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Abstract

Real-time search methods, such as LRTA*, have been used to
solve a wide variety of planning problems because they can
make decisions fast and still converge to a minimum-cost plan
if they solve the same planning task repeatedly. In this pa-
per, we perform an empirical evaluation of two existing vari-
ants of LRTA* that were developed to speed up its conver-
gence, namely HLRTA* and FALCONS. Our experimental
results demonstrate that these two real-time search methods
have complementary strengths and can be combined. We call
the new real-time search method eFALCONS and show that
it converges with fewer actions to a minimum-cost plan than
LRTA*, HLRTA*, and FALCONS.

Introduction
Real-time (heuristic) search methods have been used to
solve a wide variety of planning problems. Learning Real-
Time A* (LRTA*) (Korf 1990) is probably the best-known
real-time search method. Unlike traditional search meth-
ods it can not only act in real-time but also amortize learn-
ing over several planning episodes if it solves the same
planning task repeatedly. This allows it to find a subopti-
mal plan fast and then improve the plan until it follows a
minimum-cost plan. Researchers have recently attempted
to speed up its convergence while maintaining its advan-
tages over traditional search methods, that is, without in-
creasing its lookahead. Ishida and Shimbo, for example,
developed ε-search to speed up the convergence of LRTA*
by sacrificing the optimality of the resulting plan (Ishida
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Table 1: Comparison of HLRTA* and FALCONS with
LRTA*

Performance Average Speedup Over LRTA*
Measure Over HLRTA* FALCONS

Number of All 15 Cases 2.08% 18.84%
Actions to 7 Most Informed Cases -0.69% 28.73%

Convergence 7 Least Informed Cases 4.50% 8.86%

Number of All 15 Cases -11.06% 42.33%
Trials to 7 Most Informed Cases -16.68% 43.87%

Convergence 7 Least Informed Cases -5.17% 40.52%

Number of All 15 Cases 7.04% -21.90%
Actions in 7 Most Informed Cases 11.65% -49.81%
First Trial 7 Least Informed Cases -0.99% -0.14%

1997; Ishida and Shimbo 1996). In this paper, on the
other hand, we study real-time search methods that speed
up the convergence of LRTA* without sacrificing optimal-
ity, namely HLRTA* (Thorpe 1994) (which is similar to
SLRTA* (Edelkamp and Eckerle 1997)) and our own FAL-
CONS (Furcy and Koenig 2000a). We present the first thor-
ough empirical evaluation of HLRTA* and show that it and
FALCONS have complementary strengths that can be com-
bined. We call the resulting real-time search method Even
FAster Learning and CONverging Search (eFALCONS) and
show that it converges with fewer actions to a minimum-cost
plan than LRTA*, HLRTA*, and FALCONS, even though it
looks at the same states when it selects successors on undi-
rected graphs and is not more knowledge-intensive to imple-
ment.

Motivation for Combining HLRTA* and
FALCONS

HLRTA* keeps the successor-selection rule of LRTA* but
improves its value-update rule, while FALCONS keeps the
value-update rule of LRTA* but improves its successor-
selection rule. In the following, we compare these two real-
time search methods with LRTA* averaged over 1000 runs
in seven domains with two or three different heuristic func-
tions each, for a total of fifteen distinct experimental cases
that we have previously used in (Furcy and Koenig 2000b).
As required by the real-time search methods, all domains
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Figure 1: Comparison of HLRTA* and FALCONS with
LRTA* in a Four-Connected Gridworld with Manhattan Dis-
tance

are finite, all of their states have finite goal distances, and all
heuristic functions do not overestimate the true distances.
We use three different performance measures. The main
performance measure is the number of actions until conver-
gence (that is, until the real-time search methods repeatedly
execute a minimum-cost plan). The other performance mea-
sures are the number of trials to convergence and the number
of actions in the first trial, where a trial consists of all actions
until the goal is reached and the real-time search method is
reset to the start. Table 1 summarizes our empirical results.
The number of actions to convergence of FALCONS was
smaller than that of HLRTA* and the number of actions to
convergence of HLRTA* was smaller than that of LRTA*.
In addition, we gained two other important insights:

• The number of trials to convergence of HLRTA* was
larger than that of LRTA* but the number of actions in
the first trial of HLRTA* was smaller than that of LRTA*.
The opposite was true for FALCONS. Thus, the number
of trials to convergence is a weakness of HLRTA* and
the number of actions in the first trial is a weakness of
FALCONS. Figure 1 illustrates this observation for one
of the fifteen experimental cases, a four-connected grid-
world with the Manhattan distance heuristic. The figure
graphs the number of actions for each trial. The graph for
HLRTA* started below that of LRTA*, rose above it after
the eighteenth trial (see inset) and then remained above it
until the end of learning. The graph for FALCONS, on the
other hand, started above that of LRTA*, dropped below
it after the second trial and then remained below it until
the end of learning.

