
Using Reactive Rules to Guide a Forward-Chaining Planner

Murray Shanahan

Department of Electrical and Electronic Engineering
Imperial College

Exhibition Road, London SW7 2BT, England
m.shanahan@ic.ac.uk

Abstract

This paper presents a planning technique in which a
flawed set of reactive rules is used to guide a stochas-
tic forward-chaining search. A planner based on this
technique is shown to perform well on Blocks World
problems. But the attraction of the technique is not only
its high performance as a straight planner, but also its
anytime capability. Using a more dynamic domain, the
performance of a resource-bounded version of the plan-
ner is shown to degrade gracefully as computational re-
sources are reduced.

Introduction

As Bacchus and Kabanza have demonstrated, the use of
domain-specific rules to guide a forward-chaining plan-
ner is a promising line of research (Bacchus & Kabanza
2000). Using only a handful of temporal logic formulae as
heuristics, their TLPlan system outperforms many state-of-
the-art domain-independent planners on hard Blocks World
problems. In a similar vein, the present paper describes
a forward-chaining planner whose search is controlled by
domain-specific rules. But where TLPlan uses formulae of
temporal logic to guide the search, the present planner uses
a set of reactive rules.

Although the resulting planner is reasonably fast, the
aim of the present work isn’t the construction of a high-
performance planner. Rather, the chief aim is to supply a sys-
tem that seamlessly integrates reactive behaviour and plan-
ning at the same level. This is achieved because the reac-
tive rules enable the planner to behave as an anytime algo-
rithm (Dean & Boddy 1988; Zilberstein & Russell 1993).
The planner can always supply a partial solution, including
an action to execute right away, no matter how far into its
computation it has gone. But the solutions it finds increase
in quality with the time available to search for them.

Given sufficient time to respond, the planner generates a
complete plan from initial state to goal. In this case, the re-
active rules serve to speed up the search. Given insufficient
time to find a complete plan, the system responds with a par-
tial plan constructed (mostly) out of actions recommended
by the reactive rules, but with the benefit of look-ahead to

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

favour those that are least dangerous and most promising.
Given very little time to respond, the system doesn’t even
have the luxury of look-ahead, and all it can offer is a partial
plan comprising a single action recommended by the reac-
tive rules. In other words, it starts to behave as the reactive
rules would on their own.

Although some pioneers of the use of reactive rules re-
jected deliberative planning altogether (Brooks 1986; Agre
& Chapman 1987), in the late Eighties and early Nineties, a
variety of ways of reconciling planning with reactivity were
studied. Prominent examples include the work of Schoppers
(1987), Drummond (1989), and Mitchell (1990). In robotics,
hybrid architectures combining a low-level reactive layer
with a high-level deliberative layer, such as that described
by Gat (1992), have become commonplace, and are now to
be found in the remotest corners of the Solar System (Pell et

al. 1997). However, none of this work looks at the possibility
of using reactive rules to guide a forward-chaining planner,
possibly because the idea only starts to look plausible in the
light of Bacchus and Kabanza’s more recent work.

Useful but Imperfect Reactive Rules

Consider the following pair of goal-directed reactive rules
for solving Blocks World problems. As we’ll see, these rules
are useful but imperfect.

RULE BW1

Move X onto Y if X is on Y in the goal and everything

under Y is correct with respect to the goal

RULE BW2

Move X from Y to Z if anything under Y is incorrect with

respect to the goal and everything under Z is correct with

respect to the goal.

Let’s investigate the performance of these rules on some
examples, beginning with the trivial Blocks World problem
depicted in Figure 1. Starting in the initial state, the succes-
sive application of Rules BW1 and BW2 yields the follow-
ing sequence of actions leading to the goal: move A to the
table, move B to the table, move C to B, move A to C.

In this case, the rules generate a unique sequence of ac-
tions. But in general, such rules are non-deterministic. For
example, in the initial state of the Blocks World problem in
Figure 2, the rules recommend three possible actions – move
E to the table, move C to the table, and move I to the table.

