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Abstract

Planning as satisfiability is an efficient technique for
classical planning. In previous work by the second au-
thor, this approach has been extended to conformant
planning, that is, to planning domains having incom-
plete information about the initial state and/or the ef-
fects of actions. In this paper we present some domain
independent optimizations to the basic procedure de-
scribed in the previous work. A comparative experimen-
tal analysis shows that the resulting procedure is com-
petitive with other state-of-the-art conformant planners
on domains with a high degree of parallelism.

Introduction

Planning as satisfiability (Kautz and Selman 1992) is an ef-
ficient technique for classical planning. In the classical set-
ting, the idea behind planning as satisfiability is simple: For
any action description D, it is possible to compute a proposi-
tional formula tr

D
i whose satisfying assignments correspond

to the possible transitions caused by the execution of an ac-
tion in D. In tr

D
i there is a propositional variable Ai for each

ground action symbol A, and two propositional variables Fi

and Fi+1 for each ground fluent F in D. Intuitively, Fi rep-
resents the value of F in the initial state of the transition, and
Fi+1 represents the value of F in the resulting state, after
having performed the action. Then, the problem of finding a
plan of length n leading from an initial state I to a goal state
G corresponds to finding an assignment satisfying

I0 ^ ^n�1
i=0 tr

D
i ^Gn (1)

(see (Kautz and Selman 1996) for more details). This simple
idea had a lot of impact in the classical planning commu-
nity, mainly because it led to very impressive results (see,
e.g., (Kautz and Selman 1996)). In (Giunchiglia 2000), the
planning as satisfiability approach has been extended to con-
formant planning, that is, to planning problems having in-
complete information about the initial state and/or the effects
of actions. Some preliminary experimental results reported
in (Ferraris and Giunchiglia 2000) show that the approach
can be competitive w.r.t. CGP (Smith and Weld 1998), a
conformant planner based on plan graphs (Blum and Furst
1995).
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In this paper we present some domain independent opti-
mizations to the basic procedure described in (Giunchiglia
2000). Some of these optimizations have been incorporated
in C-PLAN, a SAT-based system for planning in domains
whose action description component is specified using the
highly expressive action language C (Giunchiglia and Lif-
schitz 1998). As a consequence, C-PLAN allows for con-
formant planning in domains with constraints, concurrent
actions, and nondeterminism. A comparative experimental
analysis shows that C-PLAN is competitive with other state-
of-the-art conformant planners on domains with an high de-
gree of parallelism.

The paper is structured as follows. In Section we briefly
review the conformant planning via SAT approach. In Sec-
tion we discuss the weaknesses of and optimizations to the
basic procedure. In Section we perform the experimental
comparative analysis. We end the paper in Section with
some conclusions.

The material here presented is part of (Castellini,
Giunchiglia, and Tacchella 2001). In (Castellini,
Giunchiglia, and Tacchella 2001), we give the precise
definitions, statements, proofs, and we also present some
additional experimental analysis.

Conformant planning via SAT

This Section introduces some terminology and notation that
will be used in the rest of the paper. Precise definitions
are not given for lack of space. See (Giunchiglia 2000)
or (Castellini, Giunchiglia, and Tacchella 2001).

We start with a set of atoms partitioned into a set of fluent

symbols and a set of action symbols. A formula is a propo-
sitional combination of atoms. An action is an interpreta-
tion of the action symbols. Intuitively, to execute an action
↵ means to execute concurrently the “elementary actions”
represented by the action symbols satisfied by ↵. In the rest
of the paper, an action ↵ is represented by the set of action
symbols satisfied by ↵.

An action description D is a finite set of expressions de-
scribing how actions change the state of the world, i.e., de-
scribing their preconditions and (possibly nondeterministic)
effects. Regardless of how D is specified, we assume to have
a formula tr

D
i whose satisfying assignments correspond to

the transitions of D, as in the classical planning as satisfia-
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bility framework outlined in the introduction.1
A planning problem for D is characterized by two for-

mulas I and G in the fluent signature, i.e., is a triple ⇡ =
hI,D,Gi, where I and G encode the initial and goal state(s)
respectively. A plan (of length n � 0) is a finite sequence
↵

1; . . . ;↵n of actions.
Consider a planning problem ⇡ = hI,D,Gi. A plan

↵

1; . . . ;↵n is possible for ⇡ if, starting from an arbitrarily
chosen initial state, the consecutive execution of the actions
↵