• The improvement in number of actions until convergence
of HLRTA* over LRTA* was smaller in the most in-
formed cases than that of HLRTA* over LRTA* in the
least informed cases. The opposite was true for FAL-
CONS. Thus, the number of actions to convergence is a

Table 2: Comparison of eFALCONS with LRTA*, HLRTA*
and FALCONS

Performance Average Speedup of eFALCONS over
Measure Over LRTA* HLRTA* FALCONS

Number of All 15 Cases 21.31% 19.34% 2.18%
Actions to 7 Most Informed Cases 28.73% 29.01% 0.00%

Convergence 7 Least Informed Cases 13.52% 9.53% 5.16%

Number of All 15 Cases 36.79% 41.44% -12.11%
Trials to 7 Most Informed Cases 38.13% 44.38% -15.77%

Convergence 7 Least Informed Cases 34.29% 37.10% -10.36%

Number of All 15 Cases -15.01% -25.70% 4.72%
Actions in 7 Most Informed Cases -36.86% -56.21% 7.95%
First Trial 7 Least Informed Cases 0.38% 1.28% 0.53%

weakness of HLRTA* in the most informed cases and a
weakness of FALCONS in the least informed cases.

Thus, there are two reasons for combining HLRTA* and
FALCONS. First, the resulting real-time search method
could reduce the number of actions to convergence by reduc-
ing the number of actions for early trials below that of FAL-
CONS and the number of actions for later trials below that
of HLRTA*. Second, the resulting real-time search method
could be less sensitive to the level of informedness of the
heuristic function and thus perform better across all experi-
mental cases.

eFALCONS
LRTA* associates an h-value with every state to estimate
the goal distance of the state (similar to the h-values of A*).
LRTA* always first updates the h-value of the current state
(value-update rule) and then uses the h-values of the succes-
sors to move to the successor believed to be on a minimum-
cost path from the current state to the goal (action-selection
rule). HLRTA* introduces hs-values in addition to the h-
values and uses them to modify the value-update rule of
LRTA* so that the h-values converge faster to the goal dis-
tances. FALCONS, on the other hand, introduces g- and
f-values in addition to the h-values (similar to the g- and f-
values of A*) and uses them to modify the action-selection
rule of LRTA* so that it moves to the successor believed
to be on a shortest path from the start to the goal. eFAL-
CONS, shown in Figure 2, then uses the value-update rule
of HLRTA* for both the g- and h-values and the action-
selection rule of FALCONS. eFALCONS and FALCONS
access only the successors and predecessors of the current
state, while LRTA* and HLRTA* access only the successors
of the current state. Thus, all four real-time search methods
access the same states on undirected graphs.

Empirical Study of eFALCONS
Table 2 compares eFALCONS with LRTA*, HLRTA*,
and FALCONS. The table demonstrates two advantages of
eFALCONS over HLRTA* and FALCONS:

1. The number of trials to convergence of eFALCONS was
41.44 percent smaller than that of HLRTA*, and the num-
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In the following, S denotes the finite state space; sstart ∈ S
denotes the start state; and sgoal ∈ S denotes the goal state.
succ(s) ⊆ S denotes the set of successors of state s, and
pred(s) ⊆ S denotes the set of its predecessors. c(s, s′) > 0
denotes the cost of moving from state s to successor s′ ∈ succ(s).
We use the following conventions: argmins′′∈∅(·) := ⊥,
maxs′′∈∅(·) := − ∞, and mins′′∈∅(·) := ∞. We use the fol-
lowing abbreviations, where ⊥ means “undefined:”

∀s ∈ S and r ∈ succ(s):

hs(r) :=

{
h(r) if dh(r) = ⊥ or dh(r) 6= s
sh(r) otherwise,

∀s ∈ S and r ∈ pred(s):

gs(r) :=

{
g(r) if dg(r) = ⊥ or dg(r) 6= s
sg(r) otherwise, and

∀r ∈ S: f(r) := max(g(r) + h(r), h(sstart)a).

The values are initialized as follows: ∀r ∈ S: g(r) := h(sstart, r)
and h(r) := h(r, sgoal), where h(r, r′) is a heuristic estimate of
the distance from r ∈ S to r′ ∈ S. Furthermore, ∀r ∈ S:
dg(r) := ⊥, dh(r) := ⊥, sg(r) := ⊥, and sh(r) := ⊥.