189

Proceedings of the Sixth European Conference on Planning



Figure 1: Blocks World Problem bw-small.

Figure 2: Blocks World Problem bw-large-b.

Rules BW1 and BW2, though simple, are effective with
many Blocks World problems. Rule BW1 alone can generate
an optimal 6-step solution to the problem of Figure 2 using
negligible CPU time. However, these two rules aren’t guar-
anteed to find a solution to any Blocks World problem. Prob-
lem bw-large-b+ is identical to bw-large-b except that blocks
E and A are swapped in the final state. Given this prob-
lem, one possible sequence of applications of Rules BW1
and BW2 leads to the state shown in Figure 3. In this state
neither Rule BW1 nor Rule BW2 is applicable.

Figure 3: A Stalled State.

Not only can the rules lead to stalled states. They can
also recommend actions that are positively harmful. Take the
problem in Figure 4, for example. In the initial state, one of
the actions recommended by the reactive rules is to move
A onto C, where it will prevent B from getting to its final
destination.

In general, the fact that a set of reactive rules has been
effective on a large class of problems is no guarantee that it
will solve the next problem that comes along. If the rules are
hand-coded or pre-computed off-line, their correctness and
completeness can be proved. But if the rules are learned on
the fly, by a reinforcement learning algorithm, for example,
there’s no guarantee of completeness, and no possibility of
off-line validation.

It’s easy to see that, in this case, an additional rule would
solve the stalled state problem. The new rule would cater for
the case when X needs to be moved off Y, even though the
blocks below Y are correctly placed. But this is beside the
point. The pertinent observation here is that an imperfect set
of rules, of the sort that a learning algorithm might generate,
can still be useful.

Figure 4: Rule BW2 Goes Wrong.

The system proposed here is designed to exploit the avail-
ability of useful but imperfect sets of reactive rules. As long
as the rules are effective some of the time, they can be used
to efficiently guide the search of a forward-chaining planner.
The reactive rules serve a similar function to the temporal
logic formulae in TLPlan. But unlike TLPlan’s heuristic for-
mulae, the reactive rules can be used in stand-alone mode
when a fast response is needed. Moreover, although the ex-
amples of reactive rules used in this paper are all indexed on
a goal, the system can also function with goal-less reactive
rules (of the kind that are prevalent in biologically-inspired
approaches to robotics). In the absence of an explicit goal,
it isn’t an advisable strategy for an intelligent agent to cease
activity altogether, which is why goal-less reactive rules that
encourage exploration and play are useful. Furthermore, at
times when there is no explicit goal, an agent still has to react
to ongoing events. In either case, it’s advantageous for the
agent to look ahead before executing an action. In contrast
to conventional approaches to planning and plan execution,
the present system can accommodate this requirement.

Linear Iterative Lengthening

Given unbounded time to act, the system under discussion is
guaranteed to produce a plan if one exists. Given very little
time to act, the system can still suggest the next action to be
executed using the reactive rules alone. In between these two
extremes, the reactive rules and the search-based planner op-
erate together, producing a high-quality partial plan with an
immediately executable action. Moreover, as we’ll see, in
this intermediate region, the system can discover plans that
the reactive rules would miss altogether and that a conven-
tional search-based planner would fail to find within an ac-
ceptable time.

The basic idea of using reactive rules to guide a forward-
chaining planner can be implemented in a variety of ways.
During the work carried out for this paper, several different
approaches were tried, on a variety of Blocks World prob-
lems, using Rules BW1 and BW2 from previous Section as
the reactive guide. Only the most promising technique is de-
scribed here. This also happens to be the simplest of the im-
plementations.

The most successful planner uses an algorithm we’ll call
linear iterative lengthening. In the following pseudo-code,
the algorithm is invoked by a call to ILPlan(G,S,P), where
G is the goal state, S is the initial state, and P is the returned
plan. A state is a set of fluents, to which the closed world

190



assumption is applicable. The variable L is the length bound.