1
, . . . ,↵

n can lead to a goal state. According to the re-
sults in (McCain and Turner 1998; Giunchiglia and Lifschitz
1998), possible plans of length n correspond to the assign-
ment satisfying (1), as in the classical setting. However, if we
have incomplete information about the initial state and/or ac-
tions are non deterministic, then possible plans are not guar-
anteed to be valid. As pointed out in (McCain and Turner
1998), in order for a plan ↵

1; . . . ;↵n to be valid we have to
check
• that the plan is “always executable” in any initial state,

i.e., executable for any initial state and any possible out-
come of the actions in the plan, and

• that any “possible result” of executing the plan in any ini-
tial state is a goal state.

As shown in (Giunchiglia 2000), we can check if a plan
↵

1; . . . ;↵n is valid for ⇡ by verifying whether

I0 ^ State

D
0 ^ ¬Z0 ^ ^n�1

i=0 ↵
i+1
i ^ ^n�1

i=0 trt

D
i |= Gn ^ ¬Zn.

(2)
where
• State

D
0 is a formula representing the set of “possible initial

states”,
• Z is a newly introduced fluent symbol, and
• trt

D
i is a formula defined on the basis of tr

D
i .

Thus, we may divide the problem of finding a valid plan
for ⇡ into two parts:

1. generate possible plans ↵

1; . . . ;↵n by finding assign-
ments satisfying the formula (1), and

2. test whether each generated plan ↵

1; . . . ;↵n is valid by
verifying whether (2) holds.
This is the idea behind the procedure C-SAT in Figure 1.

In the Figure, cnf(P ) is a set of clauses corresponding to P ,
L is the literal complementary to L and, for any literal L
and set of clauses ', assign(L,') is the set of clauses ob-
tained from ' by deleting the clauses in which L occurs as
a disjunct, and eliminating L from the others. As it can be
seen, C-SAT is the Davis-Logemann-Loveland (DLL) pro-
cedure (Davis, Logemann, and Loveland 1962), except that,
as soon as one assignment satisfying cnf(P ) is found, the
procedure C-SAT TEST is invoked. Indeed, each assignment
satisfying cnf(P ) corresponds to a set of possible plans, and
C-SAT TEST checks whether any of these are valid. Since
all the possible assignments satisfying cnf(P ) are poten-
tially generated and tested, C-SAT is correct and complete

1In (Giunchiglia 2000), we use the term “causally explained
transition”: here we simply say transition.

for ⇡, n: Any returned plan is valid for ⇡ (correctness); and,
if False is returned, there is no valid plan of length n for ⇡
(completeness). However, C-SAT only checks the existence
of valid plans of length n. Indeed, even assuming that a plan
is returned, we are not guaranteed of its optimality (we say
that a plan of length n is optimal if it is valid and there is
no valid plan of length < n). Thus, if we are looking for
optimal plans, we have to consider n = 0, 1, 2, 3, 4, . . .,
and for each value of n, call C-SAT. This is the idea be-
hind the system C-PLAN (Ferraris and Giunchiglia 2000;
Castellini, Giunchiglia, and Tacchella 2001).

Improvements to SAT-Based conformant

planning

In order to understand how the basic procedure above de-
scribed works consider the following robot navigation prob-
lem: We are given a 5 ⇥ 5 grid, and 1 robot is moving
in it. It starts from the bottom-left corner of the grid and
its goal is to reach the right side. The robot can move
north, east, south, west, and its duty is not trivial because
there can be some objects in some locations of the grid.
In order to have some nondeterminism, we assume to have
one object in locations (1, 4), (2, 2), (4, 3), and also that ei-
ther locations (3, 1), (5, 5) or (3, 5), (5, 1) are occupied. Fig-
ure 2 depicts the resulting scenario. The initial position of
the robot is indicated by a circle and occupied locations are
marked with a black square. A dashed line outlines the goal
locations. Squares filled with a pattern indicate that the cor-
responding locations may be occupied.

