
Beyond Plan Length: Heuristic Search Planning for Maximum Reward Problems

Jason Farquhar∗ and Chris Harris
Image Speech and Intelligent Systems

Department of Electronics and Computer Science
University of Southampton, UK

Abstract

Automatic extraction of heuristic estimates has been ex-
tremely fruitful in classical planning domains. We present a
simple extension to the heuristic extraction process from the
well-known HSP and FF systems which allow us to apply
them to reward maximisation problems. These extensions in-
volve computing an estimate of the maximal reward obtain-
able from a given state when ignoring delete lists, which are
then used to guide the backward search in the FF system. The
heuristics are evaluated in a simple robotic delivery task and
shown to be effective in reducing the number of nodes evalu-
ated. In this way we seek to apply recent advances in classical
planning to a broader range of problems.

Keywords: Domain Independent Planning, Reward Based
Planning, Heuristic Search Planners.

Introduction
In this paper we investigate reward maximisation as an alter-
native to plan length for the optimisation criteria in STRIPS
style problems. In reward maximisation problems we at-
tempt to maximise the total reward obtained from the states
visited and actions taken during plan execution, where the
reward is an arbitrary real-valued function over states and
actions. In particular we focus on reward problems where
the planners objectives are specified through the rewards al-
located to different world states rather than as an explicit
goal which must be achieved.

Inspired by the success of heuristic search in efficiently
solving goal-based STRIPS problems (Bac00) we suggest
that similar methods may be used in reward maximisation
problems. To investigate this idea we present a modification
of the heuristics used in HSP (BG99) and FF (HN01) which
are applicable in the reward maximisation case.

This paper is organised as follows. Section presents a
mathematical model of STRIPS problems and its reward
based extensions. Section gives the derivation of our new
heuristics and an outline of the algorithms used to calculate
them. The final sections include experimental results discus-
sion for possible further work and present out conclusions.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Reward Based Planning
Following (BG99) we represent a conventional
STRIPS (FN71) domain as a tuple D = 〈A,O〉, where A
is a set of atoms and O is a set of operators. The operators
o ∈ O and atoms a ∈ A are all assumed ground (all
variables replaced by constants). Each operator, o, has
precondition, add and delete lists which we denote as
Pre(o), Add(o) and Del(o) respectively, given by sets of
atoms from A. This can be seen as representing a state space
where:

1. states s ∈ S are finite sets of atoms from A, i.e. s ⊂ A.

2. the state transition function f(s, o) maps from states and
actions to states such that:

s′=f(s, o)=

{
s ∪ Add(o)\Del(o) if Pre(o) ⊆ s
undefined otherwise.

(1)

3. the result of applying a sequence of operators is defined
recursively as

sn=f(s0, 〈o1, .., on〉)=f(f(s0, 〈o1, ..., on−1〉), on)
(2)

In reward based planning the domain description is aug-
mented to give P = 〈A,O, s0, R〉 where s0 ∈ S repre-
sents the initial situation and R is the reward function which
maps from situations to real valued rewards. R consists of
two components, a state based component, R : s 7→ R, and
an operator based component, R : op 7→ R. The solution to
a reward based planning problem is a sequence of operators
P = 〈op1, ..., opn〉 that maximises the total reward received
from the states visited and operators applied during plan ex-
ecution.

One particular problem with reward based planning not
found in goal based planning is the possibility of cyclic so-
lutions with infinite reward. Such infinities are difficult to
work with so it is usual to modify the optimisation crite-
ria to remove them; for example, by discounting future re-
wards (Put94), optimising with respect to reward rate, or op-
timising with respect to a finite planning horizon. For sim-
plicity a finite horizon is used in this work.

248

Proceedings of the Sixth European Conference on Planning

Heuristics for Reward Based Planning
Problems

Heuristic search planners use a heuristic function h(s) to
guide solution search in state space. To develop an effec-
tive heuristic we use the same trick that proved so effective
in STRIPS planning (BG99; HN01), i.e. we solve a relaxed
problem ignoring operator delete lists and use this solution
as a heuristic estimate in the original problem. Unfortunately
solving even the relaxed problem can be shown to be NP-
hard (BG99) so an approximation must be used.

The hmax heuristic
In STRIPS problems one of the most successful approxima-
tions is that used in the HSP system developed by Bonnet
and Gruffer (BG99). This decomposes the problem of find-
ing the shortest path to the goal state into one of finding the
shortest path to each individual atom from which an esti-
mate of the goal distance is reconstructed. This decompo-
sition and reconstruction is performed because the number
of atoms, |A| is generally much smaller than the number of
states, i.e. subsets of atoms, |S|, (which is exponential in the
number of atoms, |S| ≤ |2|A||). Hence performing computa-
tions in atom space can be significantly cheaper in time and
space than the equivalent computations in state space.

