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Abstract

Coordination between processing entities is one of the
most widely studied areas in multi-agent planning re-
search. Recently, efforts have been made to under-
stand the formal computational issues of this important
area. In this paper, we make a step toward this direc-
tion, and analyze a certain class of coordination prob-
lems for dependent agents with independent goals act-
ing in the same environment. We assume that a state-
transition description of each agent is given, and that
preconditioning an agent’s transitions by the states of
other agents is the only considered kind of inter-agent
dependence. Off-line coordination between the agents
is considered. We analyze some structural properties
of these problems, and investigate the relationship be-
tween these properties and the complexity of coordina-
tion in this domain. We show that our general problem
is provably intractable, but some significant subclasses
are in NP and even polynomial.

Introduction
Coordination between processing entities is one of the most
widely studied areas in multi-agent planning research. Re-
cently, efforts have been made to understand the formal
computational issues in this important area. In this paper,
we make a additional step toward this direction. We de-
scribe a certain class of coordination problems for agents
with independent goals acting in the same environment, that
is the strategy of each agent should be planned while tak-
ing into account strategies of other agents as planning con-
straints. In these problems, (i) the set of feasible plans
for each agent is defined by a state-transition graph, and
(ii) preconditioning an agent’s transitions by the states of
other agents is the only considered kind of inter-agent de-
pendence. For this problem class, off-line coordination
is considered; structural and computational properties are
investigated, and both tractable and intractable subclasses
are presented. Although the examined class of problems
can be seen as restricted, its place in multi-agent systems
was already discussed in AI literature, e.g. (Brooks 1986;
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Dudek et al. 1996; Moses & Tennenholtz 1995). We believe
that the formal model we suggest for the presented prob-
lem class can serve as a basis for further extensions toward
a representation of richer multi-agent worlds yet preserving
convenience for computational analysis.

In the area of multi-agent coordination, we identify two
main research directions: multi-agent collaboration and syn-
thesizing multi-agent plans. In multi-agent collaboration,
goal achievement is a team activity, i.e., multiple agents col-
laborate towards the achievement of an overarching goal.
During the last decade, various theories for multi-agent col-
laboration, e.g. (Cohen & Levesque 1991; Grosz & Kraus
1996; Kinny et al. 1994), and several generic approaches
for corresponding planning, e.g. (Decker & Lesser 1998;
Smith 1994), were proposed; for an overview of this area
see (Grosz 1995). In addition, a few formal computational
results concerning the coalition formation are found for
both benevolent (Shehory & Kraus 1996) and autonomous
(d’Inverno, Luck, & Wooldridge 1997) agents.

Synthesizing multi-agent plans addresses synchroniza-
tion between agents that work on independent goals in
the same environment. In (Georgeff 1983), centralized
merging of preconstructed individual agent plans is pre-
sented, and it is based on introducing synchronization ac-
tions. For the purpose of efficiency, this work deals only
with the problems in which agents are sufficiently decou-
pled and thus actions of one agent are largely independent
of any other agent. In (Ephrati & Rosenschein 1994), a
heuristic approach that exploits decomposed search space
is introduced. Whereas in (Ephrati & Rosenschein 1994;
Georgeff 1983) methods for merging plans at the primi-
tive level are described, in (Clement & Durfee 1999) a
strategy for plan merge on different levels of hierarchical
plans is presented. In (Alami, Ingrand, & Qutub 1998;
Alami et al. 1995), a generic approach for distributed, incre-
mental merging of individual plans is suggested: the agents
are considered sequentially, and the plan for the currently
processed agent is synchronized with the plans chosen for
the previously processed agents. Besides, a few more algo-
rithmic approaches to an application-specific plan synchro-
nization are proposed in (Cao, Fukunaga, & Kahng 1997;
Pape 1990; Yuta & Premvuti 1992). Note that all these
approaches for inter-agent synchronization assume that the
personal plans are already constructed, and that the merging
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Figure 1: Examples of strategy graphs for: (a) single agent, (b) two-agent group: transitions of X depend on states of Y .

operation is considered only on this fixed set of individual
plans (possibly, certain local modifications of the plans may
be allowed). This essentially restricts not only the quality,
but even the ability to find a coordinated plan.

