
Algorithms for Propagating Resource Constraints
in AI Planning and Scheduling:

Existing Approaches and New Results

Philippe Laborie
ILOG, 9, rue de Verdun, BP 85,
F-94253 Gentilly Cedex, France

Abstract

This paper summarizes the main existing approaches
to propagate resource constraints in Constraint-Based
scheduling and identifies some of their limitations for
using them in an integrated planning and scheduling
framework. We then describe two new algorithms to
propagate resource constraints on discrete resources and
reservoirs. Unlike most of the classical work in schedul-
ing, our algorithms focus on the precedence relations
between activities rather than on their absolute position
in time. They are efficient even when the set of activities
is not completely defined and when the time window of
activities is large. These features explain why our al-
gorithms are particularly suited for integrated planning
and scheduling approaches. All our algorithms are illus-
trated with examples. Encouraging preliminary results
are reported on pure scheduling problems.

Introduction
As underlined in (Smith, Frank, and Jonsson 2000), some
tools are still missing to solve problems that lie between pure
AI planning and pure scheduling. Until now, the scheduling
community has focused on the optimization of big schedul-
ing problems involving a well-defined set of activities and
resource constraints. In contrast, AI planning research - due
to the inherent complexity of plan synthesis - has focused
on the selection of activities leaving aside the issues of op-
timization and the handling of time and complex resources.
From the point of view of scheduling, mixed planning and
scheduling problems have two original characteristics. First,
as the set of activities is not completely known beforehand
it is better to avoid taking strong scheduling commitments
during the search (e.g. instantiating or strongly reducing the
time window of an activity). Secondly, most of the partial
plans handled by partial order planners (POP) or by hierar-
chical task network planners (HTN) make an extensive us-
age of precedence constraints between activities. And, sur-
prisingly, until now the conjunction of precedence and re-
source constraints has not been deeply investigated, even
in the scheduling field itself. Indeed, except for the special
case of unary resources (for example in job-shop schedul-
ing), disjunctive formulations of cumulative resource con-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

straints are relatively new techniques and until now, they
were mainly used for search control and heuristics (Cesta,
Oddi, and Smith 2000; Laborie and Ghallab 1995). This pa-
per proposes some new constraint propagation algorithms
that strongly exploit the conjunction of precedence and re-
source constraints and allow a natural implementation of
least-commitment planning and scheduling approaches. The
first section of the paper describes our scheduling model.
The second one summarizes the state-of-the-art scheduling
propagation techniques and explains why most of them are
not satisfactory for dealing with integrated planning and
scheduling. In the next section, we describe the basic struc-
ture - precedence graphs - on which our new proposed al-
gorithms rely. Then, we present two original techniques for
propagating resource constraints: the energy precedence al-
gorithm and the balance algorithm. Finally, the last section
of the paper describes how these propagation algorithms can
be embedded in a least-commitment search procedure and
gives some preliminary results on pure scheduling problems.

Model and Notations
Partial schedule. A partial schedule corresponds to the
current scheduling information available at a given node in
the search tree. In a mixed planning and scheduling problem,
it represents all the temporal and resource information of a
partial plan. A partial schedule is composed of activities, and
temporal constraints and resource constraints. These con-
cepts are detailed below.

Activities.

An activity A corresponds to a time interval
[start(A), end(A)) where start(A) and end(A) are
the decision variables denoting the start and end time
of the activity. Conventionally, startmin(A) denotes the
current earliest start time, startmax(A) the latest start
time, endmin(A) the earliest end time, and endmax(A) the
latest end time of activity A. The duration of activity A is
a variable dur(A) = end(A) − start(A). Depending on
the problem, the duration may be known in advance or may
be a decision variable. In a mixed planning and scheduling
problem, a planning operator is composed of one or several
activities.

143

Proceedings of the Sixth European Conference on Planning

Temporal constraints. A temporal constraint is a con-
straint of the form: min ≤ ti − tj ≤ max where ti and tj
are either some variable representing the start or end time of
an activity or a constant and min and max are two integer
constants. Note that simple precedence between activities as
well as release dates and due dates are special cases of tem-
poral constraints.

