
Using Abstraction in Planning and Scheduling

Bradley J. Clement, Anthony C. Barrett,
Gregg R. Rabideau

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 91109-8099 USA
{bclement, barrett, rabideau}@aig.jpl.nasa.gov

Edmund H. Durfee
Artificial Intelligence Laboratory

University of Michigan
1101 Beal Avenue

Ann Arbor, MI 48109-2110 USA
durfee@umich.edu

Abstract
We present an algorithm for summarizing the metric resource
requirements of an abstract task based on the resource usages
of its potential refinements. We use this summary information
within the ASPEN planner/scheduler to coordinate a team of
rovers that conflict over shared resources. We find analyt-
ically and experimentally that an iterative repair planner can
experience an exponential speedup when reasoning with sum-
mary information about resource usages and state constraints,
but there are some cases where the extra overhead involved
can degrade performance.

Introduction
Hierarchical Task Network (HTN) planners (Erol,

Hendler, and Nau 1994) represent abstract actions that
decompose into choices of action sequences that may also
be abstract, and HTN planning problems are requests to
perform a set of abstract actions given an initial state.
The planner subsequently refines the abstract tasks into
less abstract subtasks to ultimately generate a schedule of
primitive actions that is executable from the initial state.
This differs from STRIPS planning where a planner can find
any sequence of actions whose execution can achieve a set
of goals. HTN planners only find sequences that perform
abstract tasks, and a domain expert can intuitively define
hierarchies of abstract tasks to make the planner rapidly
generate all sequences of interest.

Previous research (Korf 1987; Knoblock 1991) has
shown that, under certain restrictions, hierarchical
refinement search reduces the search space by an
exponential factor. Subsequent research has shown
that these restrictions can be dropped by reason-
ing during refinement about the conditions embod-
ied by abstract actions (Clement and Durfee 2000;
1999). These summarized conditions represent the internal
and external requirements and effects of an abstract action
and those of any possible primitive actions that it can
decompose into. Using this information, a planner can

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
This work was performed at the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under contract with the National Aero-
nautics and Space Administration. This work was also supported
in part by DARPA(F30602-98-2-0142).

detect and resolve conflicts between abstract actions and
sometimes can find abstract solutions or determine that
particular decomposition choices are inconsistent. In this
paper, we apply these abstract reasoning techniques to tasks
that use metric resources. We present an algorithm that
processes a task hierarchy description offline to summarize
abstract plan operators’ metric resource requirements.

While planning and scheduling efficiency is a major focus
of our research, another is the support of flexible plan exe-
cution systems such as PRS (Georgeff and Lansky 1986),
UMPRS (Lee et al. 1994), RAPS (Firby 1989), JAM (Hu-
ber 1999), etc., that exploit hierarchical plan spaces while
interleaving task decomposition with execution. By post-
poning task decomposition, such systems gain flexibility
to choose decompositions that best match current circum-
stances. However, this means that refinement decisions are
made and acted upon before all abstract actions are decom-
posed to the most detailed level. If such refinements at
abstract levels introduce unresolvable conflicts at more de-
tailed levels, the system will get stuck part way through exe-
cution. By using summary information, a system that inter-
leaves planning and execution can detect and resolve con-
flicts at abstract levels to avoid getting stuck and to provide
some ability to recover from failure.

In the next section this paper uses a traveling rover exam-
ple to describe how we represent abstract actions and sum-
mary information. Given these representations, the subse-
quent section presents an algorithm for summarizing an ab-
stract task’s potential resource usage based on its possible
refinements. Next we analytically show how summary infor-
mation can accelerate an iterative repair planner/scheduler
and make some empirical measurements in a multi-rover
planning domain.

Representations
To illustrate our approach, we will focus on managing a col-
lection of rovers as they explore the environment around a
lander on Mars. This exploration takes the form of visiting
different locations and making observations. Each traversal
between locations follows established paths to minimize ef-
fort and risk. These paths combine to form a network like
the one mapped out in Figure 1, where vertices denote dis-
tinguished locations, and edges denote allowed paths. While
some paths are over hard ground, others are over loose sand

35

Proceedings of the Sixth European Conference on Planning



B
A D

C

F

E

Figure 1: Example map of established paths between points
in a rover domain, where thinner edges are harder to tra-
verse, and labeled points have associated observation goals

where traversal is harder since a rover can slip.