1. s := sstart.
2. s′ := argmins′′∈succ(s) f(s

′′).
Break ties in favor of a successor s′ with the smallest value
of c(s, s′) + hs(s

′).
Break remaining ties arbitrarily (but systematically).

3 a. p := argmins′′∈pred(s)(gs(s
′′) + c(s′′, s)).

n := argmins′′∈succ(s)(c(s, s
′′) + hs(s

′′)).
b. Perform the following assignments in parallel:

g(s) := if s = sstart then g(s)
else max(g(s),

gs(p) + c(p, s),
maxs′′∈succ(s)(g(s

′′)− c(s, s′′))).
sg(s) := if s = sstart then g(s)

else max(g(s),
mins′′∈pred(s)\{p}(gs(s

′′) + c(s′′, s)),
maxs′′∈succ(s)(g(s

′′)− c(s, s′′))).
dg(s) := p.
h(s) := if s = sgoal then h(s)

else max(h(s),
c(s, n) + hs(n),
maxs′′∈pred(s)(h(s

′′)− c(s′′, s))).
sh(s) := if s = sgoal then h(s)

else max(h(s),
mins′′∈succ(s)\{n}(c(s, s

′′) + hs(s
′′)),

maxs′′∈pred(s)(h(s
′′)− c(s′′, s))).

dh(s) := n.
4. If s = sgoal, then stop successfully.
5. s := s′.
6. Go to 2.

Figure 2: eFALCONS

ber of actions in the first trial of eFALCONS was 4.72 per-
cent smaller than that of FALCONS. We pointed out ear-
lier that the number of trials to convergence was a weak-
ness of HLRTA* and the number of actions in the first trial
was a weakness of FALCONS. Thus, eFALCONS mit-
igates the weaknesses of both HLRTA* and FALCONS
across performance measures. Indeed, Figure 1 shows
that the number of actions of eFALCONS was smaller

than that of FALCONS in the early trials and smaller than
that of HLRTA* in the later trials. As a consequence,
the number of actions to convergence of eFALCONS was
19.34 percent smaller than that of HLRTA* and 2.18 per-
cent smaller than that of FALCONS. Thus, combining
the value-update rule of HLRTA* and the action-selection
rule of FALCONS indeed speeds up their convergence.
The number of actions to convergence of eFALCONS,
for example, is typically over twenty percent smaller than
that of LRTA* and, in some cases, even over fifty percent
smaller (not shown in the table).

2. The number of actions to convergence of eFALCONS was
29.01 percent smaller than that of HLRTA* in the most in-
formed cases and 5.16 percent smaller than that of FAL-
CONS in the least informed cases. We pointed out earlier
that the number of actions to convergence was a weak-
ness of HLRTA* in the most informed cases and a weak-
ness of FALCONS in the least informed cases. Thus,
eFALCONS mitigates the weaknesses of both HLRTA*
and FALCONS across the levels of informedness of the
heuristic function.

Conclusions
In this paper, we presented eFALCONS, a real-time search
method that is similar to LRTA* but uses the value-update
rule of HLRTA* and the action-selection rule of FAL-
CONS. We showed experimentally that eFALCONS con-
verges to a minimum-cost plan with fewer actions than
LRTA*, HLRTA*, and FALCONS. For example, its number
of actions to convergence is typically over twenty percent
smaller than that of LRTA* and, in some cases, even over
fifty percent smaller. It is future work to combine eFAL-
CONS with ε-search to speed up its convergence even more
by sacrificing the optimality of the resulting plan.

References
Edelkamp, S., and Eckerle, J. 1997. New strategies in real-
time heuristic search. In Proceedings of the AAAI-97 Work-
shop on On-Line Search, 30–35. AAAI Press.
Furcy, D., and Koenig, S. 2000a. Speeding up the conver-
gence of real-time search. In Proceedings of the National
Conference on Artificial Intelligence, 891–897.
Furcy, D., and Koenig, S. 2000b. Speeding up the conver-
gence of real-time search: Empirical setup and proofs. Tech-
nical Report GIT-COGSCI-2000/01, College of Computing,
Georgia Institute of Technology, Atlanta (Georgia).
Ishida, T., and Shimbo, M. 1996. Improving the learning ef-
ficiencies of real-time search. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 305–310.
Ishida, T. 1997. Real-Time Search for Learning Autonomous
Agents. Kluwer Academic Publishers.
Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2-3):189–211.
Thorpe, P. 1994. A hybrid learning real-time search al-
gorithm. Master’s thesis, Computer Science Department,
University of California at Los Angeles, Los Angeles (Cali-
fornia).

254