Resources. The most general case of resources we con-
sider in this paper is the reservoir resource. A reservoir re-
source is a multi-capacity resource that can be consumed or
produced by the activities in the schedule. A reservoir has
an integer maximal capacity and may have an initial level.
As an example of a reservoir, you can think of a fuel tank. A
discrete resource is a reservoir resource that cannot be pro-
duced. Discrete resources are also often called cumulative
or sharable resources in the scheduling literature. A discrete
resource has a known maximal capacity that may change
over time. A discrete resource allows for example to repre-
sent a pool of workers whose availability varies over time.
A unary resource is a discrete resource with unit capacity.
It imposes that all the activities requiring the same unary
resource are totally ordered. This is typically the case of a
machine that can only process one job at a time. Unary re-
sources are the simplest and the most studied resources in
scheduling as well as in AI planning.

Resource constraints. A resource constraint defines
how a given activityAwill require and affect the availability
of a given resourceR. It consists of a tuple< A,R, q, TE >
where q is an integer decision variable describing the quan-
tity of resource R consumed (if q < 0) or produced (if
q > 0) by activity A and TE is a time extent that describes
the time interval where the availability of resource R is af-
fected by the execution of activity A. For example:

• < A,R1,−1, F romStartToEnd > is a resource con-
straint that states that activity A will require 1 unit of re-
source R1 between its start time and its end time.

• < A,R2, q = [2, 3], AfterEnd > is a resource con-
straint that states that activity A will produce 2 or 3 units
of reservoirR2 at its end time. This will increase the avail-
ability of R2 after the end time of A.

• < A,R3,−4, AfterStart > is a resource constraint that
states that activity A will consume 4 units of resource R3

at its start time. This will decrease the availability of R3

after the start time of A.

Of course, the same activity A may participate into several
resource constraints. Note that the change of resource avail-
ability at the start or end time of an activity is considered to
be instantaneous: continuous changes are not handled.

Close Status of a Resource. At given node in the search,
a resource is said to be closed if no additional resource con-
straint on that resource will be added in the partial sched-
ule when continuing in the search tree. In stratified planning
and scheduling approaches where the planning phase is sep-
arated from the scheduling one, all the resources can be con-
sidered closed during scheduling as all the activities and re-
source constraints have been generated during the planning

phase. Note also that in approaches that interleave planning
and scheduling and implement a hierarchical search as in
(Garcia and Laborie 1996), resources belonging to already
processed abstraction levels can be considered closed.

Existing Approaches
From the point of view of Constraint Programming, a par-
tial schedule is a set of decision variables (start, end, dura-
tion of activities, required quantities of resource) and a set of
constraints between these variables (temporal and resource
constraints). A solution schedule is an instantiation of all
the decision variables so that all the constraints are satis-
fied. In Constraint Programming, the main technique used
to prune the search space is constraint propagation. It con-
sists in removing from the domain of possible values of a
decision variable the ones that will surely violate some con-
straint. More generally, constraint propagation allows us in
the current problem to find features shared by all the solu-
tions reachable from the current search node; these features
may imply some domain restriction or some additional con-
straints that must be satisfied. Currently, in constraint-based
scheduling there are two families of algorithms to propagate
resource constraints: timetabling approaches and activity in-
teraction techniques.

Timetabling
The first propagation technique, known as timetabling, re-
lies on the computation for every date t of the minimal
resource usage at this date by the current activities in the
schedule (Le Pape 1994). This aggregated demand profile
is maintained during the search and it allows restricting
the domains of the start and end times of activities by re-
moving those dates that would necessarily lead to an over-
consumption of the resource. For simplicity reason, we de-
scribe this technique only on discrete resources and assum-
ing all the time extents are FromStartToEnd. Suppose
that an activityA requires q(A) ∈ [qmin(A), qmax(A)] units
of a given resource R and is such that startmax(A) <
endmin(A), then we know surely that A will at least exe-
cute between startmax(A) and endmin(A) and thus, it will
surely require qmin(A) units of resource R on this time in-
terval. For each resource R, a curve is maintained that ag-
gregates all these demands that is:

CR(t) =
∑

{<A,R,q,TE>/startmax(A)≤t<endmin(A)}

qmin(A)