A wider formal model for multi-agent systems that con-
cerns both determining personal agent plans and their syn-
chronization, is suggested in (Moses & Tennenholtz 1995).
With respect to this model, the cooperative goal achieve-
ment problem is defined. It can be roughly stated as follows:
Given a set of benevolent agents in the same environment,
each one with its own, independent goal, does there exist a
satisfying system of coordinated personal plans? In (Moses
& Tennenholtz 1995), this problem is shown to be PSPACE-
complete. Detailed investigation of specific subclasses of
the suggested problem can become a natural continuation of
this work.

In this paper, we concentrate on a particular class of
the cooperative goal achievement problem. In this prob-
lem class, which we denote to as STS (state-transition sup-
port), an action (transition) of an agent can be constrained
by the states of other agents. Following (Brooks 1986;
Moses & Tennenholtz 1995), each agent is assumed to be
representable as a finite automaton. As in (Clement & Dur-
fee 1999; Ephrati & Rosenschein 1994; Georgeff 1983), the
coordination process is assumed to be off-line and central-
ized. Note that we are not dealing here with many comple-
mentary issues of multi-agent systems such as determining
agent behavior, collaboration establishing, decision process
distributing, etc.

We suggest to represent an STS problem domain using a
graph language. The two interrelated graphical structures of
our model are as follows:

1. The strategy (di)graph: the state-transition graph describ-
ing behavior of an agent.

2. The dependence (di)graph: description of the dependence
between the agents.
The strategy graph compactly captures all alternative per-

sonal plans for the corresponding agent: its strategies corre-
spond to the paths from the source node to the target node
in its strategy graph. Transition of an agent along an edge
is conditioned by the states of the agents on which it de-
pends, i.e., their locations at certain nodes in their strat-
egy graphs. The reader can find some relation between our

strategy graphs and the interactive automata of (McCarthy
& Hayes 1969). The main differences are that we (i) ad-
dress preconditioning, not interaction between agents, and
(ii) consider off-line planning.

The nodes of the dependence graph correspond to the
agents. An edge (p, q) appears in the dependence graph
if some action of the agent q depends on the state of the
agent p. We define subclasses of STS, mainly with respect
to structural properties of the dependence graph, and ana-
lyze their complexity. The complexity is measured in terms
of the total size of the strategy graphs and the size of the
dependence graph (which is actually the number of agents).
We show that our general problem is provably intractable,
but some significant subclasses are in NP and even polyno-
mial. As far as we know, such an analysis of the relation
between the structural and the computational properties of a
multi-agent coordination problem was not done in previous
research. Note that this paper presents only first results of
our ongoing research; hence, in particular, we do not dis-
cuss relative significance of the presented problem classes,
and we do not provide wide final conclusions.

The rest of the paper is organized as follows: Section
presents and discusses our model. Section is devoted to the
basic case of two agents. Section introduces a classification
of STS’s subclasses, and presents additional complexity re-
sults. For the proofs and some of detailed algorithms we re-
fer to the technical report (Domshlak & Dinitz 2001). Con-
cluding remarks are given in Section , together with some
discussion of related issues and future work.

Graphical Model for STS
In this section we define two graphical structures of the STS
problem domain. The strategy graph GA captures the al-
ternative personal strategies of an agent A. The agent’s
states are represented by the nodes of GA. Each (directed)
edge represents a possible transition between the two cor-
responding states. If a transition is conditioned by a state
of some “supporting” agent (or states of a few such agents),
then the corresponding edge has a label which describes the
condition. When a transition can be done under several
alternative conditions, this is modeled by multiple edges,
each labeled by a single condition. There are two distin-
guished nodes in GA, the source node and the target node,
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which represent the initial and goal states of A, respectively.
The possible agent’s strategies are represented by the paths
from the source node to the target node. For an illustration
see Fig. 1(a), where the possible strategies are: spqt, sprt,
sprqt, srt, srqt.

The size of this structure is linear in the length of the prob-
lem description. Observe that in general, the number of dif-
ferent, potentially applicable, strategies may be exponential
in the size of the problem even for an acyclic structure; for a
general structure, this number can, formally, be infinite.