Resources and Tasks
More formally, we represent each rover’s status in terms of
state and resource variables. The values in state variables
record the status of key rover subsystems. For instance, a
rover’s position state variable can take on the label of any
vertex in the location network. Given this representation of
state information, tasks have preconditions/effects that we
represent as equality constraints/assignments. In our rover
example traveling on the arc from point A to point B is
done with a go(A,B) task. This task has the precondition
(position=A) and the effect (position=B).

In addition to interacting with state variables, tasks use re-
sources. While some resources are only used during a task,
using others persists after a task finishes. The first type of
resource is nondepletable, with examples like solar power
which immediately becomes available after some task stops
using it. On the other hand, battery energy is a depletable
resource because its consumption persists until a later task
recharges the battery. We model a task’s resource consump-
tion by subtracting the usage amount from the resource vari-
able when the task starts and for nondepletable resources
adding it back upon completion. While this approach is sim-
plistic, it can conservatively approximate any resource con-
sumption profile by breaking a task into smaller subtasks.

Primitive tasks affect state and resource variables, and an
abstract task is a non-leaf node in an AND/OR tree of tasks.1
An AND task is executed by executing all of its subtasks ac-
cording to a some set of specified temporal constraints. An
OR task is executed by executing one of its subtasks. Fig-
ure 2 gives an example of such an abstract task. Imagine a
rover that wants to make an early morning trip from point
A to point B on our example map. During this trip the sun
slowly rises above the horizon giving the rover the ability
to progressively use soak rays tasks to provide more solar
power to motors in the wheels. In addition to collecting pho-
tons, the morning traverse moves the rover, and the resultant
go tasks require path dependent amounts of power. While a

1It is trivial to extend the algorithms in this paper to handle state
and resource constraints specified for abstract tasks.

rover traveling from point A to point B can take any num-
ber of paths, the shortest three involve following one, two,
or three steps.

Summary Information
An abstract task’s state variable summary information in-
cludes elements for pre-, in-, and postconditions. Summary
preconditions are conditions that must be met by the initial
state or previous external tasks in order for a task to decom-
pose and execute successfully, and a task’s summary post-
conditions are the effects of its decomposition’s execution
that are not undone internally. We use summary incondi-
tions for those conditions that are required or asserted in
the task’s decomposition during the interval of execution.
All summary conditions are used to reason about how state
variables are affected while performing an abstract task, and
they have two orthogonal modalities:
• must or may indicates that a condition holds in all or some

decompositions of the abstract task respectively and
• first, last, sometimes, or always indicates when a condition

holds in the task’s execution interval.
For instance, the move(A,B) task in our example

has a must, first(position=A) summary precondition
and a must, last(position=B) postcondition because all
decompositions move the rover from A to B. Since the
move(A,B) task decomposes into one of several paths, it
has summary inconditions of the form may, sometimes
(position=i), where i is 1, 2 or 3. State summary conditions
are formalized in (Clement and Durfee 1999).

Extending summary information to include metric re-
sources involves defining a new representation and algo-
rithm for summarization. A summarized resource usage
consists of ranges of potential resource usage amounts dur-
ing and after performing an abstract task, and we represent
this summary information using the structure

〈local min range, local max range, persist range〉,

where the resource’s local usage occurs within the task’s
execution, and the persistent usage represents the usage that
lasts after the task terminates for depletable resources.

The usage ranges capture the multiple possible usage pro-
files of an task with multiple decomposition choices and tim-
ing choices among loosely constrained subtasks. For exam-
ple, the high path task has a 〈[4, 4], [6, 6], [0, 0]〉 summary
power use over a 40 minute interval. In this case the ranges
are single points due to no uncertainty – the task simply uses
4 watts for 15 minutes followed by 6 watts for 25 minutes.
The move(A,B) provides a slightly more complex exam-
ple due to its decompositional uncertainty. This task has a
〈[0, 4], [4, 6], [0, 0]〉 summary power use over a 50 minute
interval. In both cases the persist range is [0, 0] because
power is a nondepletable resource.