It’s clear that if there exists a date t such that CR(t) is
strictly greater than the maximal capacity of the resource
Q, the current schedule cannot lead to a solution and the
search must backtrack. Furthermore, if there exists an ac-
tivity B requiring q(B) units of resource R and a date t0
such that: endmin(B) ≤ t0 < endmax(B) and ∀t ∈
[t0, endmax(B)), CR(t) + qmin(B) > Q then, activity B
cannot end after date t0 as it would over-consume the re-
source. Indeed, remember that, as endmin(B) ≤ t0, B is
never taken into account in the aggregation on the time in-
terval [t0, endmax(B)). Thus, t0 is a new valid upper bound
for end(B). A similar reasoning can be applied to find new

144

lower bounds on the start time of activities as well as new up-
per bounds on the quantity of resource required by activities.
Moreover, this approach easily extends to all types of time
extent and to reservoirs. The main advantage of this tech-
nique is its relative simplicity and its low algorithmic com-
plexity. It is the main technique used today for scheduling
discrete resources and reservoirs. Unfortunately, these algo-
rithms propagate nothing until the time windows of activities
become so small that some dates t are necessarily covered
by some activity. It means that unless some strong commit-
ments are made early in the search on the time windows of
activities, these approaches are not able to efficiently prop-
agate. Furthermore, these approaches do not directly exploit
the existence of precedence constraints between activities.

Activity Interactions
The second family of algorithms is based on an analysis of
activity interactions. Instead of considering what happens
at a date t, it considers some subsets Ω of activities compet-
ing for the same resource and performs some propagation
based on the position of activities in Ω. Some classical ac-
tivity interaction approaches are summarized below.

Disjunctive Constraint. The simplest example of such
an algorithm is the disjunctive constraint on unary re-
sources (Erschler 1976). This algorithm analyzes each pair
of activities (A,B) requiring the same unary resource and,
whenever the current time bounds of activities are so that
startmax(A) < endmin(B), it deduces that as activity
A necessarily starts before the end of activity B is must
be completely executed before B and thus, end(A) ≤
startmax(B) and start(B) ≥ endmin(A). Actually, the
classical disjunctive constraint can be generalized as fol-
lows: whenever the temporal constraints are so that the con-
straint start(A) < end(B) must hold, it adds the additional
constraint that end(A) ≤ start(B). Note that this algorithm
is the exact counterpart in scheduling of the disjunctive con-
straint to handle unsafe causal links in POCL planners pro-
posed in (Khambhampati and Yang 1996). Unfortunately,
such a simple constraint only works in the restricted case
of unary resources.

Edge-Finding. Edge-finding techniques (Carlier and Pin-
son 1990; Nuijten 1994) are available for both unary and
discrete resources. On a unary resource, edge-finding tech-
niques detect situations where a given activity A cannot ex-
ecute after any activity in a set Ω because there would not be
enough time to execute all the activities in Ω ∪ A between
the earliest start time of activities in Ω ∪ A and the latest
end time of activities in Ω∪A. When such a situation is de-
tected, it means that A must execute before all the activities
in Ω and it allows to compute a new valid upper bound for
the end time of A. More formally, let Ω be a subset of ac-
tivities on a unary resource, and A /∈ Ω another activity on
the same unary resource. Most of the edge-finding technique
can be captured by the rule (1)⇒ (2) where:

(1) endmax(Ω ∪A)− startmin(Ω) < dur(Ω ∪A)

(2) end(A) ≤ minΩ′⊂Ω (endmax(Ω′)− dur(Ω′))

Similar rules allow to detect and propagate the fact that a
given activity must end after all activities in Ω (Last), cannot
start before all activities in Ω (Not First) or cannot end af-
ter all activities in Ω (Not Last). Furthermore, edge-finding
techniques can be adapted to discrete resources by reasoning
on the resource energy required by the activities that is, the
product duration× required quantity. Most of the edge-
finding algorithms can be implemented to propagate on all
the activities A and all the subsets Ω with a total complexity
in O(n2).

