
Heuristic Planning with Time and Resources

P@trik Haslum
Linköping University, Sweden

(Now at Australian National University & NICTA.
firstname.lastname@anu.edu.au.)

Héctor Geffner
Universitat Pompeu Fabra, Spain

hector.geffner@upf.edu

Abstract

We present an algorithm for planning with time and re-
sources, based on heuristic search. The algorithm minimizes
makespan using an admissible heuristic derived automatically
from the problem instance. Estimators for resource consump-
tion are derived in the same way. The goals are twofold: to
show the flexibility of the heuristic search approach to plan-
ning and to develop a planner that combines expressivity and
performance. Two main issues are the definition of regres-
sion in a temporal setting and the definition of the heuristic
estimating completion time. A number of experiments are
presented for assessing the performance of the resulting plan-
ner.

Introduction
Recently, heuristic state space search has been shown to be a
good framework for developing different kinds of planning
algorithms. It has been most successful in non-optimal se-
quential planning, e.g., HSP (Bonet and Geffner 2001) and
FF (Hoffmann 2000), but has been applied also to optimal
and parallel planning (Haslum and Geffner 2000).

We continue this thread of research by developing a
domain-independent planning algorithm for domains with
metric time and certain kinds of resources. The algorithm
relies on regression search guided by a heuristic that esti-
mates completion time and which is derived automatically
from the problem representation. The algorithm minimizes
the overall execution time of the plan, commonly known as
the makespan.

A few effective domain-independent planners exhibit
common features: TGP (Smith and Weld 1999) and TPSys
(Garrido, Onaindia, and Barber 2001) handle actions with
duration and optimize makespan, but not resources. RIPP
(Koehler 1998) and GRT-R (Refanidis and Vlahavas 2000)
handle resources, and are in this respect more expressive
than our planner. Sapa (Do and Kambhampati 2001) deals
with both time and resources, but non-optimally.

Among planners that exceed our planner in expressivity,
e.g., Zeno (Penberthy and Weld 1994), IxTeT (Ghallab and
Laruelle 1994) and HSTS (Muscettola 1994), none have re-
ported significant domain-independent performance (Jons-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

son et al. (2000) describe the need for sophisticated engi-
neering of domain dependent search control for the HSTS
planner). Many highly expressive planners, e.g., O-Plan
(Tate, Drabble, and Dalton 1996), ASPEN (Fukunaga et al.
1997) or TALplanner (Kvarnström and Doherty 2000), are
“knowledge intensive”, relying on user-provided problem
decompositions, evaluation functions or search constraints1.

Action Model and Assumptions
The action model we use is propositional STRIPS with ex-
tensions for time and resources. As in GRAPHPLAN (Blum
and Furst 1997) and many other planners, the action set is
enriched with a no-op for each atom p which has p as its
only precondition and effect. Apart from having a variable
duration, a no-op is viewed and treated like a regular action.

Time
When planning with time each action a has a duration,
dur(a) > 0. We take the time domain to be R+. In most
planning domains we could use the positive integers, but we
have chosen the reals to highlight the fact that the algorithm
does not depend on the existence of a least indivisible time
unit. Like Smith and Weld (1999), we make the follow-
ing assumptions: For an action a executed over an interval
[t, t+ dur(a)]

(i) the preconditions pre(a) must hold at t, and preconditions
not deleted by a must hold throughout [t, t+ dur(a)] and

(ii) the effects add(a) and del(a) take place at some point in
the interior of the interval and can be used only at the end
point t+ dur(a).

Two actions, a and b, are compatible iff they can be safely
executed in overlapping time intervals. The assumptions
above lead to the following condition for compatibility: a
and b are compatible iff for each atom p ∈ pre(a)∪ add(a),
p 6∈ del(b) and vice versa (i.e., p ∈ pre(b) ∪ add(b) implies
p 6∈ del(a)).