Consider a pair of agents X and Y so that X depends on
Y in the following sense: each transition of X is precondi-
tioned by a certain state of Y . In graph terms, each edge in
GX is labeled by the name of a node in GY . An example is
given in Fig. 1(b), where the inner graph models X and the
outer one models Y . Note that there are two transitions of
X from the state p to the state r which are preconditioned
by different states of Y . The following pair of strategies for
X and Y is coordinated: The agent X begins from state s
and Y begins from state S. Subsequently, (i) X moves to p,
(ii) Y moves to P , while X is in p, (iii) X moves to q, (iv)
Y moves to Q, (v) X moves to t, and finally, (iv) Y moves
to T . We denote this coordinated multi-agent strategy
by the sequence 〈(s, p)(S, P )(p, q)(P,Q)(q, t)(Q,T )〉.
The other possible coordinated plans for X
and Y are 〈(s, p)(p, r)(S,R)(r, t)(R, T )〉 and
〈(s, r)(S,R)(r, t)(R, T )〉. No other coordinated pair
of strategies exists. For example, if the agents begin with
〈(s, p)(S, P )(p, r)〉, then X cannot leave r, since it is
impossible for Y to reach R after being in P .

In general, there are several agents A1, A2, . . . , An with
strategy graphs Gi = GAi , 1 ≤ i ≤ n. We say that an agent
Ai depends on an agent Aj if transitions of Ai have states
of Aj as preconditions. Note that a few agents may depend
on the same agent, and an agent may depend on a few other
agents. Hence, a transition of Ai is preconditioned by states
of agents that Ai depends on; in general, a transition can
depend on a part of them.

The dependence graph G is a digraph whose nodes areAi,
1 ≤ i ≤ n, and there is an edge from Aj to Ai if agent Ai
depends on agent Aj . In what following, we identify nodes
of G with the corresponding agents. Likewise, we identify
the nodes and edges of Gi with the states and transitions of
Ai, respectively. An edge of Gi has a compound label, each
component of which is a state of an immediate predecessor
of Ai in G (i.e., a node in the strategy graph of this prede-
cessor).

Both the strategy graph and the dependence graph can
be constructed straightforwardly, given an STS problem.
Likewise, the structural properties of the dependence graph,
which are investigated in this paper, can be verified in low
polynomial time in the size of the graph.

In this paper, each transition of an agent is preconditioned
by the states of all agents that this agent depends on, if the
opposite is not declared explicitly. We consider only con-
nected dependence graphs. The reason is that otherwise the
set of agents can be divided into disjoint subsets that can be
considered independently.

A natural motivation for a pair of agents X and Y as

above is that X fulfills some mission, while Y supports it.
In practice, the mission of X may be a movement towards
a target, while Y either watches X from certain observa-
tion points, or feeds it from certain warehouses, or protects
it from some fortified positions. Such a support is usual in
military and is wide-spread in various other activities. For
example, a worker X assembles some compound product,
while a mobile crane Y moves the (half-assembled) product
from one working place of X to another. In general, when
there are several agents, each agent is supported by a few
agents, and in turn, supports a few other agents.

Having read this far the reader may argue that it is possible
that we never know an agent’s behavior in complete detail,
and even if we do, the number of states that represent an
agent’s behavior may be very large. In this case, exploiting
and even constructing strategy graphs seems to be infeasible.

Indeed, it is not realistic to present detailed models of
many real-life systems as finite state machines. However,
as it is argued in (Moses & Tennenholtz 1995), the repre-
sentation an agent uses need not present the world in suffi-
cient detail to require more expressive description language.
Intuitively, it is possible to distinguish between the physi-
cal state of agents and their computational state. It is the
computational state that we have difficulty in modeling by
finite-state machines. However, the computational state of
an agent is not accessible to the other agents. On the other
hand, a finite-state description can serve well as a represen-
tation of the physical state. A wider discussion of these and
other issues of finite-automata-based knowledge representa-
tion and reasoning can be found in (Moses & Tennenholtz
1995). Likewise, number of finite-automata-based archi-
tectures are discussed in the AI literature, e.g., see (Brooks
1986).

In case that the number of parameters describing the phys-
ical state (and thus the size of the state space) is still large,
it is often possible to take advantage of the structure of an
agent in order to derive a concise description of its state.
In particular, an agent may be viewed as being composed
of a number of largely independent components, each with
its own state. Each such component (such as robot’s hand,
motor, wheel, etc.) can be represented by an agent, whose
physical state is relatively simple, since it describes a partic-
ular feature of a complex system. In this case, the strategy
graphs of the agents are expected to be of reasonable size.