1 Procedure ILPlan(G,S,P)
2 L := 1
3 FPlan(G,S,L,P)
4 While plan not found
5 L := L + 1
6 FPlan(G,S,L,P)

The FPlan procedure tries to construct a plan, and exits if
it finds one or if the plan it’s working on exceeds the current
length bound. In this case, the length bound is incremented,
and the planner goes round the loop again, starting with an
empty plan.

7 Procedure FPlan(G,S,L,P)
8 P := []
9 While Length(P) < L and S 6= G
10 Let RL be the set of actions recommended
11 by the reactive rules for state S
12 Let EL be the set of remaining actions
13 executable in S
14 If RL is empty
15 Then randomly select A from EL
16 Else randomly select A from either
17 EL or RL with a bias towards RL
18 P := [A|P]
19 S := result of executing A in S

The FPlan procedure uses forward chaining to construct
a single candidate plan in progression order. Successive ac-
tions are randomly selected, but with a heavy bias towards
those recommended by the reactive rules.

While this planner is sound, it obviously isn’t complete.
No attempt is made to systematically explore the search tree.
It is, however, complete in a stochastic sense: as the execu-
tion time tends to infinity, the probability of finding a so-
lution, if one exists, tends to one. (In the reported experi-
ments, though, the bias towards recommended actions was
made 100%, sacrificing completeness even in this stochastic
sense.) In practise, theoretical completeness is a less inter-
esting property than how likely it is that the planner will
actually find a solution in an acceptable timeframe. On this
score, how good can an algorithm be that burrows apparently
blindly down a single branch of the search tree at a time?

The answer is that everything depends on the quality of
the reactive rules guiding the planner. At one extreme, if
the reactive rules are very poor, the planner really is work-
ing blindly and its performance is appalling. At the other
extreme, if the reactive rules are extremely good, they can
solve any problem directly, and the planner is redundant.
The planner’s performance is most impressive in the inter-
mediate cases, where the reactive rules are effective on a
small class of problems, but are unable to solve all problems
by themselves. As we’ll see in the next section, the Blocks
World rules of previous section fall into this intermediate
category, and the planner’s performance is correspondingly
impressive.

But for the planner to be efficient, even in these interme-
diate cases, it has to be able to make effective guesses when

the reactive rules are inapplicable. The algorithm above sim-
ply makes a random choice. This works fine with the Blocks
World, because it’s just enough to jog the planner out of a
stalled state. But in other domains, it will be necessary to
employ a little more sophistication. One way to do this is to
introduce an evaluation function for scoring potential suc-
cessor states, and to use this to select the most promising
(and least dangerous) next action. This extension to the ba-
sic algorithm will be discussed in a later section.

Blocks World Experiments

As already stated, the thrust of this paper is not the design
of a stand-alone high-speed planner. The issue at hand is
architecture rather than performance. In designing a whole
agent, such as a robot, we need to integrate features such
as deliberative planning, reactive behaviour, and heuristics
in a single control system that also interleaves computation
and action. Accordingly, the experimental results presented
in this section should be taken solely as a “proof of concept”.

The result of applying the planner to a number of Blocks
World problems are presented, using the two reactive rules
discussed previously to guide the search. Problems bw-
small, bw-large-b, and bw-large-b+ were described in a pre-
vious section. Problems bw-large-c and bw-large-d were
taken from the BlackBox test suite (Kautz & Selman 1999).
Problem bw-large-c+ is a modification of bw-large-c. Each
problem was submitted to the planner 10 times, first using
only Rule BW1, and then using both Rules BW1 and BW2.
The results using only Rule BW1 are presented in Table 1.

The planner was implemented in LPA Prolog 32 on an
Apple iMac with a 233MHz G3 processor. Note that, in a
sense, the true metric here is not the time taken to find a
solution, but whether or not the planner can find an answer
at all within a reasonable timeframe. If a planner can deliver
an answer to a problem in a matter of seconds, then turning
this into milliseconds is simply a matter of optimisation and
computing power. On the other hand, when the system fails
to present an answer having been left to run overnight, we
suspect its practical limits have been reached.

