this suite, with or without
drive inter-city action in less than 100 seconds. From the
plan quality point of view, while TGP and TP4 output plans
with optimal makespan values, Sapa currently ouputs solu-
tions with the makespan values averaging about 3x longer
than the optimal solutions. Given the fact that Sapa in many
times put actions not at the earliest time points that they
can be executed, we are currently investigating some post-
processing or on-the-fly approaches to reduce the makespans
of the final solutions.

Related work
There have been several temporal planning systems in
the literature that can handle different types of temporal
and resource constraints. Among them, planners such as
temporal TLPlan(Bacchus and Ady 2001), Zeno(Penberthy
and Weld 1994), IxTeT(Laborie and Ghallab 1995), and
HSTS(Muscettola 1994) can solve problems that are simi-
lar to the one solved by Sapa. There are also planners such
as Resource-IPP(Koehler 1998), TP4(Haslum and Geffner
2001), TGP(Smith and Weld 1999), and LPSAT(Wolfman

and Weld 1999) that can handle a subset of the types of prob-
lems discussed in this paper.

Closest to our work is the temporal TLPlan (Bacchus and
Ady 2001), which originates the algorithm to support con-
current actions in the forward state space search. The critical
difference between this planner and Sapa is that while tem-
poral TLPlan is controlled by hand-coded domain-specific
control rules, Sapa uses domain-independent heuristics. Ex-
perimental results reported in (Bacchus and Ady 2001) indi-
cate that while Temporal TLPlan is very fast, but it tends to
output plans with many irrelevant actions.

There are several partial order planners that can han-
dle various types of temporal and resource constraints.
Zeno(Penberthy and Weld 1994) can solve problems with
a wide range of constraints, as well as actions with condi-
tional and quantified effects. However, Zeno lacks heuristic
control and scales poorly. IxTeT(Laborie and Ghallab 1995)
is another hierarchical partial order planner that can han-
dle many types of temporal and resource constraints. Most
of IxTeT’s interesting innovations have been aimed at on
handling discrete resources such as robots or machines but
not on metric resources. HSTS(Muscettola 1994) is a par-
tial order planner that has been used to solve NASA tempo-
ral planning problems. Like TLPlan, HSTS uses hand-coded
domain control knowledge to guide its search. parcPlan(Li-
atsos and Richards 1999) is a domain-independent tempo-
ral planner using the least-commitment approach. parcPlan
claims to be able to handle a rich set of temporal constraints,
but the experiments in (Liatsos and Richards 1999) do not
demonstrate its expressiveness adequately.

Resource-IPP (RIPP)(Koehler 1998) extends the IPP
planner to deal with durative actions that may consume met-
ric resources. RIPP considers time as another type of re-
source and solves the temporal planning problem by as-
suming that actions are still instantaneous. Like IPP, RIPP
is based on Graphplan(Blum and Furst 1997) algorithm. A
limited empirical evaluation of RIPP is reported in (Koehler
1998). TP4(Haslum and Geffner 2001) by Haslumn &
Geffner is a recent planner that employs backward chaining
state space search with temporal or resource related admissi-
ble heuristics. The results of TP4 are promising in a subset of

67



temporal planning problems where durations are measured
in unit time, and resources decrease monotonically.

There are several planners in the literature that han-
dle either temporal or resource constraints (but not both).
TGP(Smith and Weld 1999) is a temporal planner based on
the Graphplan algorithm. TGP extends the notion of mu-
tual exclusion relations in the Graphplan algorithm to allow
constraints between actions and propositions. RTPG can be
seen as a relaxed version of the planning graph that TGP
uses. While TGP might provide better bounds on slacks and
times of achievement, it is also costlier to compute. Cost
of computation is especially critical as Sapa would have to
compute the planning graph once for each expanded search
node. It is nevertheless worth investigating the overall effec-
tiveness of heuristics derived from TGP’s temporal planning
graph. LPSAT(Wolfman and Weld 1999) can handle metric
resource constraints by combining SAT and linear program-
ming. As noted earlier, LPSAT seems to suffer from poor
quality plans.