Energetic Reasoning. As for the edge-finding techniques,
energetic reasoning (Erschler, Lopez, and Thuriot 1991) an-
alyzes the current time-bounds of activities in order to ad-
just them by removing some invalid values. A typical ex-
ample of energetic reasoning consists in finding pairs of ac-
tivities A,B on a unary resource such that ordering activity
A before B would lead to a dead-end because the unary re-
source would not provide enough “energy” between the ear-
liest start time of A and the latest end time of B to execute
A, B and all the other activities that necessarily needs to ex-
ecute on this time window. More formally, if C is an activity
and [t1, t2) a time window, the energy necessarily required
by C on the time window [t1, t2) is:

W
[t1,t2)
C =

min(endmin(C)− t1, t2 − startmax(C), dur(C), t2 − t1)

Thus, as soon as the condition below holds, it means that
A cannot be ordered before B and thus, must be ordered
after.

endmax(B)− startmin(A) <

dur(A) + dur(B) +
∑

C/∈{A,B}

W
[startmin(A),endmax(B))
C

It allows to update the earliest start time of A and the lat-
est end time of B. Other adjustments of time bounds us-
ing energetic reasoning can be used, for example to deduce
that an activity cannot start at its earliest start time or cannot
end at its latest end time. Furthermore, energetic reasoning
can easily be extended to discrete resources. A good starting
point to learn more about edge-finding and energetic reason-
ing on unary resources is (Baptiste 1995) where the authors
describe and compare several variants of these techniques.
Although these tools (edge-finding, energetic reasoning) are
very efficient in pure scheduling problems, they suffer from
the same limitations as timetabling techniques. Because they
consider the absolute position of activities in time rather than
their relative position, they will not propagate until the time
windows of activities have become small enough and the
propagation may be very limited in case the current schedule
contains many precedence constraints. Furthermore, these
tools are available for unary and discrete resources only and
are difficult to generalize to reservoirs.

The following sections of this paper describes two new
techniques to propagate discrete and reservoir resources
based on analyzing the relative position of activities rather
than their absolute position. These algorithms fully exploit

145

the precedence constraints between activities and propagate
even when the time windows of activities are still very large
which is typically the case in least-commitment planners and
schedulers. Of course these new propagation algorithms can
be used in cooperation with the existing techniques we just
described above. Both of our algorithms are based on the
precedence graph structure described in the section below.

Precedence Graph
Definitions
A resource event x on a given resource R is a time-point
variable at which the availability of the resource changes be-
cause of an activity. A resource event corresponds to the start
or end point of an activity. Let:

• t(x) denote the time-point variable of event x. tmin(x)
and tmax(x) will respectively denote the current minimal
and maximal value in the domain of t(x).

• q(x) denote the relative change of resource availability
due to event x with the convention that q > 0 denotes a
resource production and q < 0 a resource consumption.
qmin(x) and qmax(x) will respectively denote the current
minimal and maximal value in the domain of q(x).

There is of course an evident mapping between the resource
constraints on a resource and the resource events.

A precedence graph on a resource R is a directed graph
GR = (V,E≤, E<) where E< ⊂ E≤ and:

• V is the set of resource events on R

• E≤ = (x, y) is the set of precedence relations between
events of the form t(x) ≤ t(y).

• E< = (x, y) is the set of precedence relations between
events of the form t(x) < t(y).

The precedence graph on a resource is designed to col-
lect all the precedence information between events on the
resource. These precedence information may come from: (1)
temporal constraints in the initial statement of the problem,
(2) temporal constraints between activities in the same plan-
ning operator, (3) search decisions (e.g. causal link, promo-
tion, demotion, ordering decisions on resources) or (4) may
have been discovered by propagation algorithms (e.g. unsafe
causal links handling, disjunctive constraint, edge-finding,
etc.) or simply because tmax(x) ≤ tmin(y). When new
events or new precedence relations are inserted, the prece-
dence graph incrementally maintains its transitive closure.
This leads to a worst-case complexity of O(n2) to main-
tain the precedence graph. The precedence relations in the
precedence graph as well as the initial temporal constraints
are propagated by an arc-consistency algorithm. Given an
event x in a precedence graph and assuming the transitive
closure has been computed, we define the following subsets
of events:

• S(x) is the set of events simultaneous with x that is the
events y such that (x, y) ∈ E≤ and (y, x) ∈ E≤

• B(x) is the set of events before x that is the events y such
that (y, x) ∈ E<

• BS(x) is the set of events before or simultaneous with x
that is the events y such that (y, x) ∈ E≤ , (y, x) /∈ E<

and (x, y) /∈ E≤
• A(x) is the set of events after x that is the events y such

that (x, y) ∈ E<

• AS(x) is the set of events after or simultaneous with x
that is the events y such that that (x, y) ∈ E≤ , (x, y) /∈
E< and (y, x) /∈ E≤
• U(x) is the set of events unranked with respect to x that

is the events y such that (y, x) /∈ E≤ and (x, y) /∈ E≤
Note that {S(x), B(x), BS(x), A(x), AS(x), U(x)} is a

partition of V . An example of precedence graph with an il-
lustration of these subsets is given in Figure 1 and corre-
sponds to a schedule with the 6 resource constraints:

• < A1, R,−2, F romStartToEnd >,

• < A2, R, [−10,−5], AfterStart >,

• < A3, R,−1, AfterStart >,

• < A4, R, 2, AfterEnd >,

• < A5, R, 2, AfterEnd >,

• < A6, R, 2, AfterEnd >

As well as some precedence relations. The subsets are rela-
tive to the event x corresponding to the start of activity A1.

+2
$A_5$$\le$

$<$

[ï10,ï5]

ï2

+2
S(x)

B(x)

x

A_1

+2 +2$A_6$$A_4$

A(x)

U(x)

ï1 A_3AS(x)

A_2

Figure 1: An Example of Precedence Graph

Implementation and Complexity
As we will see in next section, our propagation algorithms
often need to query the precedence graph about the rela-
tive position of two events on a resource so this information
needs to be accessible in O(1) on our structure. It explains
why we chose to implement the precedence graph as a ma-
trix that stores the relative position of every pair of events.
Furthermore, on our structure, the complexity of traversing
any subset of events (e.g. B(x) or U(x)) is equal to the size
of this subset. Note that the precedence graph structure is
extensively used in ILOG Scheduler and is not only useful
for the algorithms described in this paper. In particular, the
precedence graph implementation allows the user to write
his own complex constraints that rely on this graph as for ex-
ample the one involving alternative resources and transition
times described in (Focacci, Laborie, and Nuijten 2000).

146

New Propagation Algorithms
Energy Precedence Constraint
The energy precedence constraint is defined on discrete
resources only. As it does not require that the resource be
closed, it can be used at any time during the search. For sim-
plicity, we assume that all the resource constraints have a
time extent FromStartToEnd. Suppose thatQ denotes the
maximal capacity of the discrete resource over time. If x is a
resource event and Ω is a subset of resource constraints that
are constrained to execute before x, then the resource must
provide enough energy to execute all resource constraints in
Ω between the earliest start times of activities of Ω and t(x).
More formally:

tmin(x) ≥ min
<A,R,q,TE>∈Ω

(startmin(A)) +∑
<A,R,q,TE>∈Ω

(qmin(A) ∗ durmin(A))/Q

A very simple example of the propagation performed by
this constraint is given in Figure 2. If we suppose that the
maximal capacity of the discrete resource is 4 and all ac-
tivities must start after time 0, then by considering Ω =
{A1, A2, A3, A4}, we see that event x cannot be executed
before time [0]+[(2∗10)+(2∗8)+(2∗8)+(2∗2)]/4 = 14.
Of course, a symmetrical rule can be used to find an up-
per bound on t(x) by considering the subsets Ω of resource
constraints that must execute after x. The same idea as the
energy precedence constraint is used in (Sourd and Nuijten
2000) to adjust the time-bounds of activities on different
unary resources.

dur=8

A_4ï2 +2

dur=2

A_2ï2

x

+2

A_1

dur=10

ï2 +2

dur=8

ï2 +2A_3

Figure 2: Example of Energy Precedence Propagation
It’s important to note that the energy precedence algo-

rithm propagates even when the time window of activities is
very loose (in the example of Figure 2, the latest end times of
activities may be very large). This is an important difference
with respect to classical energetic and edge-finding tech-
niques that would propagate nothing in this case. The propa-
gation of the energy precedence constraint can be performed
for all the events x on a resource and for all the subsets Ω
with a total worst-case time complexity ofO(n∗(p+log(n))
where n is the number of the events on the resource and p
the maximal number of predecessors of a given event in the
graph (p < n). Note that when the discrete resource has a
maximal capacity profile that varies over time, the algorithm
can take into account some fake resource constraints with in-
stantiated start and end times to accommodate the maximal
capacity profile.