Problem Av. Time Av. Length

bw-small 0.02s 4.0
bw-large-b 0.12s 6.0

bw-large-b+ 0.19s 7.0
bw-large-c 1.60s 14.9

bw-large-c+ 7.13s 32.9
bw-large-d 33.88s 18.5

Table 1: Using Rule BW1 Only

The planner consistently solves bw-large-b in around
one tenth of a second. The plan is always 6 steps long,
which is optimal. Recall that the reactive rules alone fail
to solve this problem altogether. Moreover, 9-block prob-
lems such as bw-large-b and bw-large-b+, though soluble
in seconds by the current generation of domain independent
planners, exemplified by BlackBox (Kautz & Selman 1999),

191



were large enough to overwhelm earlier planners, such as
UCPOP (Penberthy & Weld 1992).

The present planner consistently solves the 15-block
problem bw-large-c in less than 2 seconds. However, bw-
large-c is a relatively “easy” problem for its size. A solu-
tion can be found just by repeatedly following Rule BW1.
In other words, there’s always a block that can be moved to
its final destination, and the planner never has to dismantle a
tower just to get at a particular block.

Problem bw-large-c+ is designed to be more difficult. The
initial state is that of bw-large-c. But the goal state is the
same as the initial state with only the bottom two blocks of
each tower swapped over. This requires the planner to take
each tower apart, swap the bottom blocks, and then rebuild
it. The planner also performed satisfactorily on this problem,
consistently finding a solution in under 10 seconds.

Finally, the planner was run on a 19-block problem, bw-
large-d. Until recently, Blocks World problems of this size
were beyond the capability of domain-independent plan-
ners. On average, the present planner can solve bw-large-d
in around 30 seconds.

Table 2 presents the results of running the planner on the
same problems, but using both Rules BW1 and BW2. The
performance turns out to be worse than with Rule BW2 ab-
sent, with respect to both time and length. This is because of
Rule BW2’s tendency to recommend the occasional harm-
ful action. Since the recommendations of reactive rules are
given such weight, their mistakes are very costly.

Problem Av. Time Av. Length

bw-large-a 0.02s 4.0
bw-large-b 0.72s 8.5

bw-large-b+ 0.96s 9.5
bw-large-c 14.27s 20.0

bw-large-c+ 21.52s 24.0
bw-large-d 58.36s 28.4

Table 2: Using Rules BW1 and BW2.

The Kids World Domain

The results reported in the previous show that the planner
outperforms fast domain-independent planners in the Blocks
World, using only a single guiding reactive rule, one that
is incapable of solving Blocks World problems on its own.
This is an encouraging result. But it doesn’t show off one
of the most attractive features of a forward-chaining planner
guided by reactive rules, which is its anytime capability.

In this section, a new domain is introduced, called Kids
World, which is adjustably dynamic, in the sense that unex-
pected events can occur with a preset probability. (In other
respects, Kids World resembles the Logistics domain used
to assess planners in planning competitions.) Kids World
problems will be tackled with a resource-bounded version
of the planner previously presented, which is embedded in a
sense-plan-act cycle that executes plans and reacts to ongo-
ing events.

Two properties of this system are demonstrated using
Kids World problems. First, it’s demonstrated that the plan-
ner’s performance degrades gracefully as its resource bound
is decreased. Second, it’s shown that the system can solve
Kids World problems in real time, even with the frequent
occurrence of unexpected events.

The Kids World domain comprises the four fluents and
five actions summarised in Table 3 below. The action
Move(x) affects the location of both the parent and any child
they are carrying. The Open(d) and Close(d) actions have the
precondition that the parent isn’t carrying anything. To move
from one location to another, the connecting door has to be
open.

The particular Kids World problem used in the experi-
ments reported here involves two children, Kerry and Liam,
and three locations — the house, the street, and the car.
These locations are connected by doors in the obvious way.
In the initial state, the parent and both children are in the
house and the doors are all closed. In the final state, every-
one is in the car and both the children are happy. A crucial
additional twist to the problem is that Kerry becomes un-
happy if Liam is put in the car first.