According to our definitions in the previous Section, we
see that the shortest possible plans are of length 5: Both

{east}; {east}; {east}; {north}; {east}

and
{east}; {east}; {north}; {east}; {east}

are possible. On the other hand, any optimal valid plan, e.g.,

{north}; {north}; {east}; {east}; {south}; {east}; {east}

is at least 7 steps long. However, before finding a valid plan,
C-PLAN will generate and test all the possible plans of length
5, 6, and it may generate also some of the possible plans of
length 7. (The possible plans of length 6 are those in which
a robot does not move for one time step). Indeed, the main
weaknesses of C-PLAN are that, at each n,

1. it generates and tests all the possible plans. Indeed, in
many cases we can generate only a subset of the possi-
ble plans, at the same time keeping completeness of the
procedure, and

2. there is no interaction between generation and testing:
This may lead to explore huge portions of the search space
without finding a solution because of some wrong choices
at the beginning of the search tree.

In the following Subsections we describe two domain in-
dependent optimizations which alleviate the first two weak-
nesses.
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P := I0 ^ ^n�1
i=0 tr

D
i ^Gn; V := I0 ^ State

D
0 ^ ¬Z0 ^ ^n�1

i=0 trt

D
i ^ ¬(Gn ^ ¬Zn);

function C-SAT() return C-SAT GENDLL(cnf(P ), {}).

function C-SAT GENDLL(', µ)
if ' = {} then return C-SAT TEST(µ);
if {} 2 ' then return False;
if { a unit clause {L} occurs in ' } then return C-SAT GENDLL(assign(L,'),µ [ {L});
L := { a literal occurring in ' };
return C-SAT GENDLL(assign(L,'),µ [ {L}) or C-SAT GENDLL(assign(L,'),µ [ {L}).

function C-SAT TEST(µ)
↵ := { the set of literals in µ corresponding to action literals};
foreach {plan ↵

1; . . . ;↵n s.t. each element in ↵ is a conjunct in ^n�1
i=0 ↵

i+1
i }

if not SAT(^n�1
i=0 ↵

i+1
i ^ V ) then exit with ↵

1; . . . ;↵n;
return False.

Figure 1: C-SAT, C-SAT GENDLL and C-SAT TEST.

1 2 3 4 5

1

2

3

4

5

Figure 2: A robot navigation problem

Eliminating possible plans

The basic idea is to consider only plans which are possible in
a “deterministic version” of the original planning problem.
In a deterministic version, all sources of nondeterminism (in
the initial state and/or in the effects of the actions) are elim-
inated. This is possible without losing completeness, and it
is a consequence of the following fact.

Consider two planning problems ⇡ = hI,D,Gi and
⇡

0 = hI 0, D0
, G

0i in the same fluent and action signatures,
and such that
1. every initial state of D0 is also an initial state of D, (i.e.,

I

0 � I is valid),
2. for every action ↵, the set of states of D in which ↵ is

executable is a subset of the set of states of D0 in which ↵

is executable,
3. every transition of D

0 is also a transition of D, (i.e.,
tr

D0 � tr

D is valid),
4. every goal state of ⇡ is also a goal state of ⇡0 (i.e., G � G

0

is valid).
If a plan is not possible for ⇡0 then it is not valid for ⇡. Then,
in C-PLAN we can:
• generate possible plans for ⇡0, and
• test whether each of the generated possible plans is indeed

valid.

The result is still a correct and complete planning procedure
(for the given planning problem ⇡ and length n). Indeed, in
choosing ⇡

0, we want to minimize the set of possible plans
generated and then tested. Hence, we want ⇡0 to be a deter-
ministic version of ⇡. A planning problem ⇡

0 = hI 0, D0
, G

0i
is a deterministic version of ⇡ if it also satisfies the following
conditions:

1. I

0 is satisfied by a single state,
2. for each action ↵, the set of states in which ↵ is executable

in D is equal to the set of states of D0 in which ↵ is exe-
cutable,

3. for any action ↵ and state �, there is at most one state �

0

such that h�,↵,�0i is a transition of D0,
4. G is equal to G

0.
Of course, unless the planning problem ⇡ is already de-

terministic, there are many deterministic versions (possibly
exponentially many). The obvious question is whether there
is one which is “best” according to some criterion. Going
back to our robot navigation problem, we have two deter-
ministic versions:
• If locations (3, 1), (5, 5) are occupied, the shortest plan

(in the deterministic domain) has length N1 = 7,
• If locations (3, 5), (5, 1) are occupied, the shortest plan

has length N2 = 5.
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Indeed, any valid plan for the original nondeterministic plan-
ning problem has length greater or equal to 7, i.e., to the max
between N1 and N2. This is not by chance. In fact, let S
be the set of deterministic versions of ⇡. For each planning
problem ⇡

0 in S, let N(⇡0) be the length of the shortest plan
for ⇡0. Then, the length of any valid plan for ⇡ is greater or
equal to

max⇡02SN(⇡0).