While a summary resource usage structure has only one
range for persistent usage of a resource, it has ranges for
both the minimum and maximum local usage because we
want to detect potential conflicts from violating either of
these limits. As an example of reasoning with resource
usage summaries, suppose that only 3 watts of power
were available during a move(A,B) task. Given the [4, 6]
local max range, we know that there is an unresolvable
problem without decomposing further. Raising the available

36



high path

go(A,3) go(3,B)
use 4w use 6w
15 min 25 min

go(A,B)

50 min
use 4w

move(A,B)

take low pathsoak rays soak rays soak rays
use -4w
20 min

use -5w use -6w
20 min 20 min

go(2,B)
use 3w use 3w use 6w
10 min 10 min 20 min

go(A,1) go(1,2)

morning activities

middle path

Figure 2: AND/OR tree defining abstract tasks and how they decompose for a morning drive from point A to point B along one
of the three shortest paths in our example map

power to 4 watts makes the task executable depending on
how it gets decomposed and scheduled, and raising to 6
or more watts makes the task executable for all possible
decompositions.

Resource Summarization Algorithm
The state summarization algorithm (Clement and Durfee
1999) recursively propagates summary conditions upwards
from an AND/OR tree’s leaves, and the algorithm for re-
source summarization takes the same approach. Starting at
the leaves, we find primitive tasks that use constant amounts
of a resource. The resource summary of a task using x units
of a resource is 〈[x,x],[x,x],[0,0]〉 or 〈[x,x],[x,x],[x,x]〉 over
the task’s duration for nondepletable or depletable resources
respectively.

Moving up the AND/OR tree we either come to an AND
or an OR branch. For an OR branch the combined summary
usage comes from the OR computation

〈[minc∈children(lb(local min range(c))),
maxc∈children(ub(local min range(c)))],

[minc∈children(lb(local max range(c))),
maxc∈children(ub(local max range(c)))],

[minc∈children(lb(persist range(c))),
maxc∈children(ub(persist range(c)))]〉,

where lb() and ub() extract the lower bound and upper
bound of a range respectively. The children denote the
branch’s children with their durations extended to the
length of the longest child. This duration extension alters a
child’s resource summary information because the child’s
usage profile has a 0 resource usage during the extension.
For instance, when we determine the resource usage for
move(A,B), we combine two 40 minute tasks with a 50
minute task. The resulting summary information is for a
50 minute abstract task whose profile might have a zero
watt power usage for 10 minutes. This extension is why
move(A,B) has a [0, 4] for its local min range instead of
[3, 4].

Computing an AND branch’s summary information is a
bit more complicated due to timing choices among loosely
constrained subtasks. Our take x path examples illustrate
the simplest subcase, where subtasks are tightly constrained
to execute serially. Here profiles are appended together, and

the resulting summary usage information comes form the
SERIAL-AND computation
〈[minc∈children(lb(local min range(c)) + Σpre

lb (c)),
minc∈children(ub(local min range(c)) + Σpre

ub (c))],
[maxc∈children(lb(local max range(c)) + Σpre

lb (c)),
maxc∈children(ub(local max range(c)) + Σpre

ub (c))],
[Σc∈children(lb(persist range(c))),
Σc∈children(ub(persist range(c)))]〉,

where Σpre
lb (c) and Σpre

ub (c) are the respective lower and
upper bounds on the cumulative persistent usages of children
that execute before c. These computations have the same
form as the Σ computations for the final persist range.

The case where all subtasks execute in parallel and have
identical durations is slightly simpler. Here the usage pro-
files add together, and the branch’s resultant summary usage
comes from the PARALLEL-AND computation
〈[Σc∈children(lb(local min range(c))),
minc∈children(ub(local min range(c)) + Σnon

ub (c))],
[maxc∈children(lb(local max range(c)) + Σnon

lb (c)),
Σc∈children(ub(local max range(c)))],

[Σc∈children(lb(persist range(c))),
Σc∈children(ub(persist range(c)))]〉,

where Σnon
ub (c) and Σnon

lb (c) are the respective sums of
local max range upper bounds and local min range
lower bounds for all children except c.

To handle AND tasks with loose temporal constraints, we
consider all legal orderings of child task endpoints. For ex-
ample, in our rover’s early morning tasks, there are three
serial solar energy collection subtasks running in parallel
with a subtask to drive to location B. Figure 3 shows one
possible ordering of the subtask endpoints, which breaks the
move(A,B) into three pieces, and two of the soak rays chil-
dren in half. Given an ordering, we can (1) use the endpoints
of the children to determine subintervals, (2) compute sum-
mary information for each child task/subinterval combina-
tion, (3) combine the parallel subinterval summaries using
the PARALLEL-AND computation, and then (4) chain the
subintervals together using the SERIAL-AND computation.
Finally, the AND task’s summary is computed by combin-
ing the summaries for all possible orderings using an OR
computation.