1The distinction is sometimes hard to make. For instance,
parcPlan (Lever and Richards 1994) domain definitions appear to
differ from plain STRIPS only in that negative effects of actions
are modeled indirectly, by providing a set of constraints, instead
of explicitly as “deletes”. parcPlan has shown good performance
in certain resource constrained domains, but domain definitions are
not available for comparison.

107

Proceedings of the Sixth European Conference on Planning

Resources
The planner handles two types of resources: renewable and
consumable. Renewable resources are needed during the ex-
ecution of an action but are not consumed (e.g., a machine).
Consumable resources, on the other hand, are consumed or
produced (e.g., fuel). All resources are treated as real valued
quantities; the division into unary, discrete and continuous
is determined by the way the resource is used. Formally, a
planning problem is extended with sets RP and CP of re-
newable and consumable resource names. For each resource
name r ∈ RP ∪ CP , avail(r) is the amount initially avail-
able and for each action a, use(a, r) is the amount used or
consumed by a.

Planning with Time
We describe first the algorithm for planning with time, not
considering resources. In this case, a plan is a set of action
instances with starting times such that no incompatible ac-
tions overlap in time, action preconditions hold over the re-
quired intervals and goals are achieved on completion. The
cost of a plan is the total execution time, or makespan. We
describe each component of the search scheme: the search
space, the branching rule, the heuristic, and the search algo-
rithm.

Search Space
Regression in the classical setting is a search in the space of
“plan tails”, i.e., partial plans that achieve the goals provided
that the preconditions of the partial plan are met. A regres-
sion state, i.e., a set of atoms, summarizes the plan tail: if s
is the state obtained by regressing the goal through the plan
tail P ′ and P is a plan that achieves s from the initial state,
then the concatenation of P and P ′ is a valid plan. A similar
decomposition is exploited in the forward search for plans.

In a temporal setting, a set of atoms is no longer sufficient
to summarize a plan tail or plan head. For example, the set
s of all atoms made true by a plan head P at time t holds
no information about the actions in P that have started but
not finished before t. Then, if a plan tail P ′ maps s to a
goal state, the combination of P and P ′ is not necessarily a
valid plan. To make the decomposition valid, search states
have to be extended with the actions under execution and
their completion times. Thus, in a temporal setting states
become pairs s = (E,F), where E is a set of atoms and
F = {(a1, δ1), . . . , (an, δn)} is a set of actions ai with time
increments δi.

An alternative representation for plans will be useful: in-
stead of a set of time-stamped action instances, a plan is rep-
resented by a sequence 〈(A0, δ0), . . . , (Am, δm)〉 of action
setsAi and positive time increments δi. Actions inA0 begin
executing at time t0 = 0 and actions in Ai, i = 1 . . .m, at
time ti =

∑
06j<i δj (i.e., δi is the time to wait between the

beginning of actions Ai and the beginning of actions Ai+1).

State Representation A search state s = (E,F) is a pair
consisting of a set of atoms E and a set of actions with cor-
responding time increments F = {(a1, δ1), . . . , (an, δn)},
0 < δi ≤ dur(ai). A plan P achieves s = (E,F) at

time t if P makes all the atoms in E true at t and sched-
ules the actions ai at time t − δi. The initial search state
is s0 = (GP , ∅), where GP is the goal set of the planning
problem. Final states are all s = (E, ∅) such that E ⊆ IP .

Branching Rule A successor to a state s = (E,F) is con-
structed by selecting for each atom p ∈ E an establisher
(i.e., a regular action or no-op awith p ∈ add(a)), subject to
the constraints that the selected actions are compatible with
each other and with each action b ∈ F , and that at least one
selected action is not a no-op. Let SE be the set of selected
establishers and let

Fnew = {(a, dur(a)) | a ∈ SE}.