Balance Constraint
The balance constraint is defined on a reservoir resource.
When applied to a reservoir, the basic version of this algo-
rithm requires the reservoir to be closed. When applied to a
discrete resource, the resource may still be open. The basic
idea of the balance constraint is to compute, for each event x
in the precedence graph, a lower and an upper bound on the
reservoir level just before and just after x. The reader will
certainly find some similarities between this constraint and
the Modal Truth Criterion on planning predicates first intro-
duced in (Chapman 1987). Actually this is not surprising as
the balance constraint can be considered as a kind of MTC
on reservoirs that detects only some necessary conditions1.
Given an event x, using the graph we can compute an upper
bound on the reservoir level at date t(x)− ε just before x as-
suming (1) All the production events y that may be executed
strictly before x are executed strictly before x and produce
as much as possible that is qmax(y); (2) All the consumption
events y that need to be executed strictly before x are exe-
cuted strictly before x and consume as little as possible that
is qmax(y); and (3) All the consumption events that may ex-
ecute simultaneously or after x are executed simultaneously
or after x. More formally, if Linit is the initial level of the
reservoir, P the set of production events and C the set of
consumption events, this upper bound can be computed as
follows:
L<
max(x) = Linit +

∑
y∈P∩(B(x)∪BS(x)∪U(x))

qmax(y) +
∑

y∈C∩B(x)

qmax(y) (1)

Applying this formula to event x in Figure 1 if with suppose
Linit = 2 leads toL<

max(x) = 2+[2+2+2]+[−5] = 3. In a
very similar way, it is possible to compute L<

min(x), a lower
bound of the level just before x;L>

max(x), an upper bound of
the level just after x and L>

min(x), a lower bound of the level
just after x. For each of these bounds, the balance constraint
is able to discover four types of information: dead ends, new
bounds for resource usage variables and time variables
and new precedence relations. For symmetry reasons we
only describe the propagation based on L<

max(x).

Discovering dead ends. Whenever L<
max(x) < 0, we

know that the level of the reservoir will surely be negative
just before event x so the search has reached a dead end.

Discovering new bounds on resource usage variables.
Suppose there exists a consumption event y ∈ B(x) such
that qmax(y) − qmin(y) > L<

max(x). If y would consume
a quantity q such that qmax(y) − q > L<

max(x) then, sim-
ply by replacing qmax(y) by q(y) in formula (1), we see
that the level of the reservoir would be negative just before
x. Thus, we can find a better lower bound on q(y) equal to
qmax(y)−L<

max(x). In the example of Figure 1, this propa-
gation would restrict the consumed quantity at the beginning
of activityA2 to [−8,−5] as any value lower than−8 would
lead to a dead end.

1When the reservoir is not closed, one can imagine extending
our propagation algorithm into a real truth criterion on reservoirs
that would allow justifying the insertion of new reservoir producers
or consumers into the current schedule. This interesting extension
clearly worth to study but is out of the scope of this paper.

147

Discovering new bounds on time variables. Formula (1)
can be rewritten as follows:
L<
max(x) = (Linit +

∑
y∈B(x)

qmax(y)) + (
∑

y∈P∩(BS(x)∪U(x))

qmax(y))

If the first term of this equation is negative, it means that
some production events in BS(x) ∪ U(x) will have to be
executed strictly before x in order to produce at least:

Π<
min(x) = −Linit −

∑
y∈B(x)

qmax(y)

Let P (x) denote the set production events inBS(x)∪U(x).
We suppose the events (y1, · · · , yi, · · · , yp) in P (x) are or-
dered by increasing minimal time tmin(y). Let k be the in-
dex in [1, p] such that:

k−1∑
i=1

qmax(yi) < Π<
min(x) ≤

k∑
i=1

qmax(yi)

If event x is executed at a date t(x) ≤ tmin(yk), not enough
producers will be able to execute strictly before x in order
to ensure a positive level just before x. Thus, tmin(yk) + 1
is a valid lower bound of t(x). In Figure 1 if Linit = 2,
Π<

min(x) = 3, and this propagation will deduce that t(x)
must be strictly greater than the minimal between the earliest
end time of A5 and the earliest end time of A6.