On the basis of this fact, we can introduce an order on S

according to which ⇡

0 2 S is better than ⇡

00 2 S if

N(⇡0) � N(⇡00). (3)

In other words, we prefer the deterministic versions which
start to have solutions (each corresponding to a possible plan
for the original planning problem) for the biggest possible
value of n. In our robot navigation problem, this would lead
us to choose the deterministic version in which the locations
(3, 1), (5, 5) are the ones which are occupied.

Determining the set S of deterministic versions of ⇡ is
in general not an easy task. Even assuming that determin-
ing S is possible, finding the ⇡

0 2 S such to satisfy (3) for
each ⇡

00 2 S seems impractical at best. What we propose
is the following. For simplicity, we assume to have nonde-
terminism only in the initial state: Analogous considerations
hold for actions with nondeterministic effects. Under this as-
sumption, we modify our C-SAT GENDLL procedure in Fig-
ure 1 in order to do the following:
• once an assignment µ satisfying cnf (P ) is found, we de-

termine the assignment µ0 ✓ µ to the fluent variables at
time 0,

• if the possible plan corresponding to µ is not valid, and
the planning problem is not already deterministic, then
we disallow future assignments extending µ

0, by adding
to I the clause consisting of the complement of the literals
satisfied by µ

0.
In this way, we progressively eliminate some initial states
for which there is a deterministic version having a possible
plan of length n. Given that some initial states have not yet
been eliminated, the corresponding deterministic versions of
the original planning problem have length � n. At the end,
i.e., when we get to a deterministic planning problem ⇡

0, ⇡0

is a deterministic version of ⇡ and it satisfies (3) for each
⇡

00 2 S.
In the example of Figure 2, this optimization has

the effect of eliminating the initial state in which
{(3, 5), (5, 1)} are occupied. This elimination occurs im-
mediately after the first possible but not valid plan (e.g.,
{east}; {east}; {east}; {north}; {east}) is found.

Incorporating Backjumping and Learning

We do not enter into the details about how backjumping
and learning are implemented in SAT, and assume that the
reader is familiar with the topic (see, e.g., (Prosser 1993;
Bayardo, Jr. and Schrag 1997; Giunchiglia et al. 2001)).
Here we do the same as in (Bayardo, Jr. and Schrag 1997;
Giunchiglia et al. 2001), except that we have to extend the
procedure there described in order to account for the rejec-
tion of assignments corresponding to possible but not valid

plans. Indeed, what we can simply do — assuming µ is an
assignment corresponding to a possible but not valid plan
~↵ = ↵

1; . . . ;↵n — is to return False and set _n�1
i=0 ¬↵

i+1
i

as the initial working reason. However, are there any other
(better) choices? According to the definition of valid plan,
there are two possible causes why ~↵ is not valid:

1. executing ↵

1; . . . ;↵k in some initial state can lead to a
state �

k, and ↵

k+1 is not executable in �

k, or
2. ~↵ is always executable in any initial state, but one of the

possible outcomes of executing ~↵ in an initial state is not
a goal state.
In both cases, C-SAT TEST determines an assignment µ0

satisfying ^n�1
i=0 ↵

i+1
i ^V , and thus returns False. Also notice

that in the first case, µ0 satisfies
¬Z0, . . . ,¬Zk, Zk+1, . . . , Zn

with k < n. Then we can set _k
i=0¬↵i+1

i as the initial
working reason for rejecting µ: Any assignment satisfying
^k
i=0↵

i+1
i corresponds to a not valid plan. Of course, set-

ting _k
i=0¬↵i+1

i as working reason for rejecting µ is bet-
ter than setting _n�1

i=0 ¬↵
i+1
i : since k < n each disjunct in

_k
i=0¬↵i+1

i is also in _n�1
i=0 ¬↵

i+1
i , and, if k < n � 1, the

viceversa is not true.
In the example of Figure 2, this optimiza-

tion has the following effect: If the possible plan
{east}; {east}; {east}; {north}; {east} is tried, then
it is rejected with a reason which inhibits the further
generation of possible plans beginning with {east}; {east}.

Experimental Analysis

The ideas presented in Section and the optimizations de-
scribed in Section have been implemented in C-PLAN. C-
PLAN accepts action descriptions specified in C, and thus it
naturally allows for, e.g., concurrency, constraints and non-
determinism. Our current version (ver. 2) of C-PLAN has
been implemented on top of SIM, an efficient SAT checker
developed by our group (Giunchiglia et al. 2001).