The new state s′ = (E′, F ′) is defined as the atoms E′ that
must be true and the actions F ′ that must be executing before
the last action in F ∪Fnew begins. This will happen in a time
increment δadv:

δadv = min{δ | (a, δ) ∈ F ∪ Fnew and a is not a no-op}

where no-op actions are excluded from consideration since
they have variable duration (the meaning of the action
no-op(p) in s is that p has persisted in the last time slice).
Setting the duration of no-ops in Fnew equal to δadv , the
state s′ = (E′, F ′) that succeeds s = (E,F) becomes

E′ = {pre(a) | (a, δadv) ∈ F ∪ Fnew}
F ′ = {(a, δ − δadv) | (a, δ) ∈ F ∪ Fnew, δ > δadv}

The cost of the transition from s to s′ is c(s, s′) = δadv and
the fragment of the plan tail that corresponds to the transition
is P (s, s′) = (A, δadv), where A = {a | (a, δadv) ∈ F ∪
Fnew} The accumulated cost (plan tail) along a state-path
is obtained by adding up (concatenating) the transition costs
(plan fragments) along the path. The accumulated cost of a
state is the minimum cost along all the paths leading to s.
The evaluation function used in the search algorithm adds
up this cost and the heuristic cost defined below.

Properties The branching rule is sound in the sense that it
generates only valid plans, but it does not generate all valid
plans. This is actually a desirable feature2. It is optimality
preserving in the sense that it generates some optimal plan.
This, along with soundness, is all that is needed for optimal-
ity (provided an admissible search algorithm and heuristic
are used).

Heuristic
As in previous work (Haslum and Geffner 2000), we derive
an admissible heuristic by introducing approximations in the
recursive formulation of the optimal cost function.

For any state s = (E,F), the optimal cost is H∗(s) = t
iff t is the least time t such that there is a plan P that achieves

2The plans generated are such that a regular action is executing
during any given time interval and no-ops begin only at the times
that some regular action starts. This is due to the way the temporal
increments δadv are defined. Completeness could be achieved by
working on the rational time line and setting δadv to the gcd of
all actions durations, but as mentioned above this is not needed for
optimality.

108

s at t. The optimal cost function, H∗, is the solution to
Bellman’s (1957) equation:

H∗(s) =

{
0 if s is final
min

s′∈R(s)
c(s, s′) +H∗(s′) (1)

where R(s) is the regression set of s, i.e., the set of states
that can be constructed from s by the branching rule.

Approximations. Since equation (1) cannot be solved in
practice, we derive a lower bound on H∗ by considering
some inequalities. First, since a plan that achieves the state
s = (E,F), for F = {(ai, δi)}, at time t must achieve the
preconditions of the actions ai at time t− δi and these must
remain true until t, we have

H∗(E,F) >

max
(ak,δk)∈F

H∗(
⋃

(ai,δi)∈F, δi>δk

pre(ai), ∅) + δk (2)

H∗(E,F) > H∗(E ∪
⋃

(ai,δi)∈F

pre(ai), ∅). (3)

Second, since achieving a set of atoms E implies achieving
each subset E′ of E we also have

H∗(E, ∅) > max
E′⊆E,|E′|6m

H∗(E′, ∅) (4)

where m is any positive integer.

Temporal Heuristic Hm
T . We define a lower bound Hm

T
on the optimal function H∗ by transforming the above in-
equalities into equalities. A family of admissible temporal
heuristics Hm

T for arbitrary m = 1, 2, . . . is then defined by

Hm
T (E, ∅) =

0 if E ⊆ IP (5)
min

s′∈R(s=(E,∅))
c(s, s′) +Hm

T (s′) if |E| 6 m (6)

max
E′⊆E,|E′|6m

Hm
T (E′, ∅) if |E| > m (7)

and

Hm
T (E,F) = max[

max
(ak,δk)∈F

Hm
T (

⋃
(ai,δi)∈F,δi>δk

pre(ai), ∅) + δk,

Hm
T (E ∪

⋃
(ai,δi)∈F

pre(ai), ∅)] (8)