Discovering new precedence relations. There are cases
where we can perform an even stronger propagation. Sup-
pose there exists a production event y in P (x) such that:∑

z∈P (x)∩(B(y)∪BS(y)∪U(y))

qmax(z) < Π<
min(x)

Then, if we had t(x) ≤ t(y), we would see that again there
is no way to produce Π<

min(x) before event x as the only
events that could produce strictly before event x are the ones
in P (x) ∩ (B(y) ∪ BS(y) ∪ U(y)). Thus, we can deduce
the necessary precedence relation: t(y) < t(x). For exam-
ple in Figure 1, the balance algorithm would discover that x
needs to be executed strictly after the end of A4. Note that
a weaker version of this propagation has been proposed in
(Cesta and Stella 1997) that runs in O(n2) and does not an-
alyze the precedence relations between the events of P (x).
Like for timetabling approaches, one can show that the bal-
ance algorithm is sound, that is, it will detect a dead end
on any fully instantiated schedule that violates the reservoir
resource constraint. In fact, the balance algorithm does not
even need the schedule to be fully instantiated: for exam-
ple, it will detect a dead end on any non-solution sched-
ule as soon as all the production events are ordered rela-
tively to all the consumption events on a resource. Further-
more, when all events x on a reservoir of capacity Q are
so that L<

max(x) ≤ Q, L>
max(x) ≤ Q, L<

min(x) ≥ 0, and
L>
min(x) ≥ 0 - in that case, we say that event x is safe -

then, any order consistent with the current precedence graph
satisfies the reservoir constraint. In other words, the reser-
voir is solved. This very important property allows stopping
the search on a reservoir when all the events are safe and
even if they are not completely ordered. Note also that, ac-
cording to the concepts introduced in (Laborie and Ghallab

1995), the balance constraint can be seen as an algorithm
that implicitly detects and solves some deterministic MCSs
on the reservoir while avoiding the combinatorial explosion
of enumerating these MCSs. The balance algorithm can be
executed for all the events x with a global worst-case com-
plexity inO(n2) if the propagation that discovers new prece-
dence relations is not turned on, inO(n3) for a full propaga-
tion. In practice, there are many ways to shortcut this worst
case and in particular, we noticed that the algorithmic cost
of the extra-propagation that discovers new precedence rela-
tions was negligible. In our implementation, at each node of
the search, the full balance constraint is executed until a fix
point is reached.

First Results
We implemented a complete and relatively simple search
procedure on reservoirs that selects pairs of unsafe events
(x, y) and creates a choice point by adding either the rela-
tion t(x) < t(y) or t(y) ≥ t(x). The heuristics for select-
ing which pair of events to order relies on the bounds on
reservoir levels L<

max(x), L>
max(x), L<

min(x), and L>
min(x)

computed by the balance constraint. These levels can in-
deed be considered as some texture measurements (Beck et
al. 1997) projected on the schedule events. Until now, few
benchmarks are available on problems involving temporal
constraints and reservoirs. The only one we are aware of
is (Neumann and Schwindt 1999) where the authors gen-
erate 300 project scheduling problems involving 5 reser-
voirs, min/max delays between activities and minimization
of makespan. From these 300 problems, 12 hard instances
could not be solved to optimality by their approach. We
tested our algorithms on these 12 open problems2. The re-
sults are summarized on the table below. The size of the
problem is the number of activities. The bounds are the best
lower and upper bounds of (Neumann and Schwindt 1999).
The times in the table were measured on a HP-UX 9000/785
workstation. We can see that all of the 12 open problems
have been closed in less than 10 seconds CPU time. Fur-
thermore, our approach produces highly parallel schedules
as the balance constraint implements some sufficient condi-
tions for a partial order between events to be a solution.

Problem Size Lower Upper Optimal CPU
bound bound Time (s)

#10 50 92 93 92 0.28
#27 50 85 +∞ 96 2.43
#82 50 148 +∞ no solution 0.05
#6 100 203 223 211 0.97
#12 100 192 197 197 0.72
#20 100 199 217 199 0.46
#30 100 196 218 204 2.11
#41 100 330 364 337 0.62
#43 100 283 +∞ no solution 7.65
#54 100 344 360 344 0.46
#58 100 317 326 317 0.49
#69 100 335 +∞ no solution 1.96

We also tested the energy precedence constraint on unary
resources. For this purpose, we wrote a very simple least-

2All the other problems were easily solved using our approach.

148

commitment search procedure3 based on the precedence
graph that orders pairs of activities on a unary resource and
aims at finding very good first solutions. We benched this
search procedure on 44 famous job-shop problems (namely:
abz5-9, ft6, ft10, orb1-10, la1-30) with the energy prece-
dence constraint as well as the disjunctive and the edge-
finder constraint. In average, the makespan of the first so-
lution (without using any restart or randomization) pro-
duced by our approach is only 7.4% greater than the opti-
mal makespan whereas the average distance to optimal of the
best greedy algorithms so far (Pacciarelli and Mascis 1999)
is 9.3% on the same problems.