The Basic Case of Two Agents
In the rest of the paper, we study the complexity of various
multi-agent coordination problems based on the model sug-
gested above. In this section we demonstrate our techniques
on solving the basic case of agent X depending on agent Y .
Given the strategy graphs ofX and Y , we build a new graph
describing X restricted by Y . As a result, our problem is
reduced to the known problem of finding a source-to-target
path in this new graph. Such a reduction becomes possible
because of the locality of the original restrictions.

We describe a solution of our problem as an interleaved
sequence of transitions of agents X and Y , as was shown
in Section . Let us analyze the structure of a general coordi-
nated plan Π for these agents. As mentioned above, private
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Figure 2: Relation between personal strategies of X and Y

strategies for X and Y are source-to-target paths in GX and
GY respectively, and we denote them by σX and σY . Let
us divide σX into intervals σX1 , σX2 , . . ., σXm of constancy
of labels: all edges (transitions) in σXi are labeled (precon-
ditioned) by the same node (state) Ni of Y . The Y ’s path
σY is also divided by the nodes Ni into some parts. The
considered plan is as follows: (1) If N1 6= sY , then agent Y
moves from sY to state N1 along the initial part of σY ; (2)
Agent X moves along σX1 to its end; (3) Y moves from N1

toN2 along the next part of σY ; (4)X moves along σX2 , etc.
Finally, if Nm 6= tY , then agent Y moves from Nm to tY
along the final part of σY . For illustration see Figure 2.

Let see what “degrees of freedom” Π has. For simplicity
of notation, we denote sY by N0 and tY by Nm+1. Observe
that the replacement of part of σY between Ni to Ni+1,
0 ≤ i ≤ m, by any other path from Ni to Ni+1 retains
the plan feasible. That is, the only requirement for feasi-
bility of σX is the existence of such a path for each label
change along σX . Moreover, replacement of any σXi by an-
other path between its ends such that all its edges are labeled
by Ni retains the plan feasible.

Lets now consider building such a coordinated plan Π.
We take as a central issue finding an appropriate path σX . As
mentioned above, the only critical points in its building are
the moments of label change along σX : if the label changes
from Ni to Ni+1, then a “connecting” path from Ni to Ni+1

in GY must exist. In order to include into the same frame-
work the cases in which the label of the first edge is not sY
and the label of the last edge is not tY , we extend GX as
follows. We add to GX a dummy source s̃X , with an edge
(s̃X , sX) labeled sY , and a dummy target t̃X , with an edge
(tX , t̃X) labeled tY , and consider path σ̃X from s̃X to t̃X

in this extended graph G̃X . It is easy to see that existence
of connecting paths in GY for all critical points in σ̃X is
necessary and sufficient for the feasibility σX . Indeed, the
twin path σY is the concatenation of all connecting paths,
for 0 ≤ i ≤ m. Therefore, the only information we need
in order to build an appropriate path in G̃X is whether two
edges may be consequent on a path σ̃X in the above sense,
for all pairs of adjacent edges in G̃X .

Information on existence of a path between any pair of
nodes N ′ and N ′′ of GY (reachability of N ′′ from N ′)
can be obtained by a preprocessing of GY . Appropriate
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Figure 3: Illustration of G̃X with the corresponding GX|Y .

algorithms are widely known and are very fast; the paths
themselves, if any, are provided by these algorithms as well,
e.g. see (Cormen, Leiserson, & Rivest 1990). Hence, we
can form the following database for all pairs of consequent
edges in G̃X : If an edge e′ labeled N ′ enters some node and
an edge e′′ labeled N ′′ leaves the same node, then the pair
(e′, e′′) is marked “permitted” if either N ′ = N ′′ or N ′′ is
reachable from N ′ in GY . For example see Figure 3, where
dotted lines show the permitted edge pairs.

In fact, the suggested construction provides a reduction
of the problem of finding a path σ̃X as defined above to a
known problem of finding a path in a graph. Let the new
graphGX|Y have the edges of G̃X as nodes, and let its edges
be defined by the permitted pairs of edges in G̃X .1 Now,
all we need is a path from the source node (s̃X , sX) to the
target node (tX , t̃X) in GX|Y . Clearly, such a path defines
the corresponding path in G̃X immediately.