The relaxation is a result of the last two equations; the first
two are also satisfied by the optimal cost function. Unfold-
ing the right-hand side of equation (6) using (8), the first
two equations define the functionHm

T (E,F) completely for
F = ∅ and |E| ≤ m. From an implementation point of view,
this means that for a fixed m, Hm

T (E, ∅) can be solved and
precomputed for all sets of atoms with |E| ≤ m, and equa-
tions (7) and (8) used at run time to compute the heuristic
value of arbitrary states. The precomputation is a simple
variation of a shortest-path problem and its complexity is a
low order polynomial in |A|m, where |A| is the number of
atoms.

For a fixedm, equation (6) can be simplified because only
a limited set of states can appear in the regression set. For
example, for m = 1, the state s in (6) must have the form
s = ({p}, ∅) and the regression set R(s) contain only states
s′ = (pre(a), ∅) for actions a such that p ∈ add(a). As a
result, for m = 1, (6) becomes

H1
T ({p}, ∅) = min

a:p∈add(a)
dur(a) +H1

T (pre(a), ∅) (9)

The corresponding equations for H2
T can be found in our

earlier workshop paper (Haslum and Geffner 2001).

Search Algorithm
Any admissible search algorithm, e.g., A∗, IDA∗ or DFS
branch-and-bound (Korf 1999), can be used with the search
scheme described above to find optimal solutions.

The planner uses IDA∗ with some standard enhancements
(cycle checking and a transposition table) and an optimal-
ity preserving pruning rule explained below. The heuristic
used is H2

T , precomputed for sets of at most two atoms as
described above.

Incremental Branching In the implementation of the
branching scheme, the establishers in SE are not selected
all at once. Instead, this set is constructed incrementally, one
action at a time. After each action is added to the set, the cost
of the resulting “partial” state is estimated so that dead-ends
(states whose cost exceeds the bound) are detected early. A
similar idea is used in GRAPHPLAN. In a temporal setting,
things are a bit more complicated because no-ops have a du-
ration (δadv) that is not fixed until the set of establishers is
complete. Still, a lower bound on this duration can be de-
rived from the regular actions selected so far and in the state
being regressed.

Selecting the Atom to Regress The order in which atoms
are regressed makes no difference for completeness, but
does affect the size of the resulting search tree. We regress
the atoms in order of decreasing “difficulty”: the difficulty
of an atom p is given by the estimate H2

T ({p}, ∅).
Right-Shift Pruning Rule In a temporal plan there are
almost always some actions that can be shifted forward or
backward in time without changing the plan’s structure or
makespan (i.e., there is some “slack”). A right-shifted plan
is one in which such movable actions are scheduled as late
as possible.

As mentioned above, it is not necessary to consider all
valid plans in order to guarantee optimality. In the imple-
mented planner, non-right-shifted plans are excluded by the
following rule: If s′ is a successor to s = (E,F), an action
a compatible with all actions in F may not be used to es-
tablish an atom in s′ when all the atoms in E′ that a adds
have been obtained from s by no-ops. The reason is that a
could have been used to support the same atoms in E, and
thus could have been shifted to the right (delayed).

Planning with Resources
Next, we show how the planning algorithm deals with re-
newable and consumable resources.

109

Renewable Resources
Renewable resources limit the set of actions that can be exe-
cuted concurrently and therefore need to enter the planning
algorithm only in the branching rule. When regressing a
state s = (E,F), we must have that∑

(ai,δi)∈F∪Fnew

use(ai, r) 6 avail(r) (10)

for every renewable resource r ∈ RP .

Heuristic The Hm
T heuristics remain admissible in the

presence of renewable resources, but in order to get bet-
ter lower bounds we exclude from the regression set any
set of actions that violates a resource constraint. For unary
resources (capacity 1) this heuristic is informative, but for
multi-capacity resources it tends to be weak.