To evaluate C-PLAN’s effectiveness we consider an elab-
oration of the traditional “bomb in the toilet” problem
from (McDermott 1987). There is a finite set P of packages
and a finite set T of toilets. One of the packages is armed be-
cause it contains a bomb. Dunking a package in a toilet dis-
arms the package and is possible only if the package has not
been previously dunked. We first consider planning prob-
lems with |P | = 2, 4, 6, 8, 10, 15, 20, and |T | = 1. We com-
pare our system with Bonet’s and Geffner’s GPT (Bonet and
Geffner 2000), and Cimatti’s and Roveri’s CMBP (Cimatti
and Roveri 1999; 2000) planners. These are two among the
most recent conformant planners, and according to the re-
sults presented in (Cimatti and Roveri 2000), also the most
effective to date. We remark that both CMBP and GPT are se-
quential planners: they try to execute at most one action at
each step. Furthermore, CMBP computes all the valid plans,
not just one like GPT and C-PLAN. The results for these three
systems are shown in Table 1. In the table, we show
• for GPT, the total time the system takes to solve the prob-

lem,
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GPT CMBP Cplan
|P |-|T | Total #s Total #s #pp Last Tot.search Total

2-1 0.03 2 0.00 1 1 0.00 0.00 0.00
4-1 0.03 4 0.01 1 1 0.00 0.00 0.00
6-1 0.04 6 0.02 1 1 0.00 0.00 0.00
8-1 0.15 8 0.08 1 1 0.00 0.00 0.00

10-1 0.27 10 0.61 1 1 0.00 0.00 0.00
15-1 17.05 15 42.47 1 1 0.00 0.00 0.00
20-1 MEM � MEM 1 1 0.00 0.00 0.00

Table 1: Bomb in the toilet: Classic version

• for CMBP, the number of steps (column “#s”) (i.e., the
number of elementary actions) and the total time needed
to solve the problem (column “Total”),

• for C-PLAN,
– the number of steps (i.e., the number of parallel actions)

(column “#s”);
– the number of possible plans generated before finding

a valid one (column “#pp”);
– the search time taken by the system at the last step (col-

umn “Last”);
– the total search time, being the sum over all steps of

the time taken by
C-SAT GENDLL and C-SAT TEST (column
“Tot.search”); and

– the total time taken by the system to solve the prob-
lem, excluding the off-line time necessary to compute
tr

D
i and trt

D
i (column “Total”). This total time does not

coincide with “Tot.search” because it includes also the
times necessary for expanding the formula, and for do-
ing some other computation internal to the system.

Times are in seconds, and all the tests have been run on a
Pentium III, 850MHz, 512MBRAM running Linux SUSE
7.0. For practical reasons, we stopped the execution of a sys-
tem if its running time exceeded 1200s of CPU time or if it
required more than the 512MB of available RAM. In the ta-
ble, the first case is indicated with “TIME” and the second
with “MEM”.

As it can be seen from Table 1, C-PLAN takes full advan-
tage of its ability to execute actions concurrently. Indeed,
it solves the problem in only one step, by dunking all the
packages at the same time. Furthermore, the time taken by
C-PLAN is always not measurable. CMBP and GPT have com-
parable performances, with CMBP being better of a factor of
2-3. However, the most interesting data about these systems
is that when |P | = 20 they both run out of memory. Indeed,
both GPT and CMBP can require huge amounts of memory:
GPT for storing the set of belief states visited, and CMBP for
storing (as Binary Decision Diagrams, BDD (Bryant 1992))
the transition relation and the set of belief states visited.

We also consider the elaboration of the “bomb in the toi-
let” in which dunking a package clogs the toilet. There is the
additional action of flushing the toilet, which is possible only
if the toilet is clogged. The results are shown in Table 2 for
|P | = 2, 4, 6, 8, 10 and |T | = 1, 5, 10. With one toilet, these

problems are the “sequential version” of the previous. With
multiple toilets they are similar to the “BMTC” problems
in (Cimatti and Roveri 2000). As we can see from Table 2,
when there is only one toilet C-PLAN “Total” time increases
rapidly compared to the other solvers. Indeed, |T | = 1 repre-
sents the purely sequential case in which the only valid plan
consists in repeatedly dunking a package and flushing the
toilet till all the packages have been dunked. On the other
hand, we see, e.g., for |P | = 6 and |T | = 1, that most of
C-PLAN time is not spent in the search. By analysing these
numbers and profiling C-PLAN code, we discovered that