Figure 4 summarizes the algorithm for finding a coordi-
nated plan for agentX depending on (“supported by”) agent
Y . This algorithm is, evidently, polynomial. The reader can
“execute” it by himself on the example given in Figure 3.
This example is the same as the one in Section , and any
of the three feasible coordinated plans listed there can be
obtained as the result of such an execution. Thus we have
achieved our first result, and in what following, we use the
presented approach for analyzing other variants of STS.

Theorem 1 There exists a polynomial time algorithm that,
given a pair of agents X,Y , in which X depends on Y , de-
termines existence of a coordinated plan and finds such a
plan, if exists.

This result can be easily generalized to finding an optimal
coordinated plan. Assume that the cost function is the sum
or the product of weights of states and/or transitions used in
the plan. Since in step 4 of the algorithm, an arbitrary path
can be chosen, let us choose an optimal path; this suffices
for global optimality. Any algorithm for finding a cheapest
path in a graph can be used, e.g. see (Cormen, Leiserson, &
Rivest 1990).

Now let us require, in addition, simplicity of Y ’s strategy,
i.e., let us forbid Y to visit the same state twice. A moti-
vation for this can be that each state of Y relates to some

1Such a construction is a variant of the so called “edge graph”
known in graph theory; the addition in our case is the exclusion of
non-permitted edges from it.
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1. Extending strategy graph GX to G̃X .
2. Preprocessing of strategy graph GY : finding a path from any node to any other node (in fact, it is sufficient to do this for the

node pairs needed in the next phase only).

3. Constructing permitted-edge graph GX|Y .

4. Finding a source-to-target path in GX|Y , if any, or reporting on non-existence of a coordinated plan, otherwise.

5. Reconstructing from the path found in phase 4 a path σ̃X in G̃X and its abridged variant σX in GX .
6. Building a path σY in GY as the concatenation of paths found at phase 2, for all label changes along σ̃X .
7. Outputting properly interleaved strategies σX and σY .

Figure 4: Algorithm for the basic STS problem.

consumable resources. It turns out that this seemingly non-
essential change in the problem definition, change the prob-
lem to be NP-complete. Informally, the reason for this com-
plexity worsening is that the locality of precondition is thus
broken. This result is mainly interesting from the theoretical
point of view, since it points on a computational sensitivity
of our original problem.

Results for Some Other Subclasses of STS
In this section we discuss various additional complexity re-
sults for STS. Problem classes are defined mainly by the
structure of their dependence graph. Moreover, both results
and methods depend crucially on the number and size of
possible agent strategies: if both of them are polynomial in
the size of problem domain, then we distinguish such a class
as bounded. Figure 5 summarizes the achieved results, and
each box in the figure denotes an STS’s subclass.

The notation is as follows: First, each STS subclass is de-
noted with respect to the form of the dependence graph: C
stands for directed chain, F∧ for directed fork (graph with
exactly one node with a non-zero outdegree), F∨ for directed
inverse fork (graph with exactly one node with a non-zero
indegree), P for polytree (digraph whose underlying undi-
rected graph is a tree), and S for singly-connected DAG (di-
rected acyclic graph with at most one directed path between
any pair of nodes). Second, the subscript denotes the num-
ber of agents: k stands for a constant bound, and n indicates
no bounds.

By default, we assume that each transition of an agent
is preconditioned by the states of all agents that this agent
depends on. Alternatively, π in a superscript denotes a pos-
sibility of partial dependence. σ in a superscript denotes the
requirement that all strategies chosen are simple. Note that
cases C2 and Cσ2 have been discussed in Section .

Coordinating General Agents A natural generalization
Cn of the class C2 (as in Section ) occurs when there is a
dependence chain: agentsAi, 1 ≤ i ≤ n, withAi dependent
on Ai−1, i ≥ 2. For simplicity of notation, let us abridge Ai
to i in superscripts (e.g., Gi instead of GAi ).