Consumable Resources
To ensure that resources are not over-consumed, a state s
must contain the remaining amount of each consumable re-
source r. For the initial state, this is rem(s0, r) = avail(r),
and for a state s′ resulting from s

rem(s′, r) = rem(s, r)−
∑

(ai,ti)∈Fnew

use(ai, r) (11)

for each r ∈ CP .

Heuristic The heuristics Hm
T remain admissible in the

presence of consumable resources, but become less useful
since they predict completion time but not conflicts due to
overconsumption. If, however, consumable resources are re-
stricted to be monotonically decreasing (i.e., consumed but
not produced), then a state s can be pruned if the amount of
any resource r needed to achieve s from the initial situation
exceeds rem(s, r), the amount remaining in s. The amount
needed is estimated by a function needm(s, r) defined in a
way analogous to the function Hm

T (s) that estimates time.
The planner implements need1(s, r).

Because resource consumption is treated separately from
time, this solution is weak when the time and resources
needed to achieve a goal interact in complex ways. The
Hm
T estimator considers only the fastest way of achieving

the goal regardless of resource cost, while the needm es-
timator considers the cheapest way to achieve the goal re-
gardless of time (and other resources). To overcome this
problem, the estimates of time and resources would have to
be integrated, as in, for example, Refanidis’ and Vlahavas’
(2000) work. Integrated estimates could also be used to op-
timize some combination of time and resources, as opposed
to time alone.

Maintenance Actions
In planning, it is normally assumed that no explicit action is
needed to maintain the truth of a fact once it has been es-
tablished, but in many cases this assumption is not true. We
refer to no-ops that consume resources as maintenance ac-
tions. Incorporating maintenance actions in the branching
scheme outlined above is straightforward: For each atom p
and each resource r, a quantity use(maintain(p), r) can be

provided as part of the domain definition and is set to 0 by
default. Since the duration of a no-op is variable, we inter-
pret use(maintain(p), r) as the rate of consumption. For
the rest, maintenance actions are treated as regular actions,
and no other changes are needed in the planning algorithm.3

Experimental Results
We have implemented the algorithm for planning with time
and resources described above, including maintenance ac-
tions but with the restriction that consumable resources are
monotonically decreasing, in a planner called TP4.4 The
planner uses IDA∗ with some standard enhancements and
theH2

T heuristic. The resource consumption estimators con-
sider only single atoms.

Non-Temporal Planning
First, we compare TP4 to three optimal parallel planners,
IPP, BLACKBOX and STAN, on standard planning problems
without time or resources. The test set comprises 60 random
problems from the 3-operator blocksworld domain, ranging
in size from 10 to 12 blocks, and 40 random logistics prob-
lems with 5 – 6 deliveries. Blocksworld problems were gen-
erated using Slaney & Thiebaux’s (2001) BWSTATES pro-
gram.

Figure 1(a) presents the results in the form of runtime dis-
tributions. Clearly TP4 is not competitive with non-temporal
planners, which is expected considering the overhead in-
volved in handling time. Performance in the logistics do-
main, however, is very poor (e.g., TP4 solves less than 60%
of the problems within 1000 seconds, while all other plan-
ners solve 90% within only 100 seconds), indicating that
other causes are involved (most likely the branching rule,
see below).

Temporal Planning
To test TP4 in a temporal planning domain, we make a small
extension to the logistics domain5, in which trucks are al-
lowed to drive between cities as well as within and actions
are assigned durations as follows:

Action Duration
Load/Unload 1
Drive truck (between cities) 12
Drive truck (within city) 2
Fly airplane 3

3This treatment of maintenance actions is not complete in gen-
eral. Recall that the branching rule does not generate all valid
plans: in the presence of maintenance actions it may happen that
some of the plans that are not generated demand less resources than
the plans that are. When this happens, the algorithm may produce
non-optimal plans or even fail to find a plan when one exists. This
is a subtle issue that we will address in the future.