Fluent/Action Meaning

Location(x) Parent is in location x
Location(c,x) Child c is in location x
Carrying(c) Parent is carrying child c
Happy(c) Child c is happy
IsOpen(d) Door d is open
Move(x) Go to location x

PickUp(c) Pick child c up
PutDown(c) Put child c down

Open(d) Open door d
Close(d) Close door d

Table 3: Kids World Fluents and Actions.

Planning in Kids World would be much easier if children
stayed where they were put. Then, planning could be studied
without having to consider plan execution. But to make Kids
World problems realistic, after every action the parent per-
forms, there’s a certain probability that one or other of the
children will run off somewhere completely unexpected. In
Experiments kw-1 and kw-2 described in the next section,
this probability is set to zero, but in Experiment kw-3, it is
set to 0.1.

A set of seven reactive rules were used in the experi-
ments reported here. Two examples follow. Note their non-
determinism. Suppose the parent is in the car carrying Liam,
while Kerry is still in the street. Then Rule KW1 recom-
mends putting the Liam down, while Rule KW2 recom-
mends going back for Kerry.

RULE KW1

If you’re carrying a child and you’re in the location the

child has to end up, then put the child down

RULE KW2

If there’s a child in another room who needs to be moved,

then move towards that room

192



As with the Blocks World example, these seven reactive
rules are deliberately imperfect. On their own, they can solve
some Kids World problems. But they cannot solve the prob-
lem described above on their own, as they quickly lead to a
stalled state. Even with the injection of the occasional ran-
dom action to jog the system out of a stalled state, the rules
still frequently make the fatal mistake of putting Liam in the
car first. However, the rules can be used to effectively guide
a forward chaining planner.

Planning with Bounded Computation

This section describes the resource-bounded version of the
planner. With a low resource bound, the system amounts to
the use of reactive rules with look-ahead. But with higher
values, the system doesn’t commit to an action early by exe-
cuting it as reactive rules do, even with look-ahead. Instead,
it carries out search — backtracking “in the head” rather
than in the world.

The linear iterative lengthening algorithm in a previous
section can easily be made resource-bounded by incorporat-
ing a count of the number of times the body of the while loop
in the FPlan procedure is executed. The ILPlanR procedure
below maintains a resource bound V. The planning process
is terminated if V exceeds a predefined bound F.

1 Procedure ILPlanR(G,S,P)
2 L := 1; V := 0
3 FPlanR(G,S,L,P,V)
4 While plan not found and V < �
5 L := L + 1
6 FPlanR(G,S,L,P,V)

If V exceeds F, the system returns the best partial plan it
has found so far. The best partial plan so far is maintained as
B in the FPlanR procedure below, and is determined using an
evaluation function, Score, on partial plan (see (Korf 1990)).

7 Procedure FPlanR(G,S,L,P,V)
8 P := []; B := []
9 While Length(P) < L and S 6= G and V < �
10 Let RL be the set of actions recommended
11 by the reactive rules for state S
12 Let EL be the set of remaining actions
13 executable in S
14 If RL is empty
15 Then randomly select A from EL
16 Else randomly select A from RL
17 P := [A|P]
18 S := result of executing A in S
19 If Score(P)  Score(B) Then B := P
20 V := V + 1
21 If V � � Then P := B

When this planner is embedded in a sense-plan-act cycle,
it exhibits anytime properties even without a carefully de-
signed evaluation function. Table 4 shows the results of Ex-
periment kw-1, a Kids World experiment in which Score(P)
= 0 for all P. In other words, the planner simply returns
the partial plan it’s currently working on when the resource
bound is exceeded.

In Experiment kw-1, the planner has to plan and carry out
a sequence of actions that solves the Kids World problem
described above. The probability of an unexpected event af-
ter a parental action is set to zero. In other words, the kids
stay put. After each action the system executes, it replans

from scratch. This is perfectly feasible, as the planner solves
Kids World planning problems very quickly.

Resource Bound Av. Actions Aborts

1000 17.4 0
500 17.0 1
200 17.9 5
100 22.5 10
50 23.0 16
10 24.9 15
2 – 30

Table 4: Results of Experiment kw-1.