Here we describe how step (2) generates different sum-
mary resource usages for the subintervals of a child task.

37



soak rays
<[0,4],[4,6],[0,0]>

move(A,B)

soak rays

soak rays
<[-6,-6],[-6,-6],[0,0]>

<[-5,-5],[-5,-5],[0,0]>
<[-4,-4],[-4,-4],[0,0]>

Figure 3: Possible task ordering for a rover’s morning activ-
ities, with resulting subintervals.

A child task with summary resource usage 〈[a,b],[c,d],[e,f ]〉
contributes one of two summary resource usages to each in-
tersecting subinterval2:

〈[a, b], [c, d], [0, 0]〉, 〈[a, d], [a, d], [0, 0]〉.

While the first usage has the tighter [a, b], [c, d] local ranges,
the second has looser [a, d], [a, d] local ranges. Since the b
and c bounds only apply to the subintervals containing the
subtask’s minimum and maximum usages, the tighter ranges
apply to one of a subtask’s intersecting subintervals. While
the minimum and maximum usages may not occur in the
same subinterval, symmetry arguments let us connect them
in our computation. Thus one subinterval has tighter local
ranges and all other intersecting subintervals get the looser
local ranges, and extra complexity comes from having to in-
vestigate all subtask/subinterval assignment options. For in-
stance, there are three subintervals intersecting move(A,B)
in Figure 3, and three different assignments of summary re-
source usages to the subintervals: placing [0, 4], [4, 6] in one
subinterval with [0, 6], [0, 6] in the other two. These place-
ment options result in a subtask with n subintervals having
n possible subinterval assignments. So if there are m child
tasks each with n alternate assignments, then there are nm

combinations of potential subtask/subinterval summary re-
source usage assignments. Thus, propagating summary in-
formation through an AND branch is in the worst case expo-
nential in the number of subtasks. However since the num-
ber of subtasks is controlled by the domain modeler and is
usually bounded by a constant, this computation is tractable.
In addition, summary information can be derived offline for
a domain. The propagation algorithm is as follows:
• For each consistent ordering of endpoints:

– For each consistent subtask/subinterval summary usage
assignment:
∗ Use PARALLEL-AND computations to combine sub-

task/subinterval summary usages by subinterval.
∗ Use a SERIAL-AND computation on the subinter-

vals’ combined summary usages to get a consistent
summary usage.

• Use OR computation to combine all consistent summary
usages to get AND task’s summary usage.

2For summary resource usages of the last interval intersecting
the child task, we replace [0, 0] with [e, f ] in the persist range.

Using Summary Information
In this section, we describe techniques for using summary
information in local search planners to reason at abstract lev-
els effectively and discuss the complexity advantages. Rea-
soning about abstract plan operators using summary infor-
mation can result in exponential planning performance gains
for backtracking hierarchical planners (Clement and Durfee
2000). In iterative repair planning, a technique called aggre-
gation that involves scheduling hierarchies of tasks similarly
outperforms the movement of tasks individually (Knight,
Rabideau, and Chien 2000). But, can summary informa-
tion be used in an iterative repair planner to improve perfor-
mance when aggregation is already used? We demonstrate
that summarized state and resource constraints makes expo-
nential improvements by collapsing constraints at abstract
levels. First, we describe how we use aggregation and sum-
mary information to schedule tasks within an iterative repair
planner. Next, we analyze the complexity of moving ab-
stract and detailed tasks using aggregation and summary in-
formation. Then we describe how a heuristic iterative repair
planner can exploit summary information.

Aggregation and Summary Information
While HTN planners commonly take a generative least com-
mitment approach to problem solving, research in the OR
community illustrates that a simple local search is surpris-
ingly effective (Papadimitriou and Steiglitz 1998). Heuris-
tic iterative repair planning uses a local search to generate
a plan. It starts with an initial flawed plan and iteratively
chooses a flaw, chooses a repair method, and changes the
plan by applying the method. Unlike generative planning,
the local search never backtracks. Since taking a random
walk through a large space of plans is inefficient, heuristics
guide the search by determining the probability distributions
for each choice. We build on this approach to planning by
using the ASPEN planner (Chien et al. 2000).