Our approach for Cn is to iterate the analysis and the algo-
rithm for C2 along the dependence chain. A naive scheme is
as follows. For processing pair A3, A2, we need a database
on coordinated reachability in G2. Observe that our algo-
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Figure 5: Complexity results for STS

rithm for C2 applied to pair A2, A1 provides such an infor-
mation for nodes s2, t2; clearly, this can be done for any pair
of nodes of G2. Considering pair A2, A1, lets check reach-
ability and store paths, if any, for all pairs of nodes in G2,
as required. Now, we are as if sure that if we would deter-
mine a coordinated plan for pair A3, A2 based on the above
reachability relation for A2, a corresponding strategy for A1

will be obtained easily. Hence, the situation with A3, A2 is
similar to that withA2, A1, and thus we can iterate up toAn.
Personal coordinated strategies can be consequently recon-
structed, from An−1 to A1.

However, this scheme turns to be inconsistent. The point
is that, in fact, the coordinated reachability relation in G2

is on its edges, not on its nodes, and it is captured by the
edge graph G2|1. Therefore, informally, the right approach
is to create an edge graph for G3 basing on G2|1, not on
G2. This idea of recursive edge graph creating can be gen-
eralized for dependence chain of arbitrary length. Using this
method, we never arrive at a deadend as in the naive scheme,
and we can obtain any coordinated plan for this problem.
For the detailed algorithm for Cn, together with an illustrat-
ing example of its execution and a counterexample for the
naive approach we refer to the technical report (Domshlak
& Dinitz 2001).
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Main
Repeat Pruning while strategy sets are changing.
If all strategy sets are empty, then report that no coordinated plan exists.

Otherwise, perform Construction.
Pruning

For all edges (Aj , Ai) in G do:
For each σi ∈ Si do:

If Compatibility-Check(σi, σj) returns false for all σj ∈ Sj then remove σi from Si.
For each σj ∈ Sj do:

If Compatibility-Check(σi, σj) returns false for all σi ∈ Si then remove σj from Sj .
Compatibility-Check (σi, σj)

If l(σi)[j] with neighboring repetitions removed is a subsequence of σj ,
then return true, else return false.

Construction
Pick any agent A and any strategy for it.
Traverse G undirectly from the node A. For each visited node A′, choose any strategy of A′

that is compatible with the strategy chosen for the node from which we came to A′.

Figure 6: Algorithm for Pπn.

Theorem 2 (I) There exists an algorithm for Cn that deter-
mines existence of a coordinated plan and finds such a plan,
if exists. This algorithm is polynomial in the total size of
strategy graphs and exponential in n; thus Ck is proved to
be polynomial.
(II) Cn has instances with exponentially sized minimal so-
lutions.

The proof of the exponential lower bound is by the fol-
lowing example. Each agent Ai, 2 ≤ i ≤ n, has the strategy
graph as follows:

si
ti−1 **

qi
si−1 **

si−1
jj ti

ti−1
jj

The strategy graph for A1 looks the same, except that its
edges are unlabeled. This problem instance has a unique
minimal coordinated plan of total length 2n+1 − 2 transi-
tions.

By showing that Cn is provably intractable, theorem 2
emphasizes our motivation for exploiting various structural
restrictions on STS in order to find problem classes which are
polynomial, e.g., Ck, or at least belong to NP. In particular,
the subclass of Cn strategy graphs of which are acyclic can
be easily shown to belong to NP. However, the question of its
exact hardness is still an open question. The same question
is open for the decision version of Cn.

Theorem 3 summarizes the complexity results for some
other classes of STS (for notations see Section ).

Theorem 3 (I) There exists a polynomial time algorithm for
F∨n that determines existence of a coordinated plan and finds
such a plan, if exists. (II) There exists a polynomial time
algorithm for Cπ2 that determines existence of a coordinated
plan and finds such a plan, if exists. (III) F∧n is NP-complete.
(IV) F∨πn is NP-complete.

Proof sketch. (I) In F∨n , a single agent A1 depends on a
group of independent supporting agents A2, . . . , An. The

algorithm is similar to that for C2. The idea is that several
preconditions on the same transition can be checked inde-
pendently. (II) Cπ2 is an extension of C2 in which only some
of transitions of the supported agent depend on the state of
the supporting agent. The algorithm for Cπ2 is similar to that
for C2, except that a certain modification of the permitted-
edge graph GX|Y is used. (III),(IV) In F∧n , a single agent A1

supports a group of agents A2, . . . , An. The membership
in NP can be easily shown for both F∧n and F∨πn . In turn,
the proofs of hardness for F∧n and F∨πn are by polynomial
reductions from 3-SAT and PATH WITH FORBIDDEN PAIRS
problems, respectively.