Conclusion and future work
In this paper, we described Sapa, a domain-independent for-
ward chaining heuristic temporal planner that can handle
metric resource constraints, actions with continuous dura-
tion, and deadline goals. Sapa does forward search in the
space of time-stamped states. Our main focus has been on
developing effective heuristics to control the search. We con-
sidered both satisficing and optimizing search scenarios and
proposed effective heuristics for both. Our heuristics are
based on the relaxed temporal planning graph structure. For
optimizing search, we introduced admissible heuristics for
objective functions based on the makespan and slack val-
ues. For satisficing search, we looked at heuristics such as
sum-action and sum-duration, that are based on plans de-
rived from RTPG. These were found to be quite efficient in
terms of planning time. We also presented a novel technique
to improve the heuristic values by reasoning about the metric
resource constraints. Finally, we provided an extensive em-
pirical evaluation demonstrating the performance of Sapa in
several metric temporal planning domains.

In the near term, we intend to investigate the problem of
finding better relaxed plans with regard to the resource and
temporal constraints of actions in the domain. We are in-
terested in how to use the resource time maps discussed in
(Koehler 1998) in constructing the relaxed plan. Moreover,
we want to use the binary mutex information, a la TGP
(Smith and Weld 1999) to improve heuristics in both opti-
mizing and satisficing searches. Our longer term plans in-
clude incorporating Sapa in a loosely-coupled architecture
to integrate planning and scheduling, which will be the log-
ical continuation of our work with the Realplan system(Sri-
vastava, Kambhampati, and Do 2001).

References
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In Proceedings
of the 17th International Joint Conference on Artificial In-
telligence (IJCAI-2001), 417–424.

Blum, A., and Furst, M. 1997. Planning through planning
graph analysis. Artificial Intelligence Journal 90:281–330.
Bonet, B.; G., L.; and Geffner, H. 1997. A robust and fast
action selection mechanism for planning. In Proceedings of
AAAI-97.
Do, M., and Kambhampati, S. 2001. Planning graph based
heuristic for cost-sensitive temporal planning. In Technical
Report, ASU.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. J. Artif. Intell.
Res. (JAIR) 20:61–124.
Ghallab, M., and Laruelle, H. 1994. Representation and con-
trol in IxTeT, a temporal planner. In Proceedings of AIPS-94,
61–67.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proceedings of ECP-01.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Koehler, J. 1998. Planning under resource constraints. In
Proceedings of the Thirteenth European Conference on Ar-
tificial Intelligence (ECAI-98), 489–493.
Laborie, P., and Ghallab, M. 1995. Planning with sharable
reosurce constraints. In Proceedings of IJCAI’95, 1643–
1649.
Liatsos, V., and Richards, B. 1999. Scalability in planning.
In Proceedings of ECP’99.
Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Zweben, M., and Fox, M. S., eds., Intelligent
Scheduling. Morgan Kaufmann. chapter 6, 169–212.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. S. 2002.
Planning graph as the basis to derive heuristics for plan syn-
thesis by state space and csp search. Artificial Intelligence
135(1-2):73–124.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Penberthy, S., and Weld, D. 1994. Temporal planning with
continuous change. In Proceedings of the 12th National
Conference on Artificial Intelligence, 1010–1015.
Pinedo, M. 1995. Scheduling: Theory, Algorithms and Sys-
tems. Prentice Hall, 1st edition.
Smith, D. E., and Weld, D. S. 1999. Temporal planning with
mutual exclusion reasoning. In Proc. of IJCAI-99, 326–333.
Smith, D. E.; Frank, J.; and Jonsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling. Knowledge
Engineering Review 15.
Srivastava, B.; Kambhampati, S.; and Do, M. B. 2001. Plan-
ning the project management way: Efficient planning by ef-
fective integration of causal and resource reasoning in re-
alplan. Artificial Intelligence Journal 131:73–134.
Wolfman, S., and Weld, D. 1999. The LPSAT engine
and its applicationto resource planning. In Proceedings of
the 18th International Joint Conference on Artificial Intelli-
gence (IJCAI-99), 310–317.

68