Moving tasks is a central scheduling operation in itera-
tive repair planners. A planner can more effectively sched-
ule tasks by moving related groups of tasks to preserve con-
straints among them. Hierarchical tasks are commonly cho-
sen to represent these groups and their constraints. Ag-
gregation involves moving a fully detailed abstract task hi-
erarchy while preserving the temporal ordering constraints
among the subtasks. Moving individual tasks independent
of their siblings and subtasks is shown to be much less ef-
ficient (Knight, Rabideau, and Chien 2000). Valid place-
ments of the task hierarchy in the schedule are computed
from the state and resource usage profile for the hierarchy.
This profile represents one instantiation of the decomposi-
tion and temporal ordering of the abstract task’s hierarchy.

A summarized state or resource usage represents all po-
tential profiles of an abstract task before it is decomposed.
Our approach involves reasoning about summarized con-
straints in order to schedule abstract tasks before they are
decomposed. Scheduling an abstract task is computation-
ally cheaper than scheduling the task’s hierarchy using ag-
gregation when the summarized constraints more compactly
represent the constraint profiles of the hierarchy. This im-

38



proves the overall performance when the planner/scheduler
resolves conflicts before fully decomposing tasks.

Complexity Analysis
To move a hierarchy of tasks using aggregation, valid place-
ment intervals are computed for each resource variable af-
fected by the hierarchy.3 These valid intervals are inter-
sected for the valid placements for all resources. The com-
plexity of computing the set of valid intervals for a resource
is O(cC) where c is the number of constraints (usages) an
abstract task has with its children for the variable, and C is
the number of constraints of other tasks in the schedule on
the variable (Knight, Rabideau, and Chien 2000). If there
are n similar task hierarchies in the entire schedule, then
C = (n− 1)c, and the complexity of computing valid inter-
vals is O(nc2). But this computation is done for each of v
resource variables (often constant for a domain), so moving
a task will have a complexity of O(vnc2).

The summary information of an abstract task represents
all of the constraints of its children, but if the children have
constraints on the same resource, this information is col-
lapsed into a single summary resource usage in the abstract
task. Therefore, when moving a summarized abstract task,
the number of constraints involved may be far fewer de-
pending on the domain. If the scheduler is trying to place
a summarized abstract task among other summarized tasks,
the computation of valid placement intervals can be reduced
because the c in O(vnc2) is smaller. We now analyze two
extreme cases where constraints can be fully collapsed and
where they cannot be collapsed at all.

In the case that all tasks in a hierarchy have constraints
on the same resource, the number of constraints in a hierar-
chy is O(bd) for a hierarchy of depth d and branching factor
(number of child tasks per parent) b. In aggregation, where
hierarchies are fully detailed first, this means that the com-
plexity of moving an task is O(vnb2d) because c = O(bd).
Now consider using aggregation for moving a partially ex-
panded hierarchy where the leaves are summarized abstract
tasks. If all hierarchies in the schedule are decomposed to
level i, there are O(bi) tasks in a hierarchy, each with one
summarized constraint representing those of all of the yet
undetailed subtasks beneath it for each constraint variable.
So c = O(bi), and the complexity of moving the task is
O(vnb2i). Thus, moving an abstract task using summary in-
formation can be a factor of O(b2(d−i)) times faster than for
aggregation.

The other extreme is when all of the tasks place con-
straints on different variables. In this case, c = 1 be-
cause any hierarchy can only have one constraint per vari-
able. Fully detailed hierarchies contain v = O(bd) different
variables, so the complexity of moving a task in this case
is O(nbd). If moving a summarized abstract task where all
tasks in the schedule are decomposed to level i, v is the same
because the abstract task summarizes all constraints for each
subtask in the hierarchy beneath it, and each of those con-
straints are on different variables such that no constraints

3The analysis also applies to state constraints, but we restrict
our discussion to resource usage constraints for simplicity.

combine when summarized. Thus, the complexity for mov-
ing a partially expanded hierarchy is the same as for a fully
expanded one. Experiments in Section exhibit great im-
provement for cases when tasks have constraints over com-
mon resource variables.