The system was run 30 times for each value of the re-
source bound. A run was aborted after 50 actions, as this in-
dicates that the planner has made Kerry irreversibly unhappy
by putting Liam in the car first. The number of actions exe-
cuted was averaged over all the successful runs. As Table 4
shows, the performance of the system degrades gracefully as
the resource bound is reduced, both in terms of the number
of aborted runs and the length of the successful runs.

When the resource bound is 1000, the planner can always
find a solution, so there are no aborted runs. When the re-
source bound is 2, the system is behaving almost as if it
were using the reactive rules on their own, and all runs are
aborted. For intermediate values of the resource bound, we
get intermediate levels of success. When the resource bound
falls below 200, we start to see an increase in the length of
the successful runs as well as a continuing increase in the
number of aborted runs.

To see why this graceful degradation occurs, in spite of
the fact that the planner doesn’t evaluate intermediate, par-
tial plans, consider how the system behaves as it gets closer
to the goal. When the goal is too far away, the planner’s re-
source bound will be exceeded before it finds a plan, and the
first action in the partial plan it returns will be one the re-
active rules would have chosen on their own. But the closer
the goal gets, the more likely it becomes that the planner will
find a complete plan before the resource bound is exceeded.
The higher the resource bound, the more rapidly this likeli-
hood increases.

Although the planner exhibits anytime properties even
when the evaluation function returns a constant, the degrada-
tion in the planner’s performance can be made more graceful
still if a less trivial evaluation function is used. Without such
an evaluation function, the partial plans returned when the
planner fails to find a complete plan are of uniform quality
whatever the resource bound. With a proper evaluation func-
tion, a high resource bound means the planner is more likely
to find a complete plan, just as before. But it will also pro-
duce better quality partial plans when it can’t find a complete
plan.

193



In Experiment kw-2, a very simple evaluation function
was used to demonstrate this. This function simply gives a
score of –1 to any partial plan that leaves a child unhappy,
and a score of 0 to all other partial plans. The rest of the de-
tails of Expriment kw-2 are as for kw-1. The results of this
experiment are presented in Table 5, for low values of the
resource bound.

Resource Bound Av. Actions Aborts

100 20.9 6
50 23.1 11
10 29.0 13
2 32.4 13

Table 5: Results of Experiment kw-2.

Table 5 shows a clear improvement in performance over
that obtained with the constant evaluation function, in terms
of aborted runs. Even when the resource bound is 2, the plan-
ner is still able to find solutions. The increase in average run
length at resource bound 10 is misleading, because it’s due
simply to the presence of a number of long runs that would
have led to abortion with the constant evaluation function.
When the resource bound dips below about 50, the number
of aborted runs levels off at around 12, although the num-
ber of actions per run continues to increase as the resource
bound goes down. With such a low resource bound, the plan-
ner will rarely find a complete plan, so this gradual degra-
dation can only be put down to a correspondingly gradual
reduction in the quality of its partial plans, which is what we
were aiming for.

In Experiments kw-1 and kw-2, there were no surprise in-
terventions by the children themselves. But in Experiment
kw-3, the dynamic potential of the domain is explored, and
the probability of a child unexpectedly moving somewhere
by itself is increased from zero to 0.1. Sometimes these un-
expected events make the planner’s job easier, but most of
the time, they make it harder.

Table 6 presents the results of Experiment kw-3. The set-
up is essentially the same as in Experiment kw-2, except
that the system is given up to 100 actions before a run is
aborted. As before, 30 runs were carried out for each value
of the resource bound. In addition to the number of actions
averaged over the successful runs, the mean response time
per action is given, to indicate that planning is taking place
in a realistic timeframe for robotic applications.

The results of Experiment kw-3 show that the system is
consistently able to solve the problem in spite of interference
in plan execution. As before, we see a steady deterioration in
performance as the resource bound is decreased. The similar
response times for resource bounds of 1000 and 500 suggest
that the planner doesn’t generally require as many as 1000
resource units to find a plan, and this is confirmed by the
total absence of aborted runs even with a resource bound of
200.