For reward based problems we propose to use a modified
version of the same approximation technique of decompos-
ing and reconstructing state values from atom values. We
begin by defining the value, V (s, t), of state s as the maxi-
mal reward obtainable in getting from the initial state s0 to
this state in t steps. This value could be calculated directly
in state space using the forward Bellman Equation:

V (s, t) = R(s) + max
o∈O

[
R(o) + V (f−1(s, o), t-1)

]
, (3)

where V (s, t) is the value of the state s at time step t, R(s)
and R(o) are the rewards for being in state s and performing
operation o respectively, f−1(s, o) is the inverse state transi-
tion operator which returns the state s′ from which applica-
tion of operator o results in the new state s, and V (I, 0) = 0.

The problem defined by (3) is equivalent to finding a max-
imal weight path through a weighted directed graph. The
nodes represent states, edges the operators, and the edge and
node weights the operator and state rewards respectively. A
number of efficient algorithms which are polynomial in |S|
can be used to solve this problem. Unfortunately as men-
tioned above, |S| is generally exponential in the number of
atoms making even these algorithms intractable. Hence we
approximate (3) by re-formulating the problem to apply over
the space of atoms, giving;

V (p, t) = max
p∈Pre(r)

R(r, t) + max
p∈Eff(o)

[R(o)+V ({Pre(o)}, t-1)]

(4)
where V (Pre(o), t) is the reward for for being in atom set
{p : p ∈ Pre(o)} at time step t, and Pre(r) is the set of atoms
which define reward state r. R(r, t) is the reward obtained
from being in reward state r at time t and is equal to the
value of the reward state R(r) if all the atoms in r are valid
at time t and undefined otherwise.

Equation (4) defines the estimated value of an atom at
time step t as the sum of the immediate reward received due
to the current state, R(r, t), and the propagated total reward
of the maximum reward path to this atom from the initial
state. The base case of the recursion is given by the initial
state, s0, where V (p, 0) = 0 if p ∈ s0 and is undefined
otherwise.

The accuracy of the function, V ({B}, t), used to estimate
value of an atom set, B, from the values of its constituent
atoms, p ∈ B, is critical to the accuracy of the heuristic and
hence performance of the planner. In (BG99) Bonnet and
Geffner suggest using either the sum or maximum of the
atom values. The sum assumes atoms are totally indepen-
dent such that to achieve a set of atoms all its members must
be achieved independently. The maximum assumes atoms
are totally dependent such that any path which achieves one
atom will also achieve all other atoms which can be reached
with shorter paths.

In reward problems using the sum can give both pes-
simistic and optimistic estimates, when atom values are neg-
ative or positive respectively, leading to an uninformed esti-
mate. To avoid this problem, in this paper we assume atoms
are totally dependent, so the value of a set of atoms becomes
the value of the highest reward path which could achieve
the set, i.e. the last atom achieved initially and after that the
highest reward path longer than the sets initially valid length.
Hence, we obtain Equation (5).

V (B, t) =

 max
a∈B

l≤len(a)≤t

V (a, t)
if ∀a∈B, V (a, t)

is defined

undefined otherwise
(5)

where B is the set of atoms, len(a) is the number of opera-
tions required to obtain atom a’s value V (a, t) and l is the
number of operations required to first make B valid.

Solving the equations (4) and (5) also corresponds to find-
ing the maximum weight path in a graph, the connectivity
graph (HN01). In this graph atoms are nodes and opera-
tors/rewards are high order edges which only become avail-
able after a certain subset of the nodes (their preconditions)
are valid.

Computation of the atom values can be done in polyno-
mial time using a GraphPlan like forward propagation pro-
cedure based upon the Connectivity Graph. Briefly, the algo-
rithm proceeds in a time step by time step manner propagat-
ing tokens from atoms to operators and rewards. The opera-
tors/rewards are then identified as available for propagating
reward and atom validity to their effects when all their pre-
conditions are valid. The set of valid atoms is then used to
compute the updated value for all the atoms using equations
(4,5).