Along another dimension, scheduling summarized tasks
is exponentially faster because there are fewer temporal con-
straints among higher level tasks. When task hierarchies
are moved using aggregation, all of the local temporal con-
straints are preserved. However, there are not always valid
intervals to move the entire hierarchy. Even so, the sched-
uler may be able to move less constraining lower level tasks
to resolve the conflict. In this case, temporal constraints may
be violated among the moved task’s parent and siblings. The
scheduler can then move and/or adjust the durations of the
parent and siblings to resolve the conflicts, but these move-
ments can affect higher level temporal constraints or even
produce other conflicts. At a depth level i in a hierarchy with
decompositions branching with a factor b, the task move-
ment can affect bi siblings in the worst case and produce
a number of conflicts exponential to the depth of the task.
Thus, if all conflicts can be resolved at an abstract level i,
O(bd−i) scheduling operations may be avoided. In Section ,
empirical data shows the exponential growth of computation
with respect to the depth at which ASPEN finds solutions.

Other complexity analyses have shown that under certain
restrictions different forms of hierarchical problem solving
can reduce the size of the search space by an exponential
factor (Korf 1987; Knoblock 1991). Basically, these restric-
tions are that an algorithm never needs to backtrack from
lower levels to higher levels in the problem. In other words,
subproblems introduced in different branches of the hierar-
chy do not interact. We do not make this assumption for our
problems. However, the speedup described above does as-
sume that the hierarchies need not be fully expanded to find
solutions.

Decomposition Heuristics for Iterative Repair
Despite this optimistic complexity, reasoning about summa-
rized constraints only translates to better performance if the
movement of summarized tasks resolves conflicts and ad-
vances the search toward a solution. There may be no way to
resolve conflicts among abstract tasks without decomposing
them into more detailed ones. So when should summary in-
formation be used to reason about abstract tasks, and when
and how should they be decomposed? Here, we describe
techniques for reasoning about summary information as ab-
stract tasks are detailed.

We explored two approaches that reason about tasks from
the top-level of abstraction down in the manner described
in (Clement and Durfee 2000). Initially, the planner only
reasons about the summary information of fully abstracted
tasks. As the planner manipulates the schedule, tasks are
gradually decomposed to open up new opportunities for re-
solving conflicts using the more detailed child tasks. One
strategy (that we will refer to as level-decomposition) is to
interleave repair with decomposition as separate steps. Step
1) The planner repairs the current schedule until the number
of conflicts cannot be reduced. Step 2) It decomposes all

39



abstract tasks one level down and returns to Step 1. By only
spending enough time at a particular level of expansion that
appears effective, the planner attempts to find the highest
decomposition level where solutions exist without wasting
time at any level.

Another approach is to use decomposition as one of the
repair methods that can be applied to a conflict so that the
planner gradually decomposes conflicting tasks. This strat-
egy tends to decompose the tasks involved in more conflicts
since any task involved in a conflict is potentially expanded
when the conflict is repaired. The idea is that the scheduler
can break overconstrained tasks into smaller pieces to offer
more flexibility in rooting out the conflicts. This resembles
the EMTF (expand-most-threats-first) (Clement and Durfee
2000) heuristic that expands (decomposes) tasks involved in
more conflicts before others. (Thus, we later will refer to
this heuristic as EMTF.) This heuristic avoids unnecessary
reasoning about the details of non-conflicting tasks. This
is similar to a most-constrained variable heuristic often em-
ployed in constraint satisfaction problems.

Another heuristic for improving planning performance
prefers decomposition choices that lead to fewer conflicts.
In effect, this is a least-constraining value heuristic used in
constraint satisfaction approaches. Using summary informa-
tion, the planner can test each child task by decomposing to
the child and replacing the parent’s summarized constraints
that summarize the children with the particular child’s sum-
marized constraints. For each child, the number of conflicts
in the schedule are counted, and the child creating the fewest
conflicts is chosen.4 This is the fewest-threats-first (FTF)
heuristic that is shown to be effective in pruning the search
space in a backtracking planner (Clement and Durfee 2000).
Likewise, the experiments in Section show similar perfor-
mance improvements.

Empirical Comparisons
The experiments we describe here show that summary in-
formation improves performance significantly when tasks
within the same hierarchy have constraints over the same re-
source, and solutions are found at some level of abstraction.
At the same time, we find cases where abstract reasoning in-
curs significant overhead when solutions are only found at
deeper levels. However, in domains where decomposition
choices are critical, we show that this overhead is insignifi-
cant because the FTF heuristic finds solutions at deeper lev-
els with better performance. These experiments also show
that the EMTF heuristic outperforms level-decomposition
for certain decomposition rates. In addition, we show that
the time to find a solution increases dramatically with the
depth where solutions are found, supporting the analysis at
the end of Section .