Resource Mean Response

Bound Av. Actions Aborts Time

1000 25.8 0 599ms
500 26.5 0 627ms
200 28.1 0 521ms
100 40.9 1 347ms
50 46.6 7 199ms
10 51.6 12 44ms
2 55.1 10 11ms

Table 6: Results of Experiment kw-3.

Concluding Remarks

How does the system described here differ from Bacchus
and Kabanza’s TLPlan, from which it takes its inspiration?
First, TLPlan’s temporal logic formulae have to be cor-
rect for all plans in order to preserve the completeness of
the planner. Reactive rules, on the other hand, only supply
recommendations. They can be completely wrong without
threatening the planner’s (stochastic) completeness. Second,
TLPlan’s heuristic formulae don’t have a standalone role,
and can’t form the basis of a planner with anytime capabil-
ity, like the one presented here.

The forward chaining approach to planning has many ben-
efits that haven’t been explored in this paper. For exam-
ple, it’s much easier to implement safety and maintenance
goals in a forward-chaining mechanism than in a backward-
chaining one. Similarly, it’s easier to extend the planner to
accept a rich input language, permitting concurrent actions,
actions with indirect effects, and so on. These topics are the
subject of ongoing work.

The forward-chaining approach to planning is further vin-
dicated in the recent work of Hoffmann and Nebel (2001),
whose forward-chaining FF planner outperforms other state-
of-the-art domain-independent planners without relying on
pre-defined domain-specific rules. Instead, the FF planner
automatically extracts heuristics from the domain descrip-
tion to guide the forward search. A promising line of re-
search would be to see how such automatically generated
heuristics could be used in combination with reactive rules
in a system of the sort described here.

Acknowledgments

This work was funded by EPSRC project GR/N13104,
“Cognitive Robotics II”. Thanks to Paulo Santos.

References

Agre, P., and Chapman, D. 1987. Pengi: An Implementation
of a Theory of Activity. In Proceedings AAAI 87, pp. 268–
272.
Bacchus, F. and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Planning. Artifi-

cial Intelligence, vol 116, pp. 123–191.
Brooks, R. 1986. A Robust Layered Control System for a
Mobile Robot. IEEE Journal of Robotics and Automation,
Vol.2, pp. 14–23.

194



Dean, T. and Boddy, M. 1988. An Analysis of Time-
Dependent Planning. In Proceedings AAAI 88, pp. 49–54.
Drummond, M. 1989. Situated Control Rules. In Proceed-

ings KR 89, pp. 103–113.
Gat, E. 1992. Integrating Planning and Reacting in a Het-
erogenous Asynchronous Architecture for Controlling Real-
World Mobile Robots. In Proceedings AAAI 92, pp. 809–
815.
Hoffmann, J. and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of

Artificial Intelligence Research, 14:253–302.
Kautz, H. and Selman, B. Unifying SAT-Based and Graph-
Based Planning. In Proceedings IJCAI 99, pp. 318–325.
Korf, R. 1990. Real-Time Heuristic Search. Artificial Intel-

ligence, Vol. 42, pp. 189–211.
Mitchell, T. M. 1990. Becoming Increasingly Reactive. In
Proceedings AAAI 90, pp. 1051–1058.
Pell, B.; Gat, E.; Keesing, R.; Muscettola, N. and Smith,
B. 1997. Robust Periodic Planning and Execution for Au-
tonomous Spacecraft. In Proceedings IJCAI 97, pp. 1234–
1239.
Penberthy, J. S. and Weld, D.S. 1992. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In Proceedings

KR 92, pp. 103–114.
Schoppers, M.J. 1987. Universal Plans for Reactive Robots
in Unpredictable Environments. In Proceedings IJCAI 87,
pp. 1039-1046.
Zilberstein, S. and Russell, S. J. 1993. Anytime Sensing,
Planning and Action: A Practical Model for Robot Control.
In Proceedings IJCAI 93, pp. 1402–1407.

195