4TP4 is implemented in C. Planner, problems, problem genera-
tors and experiment scripts are available from the authors. Experi-
ments were run on a Sun Ultra 10.

5The goal in the logistics domain is to transport a number of
packages between locations in different cities. Trucks are used for
transports within a city and airplanes for transports between cities.
The standard domain is available, e.g., as part of the AIPS 2000
Competition set .

110

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Time (seconds)

P
ro

b
le

m
s
 s

o
lv

e
d
 (

%
)

TP4
IPP
Blackbox
STAN

10
−1

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Time (seconds)

P
ro

b
le

m
s
 s

o
lv

e
d
 (

%
)

Blocksworld

Logistics

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Runtime (seconds)

P
ro

b
le

m
s
 s

o
lv

e
d

 (
%

)

TP4
TGP (normal memo)
TGP (int. backtrack)
Sapa

(a) (b)

Figure 1: (a) Runtime distributions for TP4 and optimal non-temporal parallel planners on standard planning problems. A
point 〈x, y〉 on the curve indicates that y percent of the problems were solved in x seconds or less. Note that the time axis is
logarithmic. (b) Runtime distributions for TP4, TGP and Sapa on problems from the simple temporal logistics domain. Sapa’s
solution makespan tends to be around 1.25 – 2.75 times optimal.

This is a simple example of a domain where makespan-
minimal plans tend to be different from minimal-step par-
allel plans.

For comparison, we ran also TGP and Sapa.6 The test set
comprised 80 random problems with 4 – 5 deliveries. Re-
sults are in figure 1(b). We ran two versions of TGP, one us-
ing plain GRAPHPLAN-like memoization and the other min-
imal conflict set memoization and “intelligent backtracking”
(Kambhampati 2000). TP4 shows a behaviour similar to the
plain version of TGP, though somewhat slower. As the top
curve shows, the intelligent backtracking mechanism is very
effective in this domain (this was indicated also by Kamb-
hampati, 2000).

Planning with Time and Resources
Finally, for a test domain involving both time and non-trivial
resource constraints we have used a scheduling problem,
called multi-mode resource constrained project scheduling
(MRCPS) (Sprecher and Drexl 1996). The problem is to
schedule a set of tasks and to select for each task a mode
of execution so as to minimize project makespan, subject
to precedence constraints among the tasks and global re-
source constraints. For each task, each mode has different
duration and resource requirements. Resources include re-
newable and (monotonically decreasing) consumable. Typi-
cally, modes represent different trade-offs between time and
resource use, or between use of different resources. This
makes finding optimal schedules very hard, even though the
planning aspect of the problem is quite simple.

The test comprised sets of problems with 12, 14 and 16

6We did not run Sapa ourselves. Results were provided by
Minh B. Do, and were obtained using a different, but approxi-
mately equivalent, computer.

tasks and approximately 550 instances in each (sets J12,
J14 and J16 from PSPLib). A specialized scheduling algo-
rithm solves all problems in the set, the hardest in just below
300 seconds (Sprecher and Drexl 1996). TP4 solves 59%,
41% and 31%, respectively, within the same time limit.

Conclusions

We have developed an optimal, heuristic search planner that
handles concurrent actions, time and resources, and mini-
mizes makespan. The two main issues we have addressed
are the formulation of an admissible heuristic estimating
completion time and a branching scheme for actions with
durations. In addition, the planner incorporates an admissi-
ble estimator for consumable resources that allows more of
the search space to be avoided. Similar ideas can be used to
optimize a combination of time and resources as opposed to
time alone.

The planner achieves a tradeoff between performance and
expressivity. While it is not competitive with either the best
parallel planners or specialized schedulers, it accommodates
problems that do not fit into either class. An approach for
improving performance that we plan to explore in the future
is the combination of the lower bounds provided by the ad-
missible heuristics Hm

T with a different branching scheme.