The domain for our problems expands the single rover
problem described in earlier sections to a team of rovers
that must resolve conflicts over shared resources. Paths be-
tween waypoints are assigned random capacities such that

4Or, in stochastic planners like ASPEN, the children are chosen
with probability decreasing with their respective number of con-
flicts.

either one, two, or three rovers can traverse a path simulta-
neously; only one rover can be at any waypoint; and rovers
may not traverse paths in opposite directions. In addition,
rovers must communicate with the lander for telemetry us-
ing a shared channel of fixed bandwidth. Depending on the
terrain, the required bandwidth varies. 80 problems were
generated for two to five rovers, three to six observation lo-
cations per rover, and 9 to 105 waypoints. Schedules ranged
from 180 to 1300 tasks. Note that we use a prototype inter-
face for summary information, and some of ASPEN’s opti-
mized scheduling techniques could not be used.

We compare ASPEN using aggregation with and without
summarization for three variations of the domain. The use of
summary information includes the EMTF and FTF decom-
position heuristics. One domain excludes the communica-
tions channel resource (no channel); one excludes the path
capacity restrictions (channel only); and the other includes
all mentioned resources mixed). Since all of the movement
tasks reserve the channel resource, we expect greater im-
provement in performance when using summary informa-
tion according to the complexity analyses in the previous
section. Tasks within a rover’s hierarchy rarely place con-
straints on other variables more than once, so the no channel
domain corresponds to the case where summarization col-
lapses no constraints.

Figure 4 (top) exhibits two distributions of problems for
the no channel domain. In most of the cases (points along
the y-axis), ASPEN with summary information finds a solu-
tion quickly at some level of abstraction. However, in many
cases, summary information performs notably worse (points
along the x-axis). We find that for these problems finding
a solution requires the planner to dig deep into the rovers’
hierarchies, and once it decomposes the hierarchies to these
levels, the difference in the additional time to find a solu-
tion between the two approaches is negligible Thus, the time
spent reasoning about summary information at higher levels
incurred unnecessary overhead. Previous work shows that
this overhead is rarely significant in backtracking planners
because summary information can prune inconsistent search
spaces at abstract levels (Clement and Durfee 2000). How-
ever, in non-backtracking planners like ASPEN, the only op-
portunity we found to prune the search space at abstract lev-
els was using the FTF heuristic to avoid greater numbers of
conflicts in particular branches. Later, we will explain why
FTF is not helpful for this domain but very effective in a
modified domain.

Figure 4 (left) shows significant improvement for sum-
mary information in the mixed domain compared to the no
channel domain. Adding the channel resource rarely af-
fected the use of summary information because the col-
lapse in summary constraints incurred insignificant addi-
tional complexity. However, the channel resource made the
scheduling task noticeably more difficult for ASPEN when
not using summary information. In the channel only do-
main (Figure 4 right), summary information finds solutions
at the abstract level almost immediately, but the problems
are still complicated when ASPEN does not use summary
information. These results support the complexity analysis
in the previous section that argues that summary information

40



0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000
Summary Information + Aggregation CPU Seconds

A
gg

re
ga

tio
n 

C
PU

 s
ec

on
ds

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000
Summary Information + Aggregation CPU seconds

A
gg

re
ga

tio
n 

C
PU

 s
ec

on
ds

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000
Summary Information + Aggregation CPU seconds

A
gg

re
ga

tio
n 

C
PU

 s
ec

on
ds

Figure 4: Plots for the no channel, mixed, and channel only domains

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Average Depth of Hierarchies in Solution

Su
m

m
ar

y 
In

fo
rm

at
io

n 
+ 

A
gg

re
ga

tio
n 

C
PU

 s
ec

on
ds

Figure 5: CPU time for solutions found at varying depths.

exponentially improves performance when tasks within the
same hierarchy make constraints over the same resource and
solutions are found at some level of abstraction.

Figure 5 shows the CPU time required for ASPEN using
summary information for the mixed domain for the depths
at which the solutions are found. The depths are aver-
age depths of leaf tasks in partially expanded hierarchies.
The CPU time increases dramatically for solutions found at
greater depths, supporting our claim that finding a solution
at more abstract levels is exponentially easier.