Remarks: The algorithm for Cn can be extended for Cπn,
similarly to the extension of the C2 algorithm for Cπ2 . Re-
sults presented for the cases of chain and inverse fork depen-
dence graphs can be generalized to the case of dependence
graph being a tree directed to its root.
Coordinating Bounded Agents In this section we con-
sider the class of problems for which the number and size
of strategies for each agent is polynomial in the size of the
problem domain. In what follows, such agents are referred
as bounded. Let us denote by Si the set of allowed strategies
σi of Ai (i.e., source-to-target paths in Gi). We show that if
a dependence graph forms a polytree then STS for bounded
agents is polynomial. However, its extension to singly con-
nected directed graphs is already NP-complete.

Consider Pπn. Notice that any polytree is an acyclic graph.
Denote by l(σi) the sequence of edge labels along σi, and by
lj(σ

i)[j] the projection of l(σi) to the nodes of Gj . Figure 6
presents our algorithm for Pπn.

Theorem 4 (I) There exists a polynomial time algorithm for
Pπn with bounded agents that determines existence of a co-
ordinated plan and finds such a plan, if exists. (II) Sπn for
bounded agents is NP-complete.
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Proof sketch. (I) According to the analysis in Section , the
condition of Compatibility-Check confirms that the checked
pair σi, σj is coordinated. Therefore, convergence of the
pruning process ensures that for each agentA: (i) any one of
its strategies has at least one supporting strategy of each pre-
decessor of A in G, and (ii) any one of its strategies supports
at least one strategy for any successor of A in G. Hence, if
Construction has a personal strategy to begin with, then it is
surely successful. Polynomiality holds, since each execution
of Pruning decreases the total number of personal strategies.

(II) Membership in NP for Sπn is straightforward, and the
hardness proof is by a polynomial reduction from 3-SAT.

Discussion and Conclusions
In this paper, we concerned coordination for a set of agents
that work on independent goals in the same environment.
We investigated a particular family of the problems of find-
ing coordinated plans, where actions of an agent depend on
the local states of certain other agents. First, we presented
a graphical representation model for this family of prob-
lems. Then, we classified these problems mainly according
to the structural properties of the model. In the main part
of the paper, we analyzed the computational properties of
various problem classes. We gave polynomial solutions for
several classes, while for some other we proved their NP-
completeness or even provable intractability. A number of
unsolved problems remains for the further research. The
suggested approach—to find a sufficiently formal descrip-
tion for some problem classes, and to analyze their com-
putational properties—seems to be prospective in the multi-
agent area. Following some additional observations with re-
spect to results presented in this paper.

First, let each agent and its states be considered as a
multi-valued variable and its values, respectively, and let the
set of agents’ transitions be considered as a set of opera-
tors over the above variables. In this context, our results
concern complexity analysis in the area of classical plan-
ning over multi-valued variables (Bäckström & Nebel 1995;
Jonsson & Bäckström 1998). Specifically, our results ad-
dress the planning problems over multi-valued variables and
only unary (= single effect) operators. Complexity analysis
for planning with unary operators, and binary variables can
be found in (Domshlak & Brafman 2001).

Second, in our model, each agent is assumed to be as-
signed to a personal goal, which is independent of the per-
sonal goals of all other agents. However, a supporting agent
may have no explicit personal goal, while supporting ac-
tivities of some other agents may be its only destiny. This
particular relaxation can be immediately added into the pre-
sented model, with no negative impact on the computational
properties of the problems. The coordinated group of de-
pendent agents can be viewed as collaborating towards the
achievement of some global goal.

Third, in this work we address only groups of fully con-
trolled entities. Therefore, in particular, our results do
not concern state-transition settings where agent’s strat-
egy depends on uncontrolled environment, like that studied
in (Arkin & Balch 1998; Balch et al. 1995).

In the future, we plan to continue with analysis of vari-
ous classes of STS. In addition, we want to examine other
forms of dependence between the agents, and other forms of
goal(s) definition for a group of agents. This issues will be
examined in the context of their impact on the complexity of
coordination. We also plan to address related optimization
problems.
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