• most of the search time is spent by C-SAT GENDLL: on all
the experiments we tried, each call of C-SAT TEST takes
an hardly measurable time,

• the time taken by the system to expand the formula at
each step can be considerable, but (since the expansion is
done once for each step) does not account for the possible
big differences between “Tot.search” and “Total”. This is
evident if we compare row 6-1 in Table 2 with row 6-
1 in Table 3: The formulas to expand in the two cases are
equal, and the number of expansion is the same. However,
the “Total” time in Table 2 is significantly bigger than the
“Total” time in Table 3,

• the possible big differences are due to the fact that, in
our current version, each time C-SAT TEST is invoked by
C-SAT GENDLL, we pay a cost linear in the size of the
V formula. This cost is due to the copying of the V for-
mula from one data-structure to another internal of SIM.
This linear cost, multiplied by the number of times C-
SAT TEST is invoked, accounts for the difference between
“Tot.search” and “Total” in the example 6-1 of Table 2.

We remark that the potentially exponential cost of verifying
a plan does not arise in practice, at least on all the experi-
ments we tried. As a matter of fact, each time a plan is veri-
fied, the corresponding set of unit clauses is added to the V

formula and (if the plan is not valid) the empty set of clauses
is generated after very few splits. This was expected (see
the Section on implementation in (Giunchiglia 2000)): what
we underestimated is the cost paid because of copying the
V formula. We believe that this cost is also responsible for
many of C-PLAN’s timeouts, and that a better engineering
of the system, meant to solve this particular problem, will
allow C-PLAN to be even more competitive. In any case, C-
PLAN’s performances are not too bad compared to the ones

21



GPT CMBP Cplan
|P |-|T | Total #s Total #s #pp Last Tot.search Total

2-1 0.10 3 0.00 3 6 0.00 0.00 0.01
2-5 0.04 2 0.01 1 1 0.00 0.00 0.00

2-10 0.05 2 0.03 1 1 0.00 0.00 0.00
4-1 0.04 7 0.00 7 540 0.12 0.15 0.65
4-5 0.23 4 0.79 1 1 0.00 0.00 0.00

4-10 2.23 4 11.30 1 1 0.00 0.00 0.01
6-1 0.09 11 0.04 11 52561 15.39 49.39 221.55
6-5 3.29 7 16.80 3 98346 56.92 57.34 419.53

6-10 74.15 � MEM 1 1 0.00 0.00 0.01
8-1 0.41 15 0.20 � � � � TIME
8-5 32.07 11 112.48 � � � � TIME

8-10 MEM � MEM 1 1 0.00 0.00 0.01
10-1 2.67 19 1.55 � � � � TIME
10-5 MEM 15 974.45 � � � � TIME

10-10 MEM � MEM 1 1 0.00 0.00 0.04

Table 2: Bomb in the toilet: Multiple toilets, clogging, one bomb.

of the other solvers: C-PLAN, CMBP, GPT do not solve 4, 3,
3 problems respectively.

Finally, we consider the same problem as before, except
that we do not know how many packages are armed. These
problems, with respect to the ones previously considered,
present a higher degree of uncertainty. We consider the same
values of |P | and |T | and report the same data as before. The
results are shown in Table 3.

Contrarily to what could be expected, C-PLAN perfor-
mances are much better on the problems in Table 3 than
on those in Table 2. This is most evident if we compare
the number of plans generated and tested by C-PLAN be-
fore finding a solution. For example, if we consider the four
packages and one toilet problem,
• with one bomb, as in Table 2, C-PLAN generates 540 pos-

sible plans and takes 0.65s to solve the problem (0.15s of
search time),

• with possibly multiple bombs, as in Table 3, C-PLAN gen-
erates 15 possible plans and takes 0.02s to solve the prob-
lem (0.02s is also the search time).

To understand why, consider for simplicity the case in which
there is only one toilet and two packages P1 and P2. For
n = 0

• there are no possible plans if we know that there is one
bomb, and

• there is the possible plan consisting of the empty sequence
of actions, corresponding to assuming that neither P1 nor
P2 is armed, in the case we know nothing. This plan is not
valid, and, because of the determinization, C-PLAN adds a
clause to the initial state saying that at least one package
is armed.