Acknowledgments

We’d like to thank David Smith for much help with TGP, and
Minh Binh Do for providing results for Sapa. This research
has been supported by the Wallenberg Foundation and the
ECSEL/ENSYM graduate study program.

111

References
2000. AIPS competition. http://www.cs.toronto.
edu/aips2000/.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Blum, A., and Furst, M. 1997. Fast planning through graph
analysis. Artificial Intelligence 90(1-2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Do, M., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In Proc. 6th
European Conference on Planning (ECP’01), 109–120.
Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997.
ASPEN: A framework for automated planning and schedul-
ing of spacecraft control and operations. In Proc. Interna-
tional Symposium on AI, Robotics and Automation in Space.
Garrido, A.; Onaindia, E.; and Barber, F. 2001. Time-
optimal planning in temporal problems. In Proc. 6th Eu-
ropean Conference on Planning (ECP’01), 397–402.
Ghallab, M., and Laruelle, H. 1994. Representation and con-
trol in IxTeT, a temporal planner. In Proc. 2nd International
Conference on AI Planning Systems (AIPS’94), 61–67.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proc. 5th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS’00),
140–149. AAAI Press.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proc. IJCAI Workshop on Planning
with Resources. http://www.ida.liu.se/∼pahas/
hsps/.
Hoffmann, J. 2000. A heuristic for domain independent
planning and its use in an enforced hill-climbing algorithm.
In Proc. 12th International Symposium on Methodologies
for Intelligent Systems (ISMIS’00), 216–227.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in interplanetary space: The-
ory and practice. In Proc. 5th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS’00),
177–186.
Kambhampati, S. 2000. Planning graph as a (dynamic) CSP:
Exploiting EBL, DDB and other CSP search techniques in
Graphplan. Journal of AI Research 12:1–34.
Koehler, J. 1998. Planning under resource constraints. In
Proc. 13th European Conference on Artificial Intelligence
(ECAI’98), 489–493.
Korf, R. 1999. Artificial intelligence search algorithms. In
Handbook of Algorithms and Theory of Computation. CRC
Press. chapter 36.
Kvarnström, J., and Doherty, P. 2000. TALplanner: A tem-
poral logic based forward chaining planner. Annals of Math-
ematics and Artificial Intelligence 30(1):119–169.
Lever, J., and Richards, B. 1994. parcPLAN: A planning
architecture with parallel actions, resources and constraints.
In Proc. 9th International Symposium on Methodologies for
Intelligent Systems (ISMIS’94), 213–222.

Muscettola, N. 1994. Integrating planning and scheduling.
In Zweben, M., and Fox, M., eds., Intelligent Scheduling.
Morgan-Kaufmann.
Penberthy, J., and Weld, D. 1994. Temporal planning with
continous change. In Proc. 12th National Conference on
Artificial Intelligence (AAAI’94), 1010–1015.
PSPLib: The project scheduling problem library.
http://www.bwl.uni-kiel.de/Prod/psplib/
library.html.
Refanidis, I., and Vlahavas, I. 2000. Heuristic planning with
resources. In Proc. 14th European Conference on Artificial
Intelligence (ECAI’00), 521–525.
Slaney, J., and Thiebaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125. http://users.cecs.anu.
edu.au/∼jks/bw.html.
Smith, D., and Weld, D. 1999. Temporal planning with mu-
tual exclusion reasoning. In Proc. 16th International Joint
Conference on Artificial Intelligence (IJCAI’99), 326–333.
Sprecher, A., and Drexl, A. 1996. Solving multi-mode
resource-constrained project scheduling problems by a sim-
ple, general and powerful sequencing algorithm. I: Theory
& II: Computation. Technical Report 385 & 386, Instituten
für Betriebswirtschaftsrlehre der Universität Kiel.
Tate, A.; Drabble, B.; and Dalton, J. 1996. O-Plan: a
knowledge-based planner and its application to logistics. In
Advanced Planning Technology. AAAI Press.

112