For the described domain, choosing different paths to an
observation location rarely makes a significant difference in
the number of conflicts encountered because if the rovers
cross paths, all path choices will likely lead to conflict. We
created a new set of problems where obstacles force the
rovers to take paths through corridors that have no connec-
tion to others paths. For these problems, path choices always
lead down a different corridor to get to the target location, so
there is usually a path that avoids a conflict and a path that
causes one. The planner using the FTF heuristic dominates
the planner choosing decompositions randomly for all but
two problems (Figure 6 left).

Figure 6 (right) shows the performance of EMTF vs. level
decomposition for different rates of decomposition for three
problems selected from the set. The plotted points are av-
erages over ten runs for each problem. Depending on the
choice of rate of decomposition (the probability that a task
will decompose when a conflict is encountered), perfor-
mance varies significantly. However, the best decomposition
rate can vary from problem to problem making it potentially
difficult for the domain expert to choose. Our future work

will include investigating the relation of decomposition rates
to performance based on problem structure.5

Conclusions
Reasoning about summary information exponentially accel-
erates scheduling when constraints collapse during sum-
marization, and solutions at some level of abstraction can
be found. Similar speedups occur when decomposition
branches result in varied numbers of conflicts. The offline
algorithm for summarizing metric resource usage makes
these performance gains available for a larger set of expres-
sive planners and schedulers. We have shown how these per-
formance advantages can improve ASPEN’s effectiveness
when scheduling the tasks of multiple rovers. The use of
summary information also enables a planner to preserve de-
composition choices that robust execution systems can use
to handle some degree of uncertainty and failure. Our fu-
ture work includes evaluating the tradeoffs of optimizing
plan quality using this approach and developing protocols
to allow multiple planners to coordinate their tasks asyn-
chronously during execution.

References
Chien, S.; Rabideu, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett,
T.; Stebbins, G.; and Tran, D. 2000. Automating space mis-
sion operations using automated planning and scheduling.
In Proc. SpaceOps.
Clement, B., and Durfee, E. 1999. Theory for coordinating
concurrent hierarchical planning agents. In Proceedings of
American Association for Artificial Intelligence, 495–502.
Clement, B., and Durfee, E. 2000. Performance of coor-
dinating concurrent hierarchical planning agents using sum-
mary information. In Proceedings of the Workshop on Ar-
chitectures, Theories, and Languages, 202–216.
Erol, K.; Hendler, J.; and Nau, D. 1994. Semantics for
hierarchical task-network planning. Technical Report CS-
TR-3239, University of Maryland.
Firby, J. 1989. Adaptive Execution in Complex Dynamic
Domains. Ph.D. Dissertation, Yale Univ.
Georgeff, M. P., and Lansky, A. 1986. Procedural knowl-
edge. Proceedings of IEEE 74(10):1383–1398.

5For other experiments, we used a decomposition rate of 20%.

41



0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + FTF CPU Seconds

Su
m

m
ar

y 
In

fo
rm

at
io

n 
C

PU
 S

ec
on

ds

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35
EMTF Decomposition Rate

CP
U 

se
co

nd
s

A
A level-decomp
B
B level decomp
C
C level decomp

Figure 6: Performance using FTF and EMTF vs. level-decomposition heuristics.

Huber, M. 1999. Jam: a bdi-theoretic mobile agent architec-
ture. In Proceedings Internation Conference on Autonomous
Agents, 236–243.
Knight, R.; Rabideau, G.; and Chien, S. 2000. Computing
valid intervals for collections of activities with shared states
and resources. In Proceedings Artificial Intelligence Plan-
ning and Scheduling, 600–610.
Knoblock, C. 1991. Search reduction in hierarchical prob-
lem solving. In Proceedings of American Association for
Artificial Intelligence, 686–691.
Korf, R. 1987. Planning as search: A quantitative approach.
Artificial Intelligence 33:65–88.
Lee, J.; Huber, M. J.; Durfee, E. H.; and Kenny, P. G. 1994.
Umprs: An implementation of the procedural reasoning sys-
tem for multirobot applications. In Proc. AIAA/NASA Conf.
on Intelligent Robotics in Field, Factory, Service, and Space,
842–849.
Papadimitriou, and Steiglitz. 1998. Combinatorial Opti-
mization - Algorithms and Complexity. Dover Publications
New York.

42