Conclusion and Future Work
This paper describes two new algorithms for propagating
resource constraints on discrete resources and reservoirs.
These algorithms strongly exploit the temporal relations in
the partial schedule and are able to propagate even if the
time windows of activities are still very large. Furthermore,
on discrete resource, they do not require the resource to be
closed. These features explain why they particularly suit in-
tegrated approaches to planning and scheduling. Even from
the standpoint of pure scheduling, these algorithms are pow-
erful tools to implement complete and efficient search pro-
cedures based on the relative position of activities. An ad-
ditional advantage of this approach is that it produces par-
tially ordered solutions instead of fully instantiated ones.
These solutions are more robust. All the algorithms de-
scribed in this paper have been implemented and are avail-
able in the current version of ILOG Scheduler (ILOG 2001).
As far as AI Planning is concerned, future work will mainly
consist in studying the integration of our scheduling frame-
work into a HTN or a POP Planner as well as improving our
search procedures.

References
Baptiste, P. 1995. Resource constraints for preemptive and
non-preemptive scheduling. Master’s thesis, University of
Paris VI. MSc Thesis.
Beck, C.; Davenport, A.; Sitarski, E.; and Fox, M. 1997.
Texture-based Heuristics for Scheduling Revisited. In Pro-
ceedings AAAI-97.
Carlier, J., and Pinson, E. 1990. A practical use of Jack-
son’s preemptive schedule for solving the job shop problem.
Annals of Operations Research 26:269–287.
Cesta, A., and Stella, C. 1997. A time and resource problem
for planning architectures. In ECP-97.
Cesta, A.; Oddi, A.; and Smith, S. 2000. Iterative flatten-
ing: A scalable method for solving multi-capacity schedul-
ing problems. In Proceedings of the National Conference on
Artificial Intelligence (AAAI-00).
Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32:333–377.

3The C++ code of this search procedure is available in the dis-
tribution of ILOG Scheduler.

Erschler, J.; Lopez, P.; and Thuriot, C. 1991. Raisonnement
temporel sous contraintes de ressources et problèmes
d’ordonnancement. Revue d’Intelligence Artificielle 5(3):7–
32.
Erschler, J. 1976. Analyse sous contraintes et aide à la
décision pour certains problèmes d’ordonnancement. Thèse
de doctorat d’etat, Université Paul Sabatier.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
scheduling problems with setup times and alternative re-
sources. In Proc. Fifth International Conference on Arti-
ficial Intelligence Planning and Scheduling, AIPS’00, 92–
101. AAAI Press.
Garcia, F., and Laborie, P. 1996. New Directions in AI Plan-
ning. IOS Press, Amsterdam. chapter Hierarchisation of the
Search Space in Temporal Planning, 217–232.
ILOG. 2001. ILOG Scheduler 5.2 Reference Manual.
http://www.ilog.com/.
Khambhampati, S., and Yang, X. 1996. On the role of dis-
junctive representations and constraint propagation in refine-
ment planning. In KR96.
Laborie, P., and Ghallab, M. 1995. IxTeT: an integrated ap-
proach for plan generation and scheduling. In Proc. ETFA-
95.
Le Pape, C. 1994. Implementation of resource constraints in
ILOG Schedule: A library for the development of constraint-
based scheduling systems. Intelligent Systems Engineering
3(2):55–66.
Neumann, K., and Schwindt, C. 1999. Project scheduling
with inventory constraints. Technical Report WIOR-572, In-
stitut für Wirtschaftstheorie und Operations Research. Uni-
versität Karlsruhe.
Nuijten, W. 1994. Time and Resource Constrained Schedul-
ing: A Constraint Satisfaction Approach. Ph.D. Dissertation,
Eindhoven University of Technology.
Pacciarelli, D., and Mascis, A. 1999. Job-shop scheduling
of perishable items. In INFORMS’99.
Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the gap
between planning and scheduling. Knowledge Engineering
Review 15(1):61–94.
Sourd, F., and Nuijten, W. 2000. Relations de précédences
sous constraintes disjonctives. In Proc. ROADEF 2000.

149