Using the value function computed in this way, the heuris-
tic value of the state s in the original problem is defined as
the maximal value of a valid atom in the final layer, tmax, of
the relaxed graph, Eqn (6).

hmax(s, tmax)
def
= max

p:V (p,tmax) is defined
V (p, tmax) (6)

249

Maximum Plan Length
20 35 40

Algorithm |N | t(s) Rew |N | t(s) Rew |N | t(s) Rew
Dynamic
Programming

2083 0.19 8 - >5min - - >5min -

A* - h(s) = 0 330 0.16 8 1935 0.3 20 16932 2.03 30
A* - hmax(s) 105 0.38 6 238 1.1 16 696 2.7 28
A* - hff(s) 96 0.27 7 168 0.8 20 289 1.3 30

Figure 1: Comparison of heuristic performance for different plan horizon lengths on a simple robot delivery task. (Timings
performed on a PIII 500MHz.)

The hff heuristic
In the hmax heuristic the value of all but the single best path
needed to achieve the atoms in an atom set are ignored,
due to the assumption of total atom dependence. Therefore,
the heuristic estimate could be improved if the reward from
paths ignored when this assumption does not hold could be
re-introduced.

In the FF (HN01) system this same problem is addressed
by performing a greedy backward search for actions to sup-
port all the atoms in a set. Exactly the same technique can be
used in reward problems except in this case the hmax heuris-
tic is used for search guidance and the search starts from the
maximum value atom at tmax. The result of this procedure
is a set of states, St, and actions, At, to be applied at each
time step, t, to achieve the goal. Given these sets the revised
heuristic value is given by;

hff(s, tmax)
def
=

∑
t=0,...,tmax

[∑
ai∈At

R(ai) +
∑
si∈St

R(si)

]
.

(7)

Experimental Results
The above heuristics have been implemented in C++ based
upon a modified GraphPlan style planner. To evaluate their
effectiveness they were used in an A* search procedure and
compared with dynamic programming and uninformed A*
on a simple reward based planning problem1 for different
plan horizon lengths. The results of these runs are given in
Fig 1.

Fig 1 clearly shows the benefit of forward search in avoid-
ing the worst execesses of exponential blowup in run-time
with plan horizon length associated with dynamic program-
ming - at the expense of possibly sub-optimal solutions. It is
also clear that the heuristics do result in a significantly more
informed A* search, reducing the number of nodes evaluated
by at least a factor of three. However this information comes
at significant computational cost with the heuristic computa-
tion reducing the node expansion rate by a factor of 20. This
means that for all but the largest problems, i.e. longest hori-
zon length, the net computational benefit of the heuristics is

1This problem was a simple delivery problem on an open 9x9
grid with 3 packages to deliver for rewards of 25,20 and 15 and 9
special locations which gave reward of 1 when entered. All actions
had reward of -1.

minimal. Also, as expected, the hff heuristic appears to be
more informed than the hmax heuristic.

Further Work
As the experiments pointed out the most pressing need in
this work is to reduce the computational cost of using the
heuristics. This could be achieved by either reducing the
computational cost of heuristic evaluation or extracting ad-
ditional search control information from the heuristic (as in
done in FF (HN01) to identify a set of helpful actions). An-
other avenue we intend to investigate is extending the heuris-
tics to a Decision Theoretic problems (Put94) by including
probabilistic actions and propagating utilities rather than re-
wards, as was done in (BL98) and (PC00) for the Graphplan
algorithm.

Conclusions
A method for extending the techniques of heuristic plan-
ning, as used in the well known HSP and FF systems, to the
more expressive language of reward based planning was pre-
sented. The development of two domain independent heuris-
tics for reward maximisation problems forms the crux of our
work. These heuristics are based upon computing an esti-
mate for the maximal reward obtainable in a relaxed prob-
lem where delete lists are ignored. The first heuristic, hmax,
was developed by modifying HSP’s max-atom heuristic to
cope with reward accumulation and goal less planning. The
second heuristic, hff, was developed to improve the first by
re-introducing some ignored problem aspects. Experimental
analysis demonstrates the informedness of the heuristics and
their high computational cost.

References
F. Bacchus. Results of the AIPS 2000 planning competition,
2000. URL: http://www.cs.tronto.edu/aips-2000.
Avrim L. Blum and Merrick L. Furst. Fast planning through
planning graph analysis. Artificial Intelligence, 90:281–300,
1997.
B. Bonet and H. Geffner. Planning as heuristic search: New
results. In Proceedings of ECP-99. Springer, 1999.
Avrim L. Blum and John C. Langford. Probabilistic plan-
ning in the graphplan framework. Technical report, Carnegie
Mellon University, School of Computer Science, CMU,
Pittsburgh, PA 15213-3891, 1998.

250

R. E. Fikes and N. J. Nilsson. Strips: a new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 2(3-4):189–203, 1971.
Jorg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR,
14:253–302, 2001.
G. Peterson and D. J. Cook. Decision-theoretic planning in
the graphplan framework. In Proc AAAI-2000, 2000.
M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, 1994.

251