For n = 1, C-PLAN in both cases tries 2 possible plans. If we
assume that it generates first the plan in which P1 is dunked
• if we further assume that there is one bomb, it rejects it,

and —because of the determinization— it adds a clause

to the initial state which allows to conclude that the bomb
is in P2. Then, for n = 2 and n = 3, any plan in which
P2 is dunked is possible.

• in the other case, it rejects it, and —because of the
determinization— it adds a clause to the initial state say-
ing that the bomb is not in P1 or is in P2. Then, it gener-
ates the other plan in which only P2 is dunked. Also this
plan is rejected and a clause saying that a bomb is in P1

or not in P2 is added to the initial state. Thus, there is now
only one initial state satisfying all the constraints: namely
the one in which both P1 and P2 are armed. This allows
C-PLAN to conclude that there are no possible plans for
n = 2, and to immediately generate a valid plan at n = 3.

The optimizations described in Section help a lot. Indeed,
if we consider the four packages and one toilet problem, and
disable the optimizations,

• if we have one bomb, as in Table 2, C-PLAN generates
2145 possible plans and takes 0.54s to solve the problem
(0.24s in the last step),

• if we have possibly multiple bombs, as in Table 3, C-PLAN
generates 3743 possible plans and takes 0.93s to solve the
problem (0.72s in the last step).

Besides C-PLAN’s performances, also CMBP and GPT
seem to get benefits by the added nondeterminism. Overall,
C-PLAN, CMBP and GPT do not solve respectively 2, 3 and 2
of the considered problems. On the ones they solve, we get
roughly the same picture that we had before: C-PLAN takes
full advantage of its ability to concurrently execute actions,
and thus behaves better on problems with multiple toilets.

Overall, GPT, CMBP and C-PLAN do not solve 6, 7, 6 re-
spectively of the 37 examples that we tried.

Conclusions and related work

We have presented some optimizations to the basic pro-
cedure for conformant planning described in (Giunchiglia
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GPT CMBP Cplan
|P |-|T | Total #s Total #s #pp Last Tot.search Total

2-1 0.03 3 0.00 3 3 0.00 0.00 0.00
2-5 0.04 2 0.00 1 1 0.00 0.00 0.00
2-10 0.24 2 0.02 1 1 0.00 0.00 0.02
4-1 0.17 7 0.01 7 15 0.01 0.02 0.02
4-5 0.06 4 0.54 1 1 0.01 0.00 0.01
4-10 0.38 4 7.13 1 1 0.02 0.00 0.02
6-1 0.08 11 0.03 11 117 0.25 1.39 2.01
6-5 0.33 7 10.71 3 48 0.62 0.66 1.36
6-10 7.14 � MEM 1 1 0.00 0.00 0.00
8-1 0.06 15 0.17 15 1195 12.23 147.25 184.29
8-5 2.02 11 90.57 3 2681 14.84 15.60 317.13
8-10 MEM � MEM 1 1 0.00 0.00 12.68
10-1 0.21 19 1.02 � � � � TIME
10-5 12.51 15 591.33 � � � � TIME

10-10 MEM � MEM 1 1 0.00 0.00 0.06

Table 3: Bomb in the toilet: Multiple toilets, clogging, possibly multiple bombs.

2000). The procedure and the optimizations have been im-
plemented in C-PLAN ver. 2, a SAT-based conformant plan-
ner based on the SIM SAT library. C-PLAN incorporates the
Causal Calculator (McCain and Turner 1998), and is thus
able to reason about action descriptions specified in C. C
allows for, e.g., concurrency, constraints, and nondetermin-
ism. This causes C-PLAN to be one of most expressive con-
formant planners among the currently available. From the
experimental analysis we get that GPT, CMBP and C-PLAN
do not solve 6, 7, 6 respectively of the 37 examples that we
tried. Most important, while C-PLAN runs out of time, CMBP
and GPT run out of memory. This seems to point out that C-
PLAN range of applicability is different from the range of ap-
plicability of CMBP and GPT. Analogous results supporting
this fact are reported in (Haslum and Geffner 2000) where
it is shown that for classical, highly parallel domains the
planning as satisfiability approaches appear to do best. The
fact that SAT-based approaches and BDD-based approaches
have different range of applicability is also confirmed by
• previous work comparing BDD and DLL as SAT proce-

dures, see (Uribe and Stickel 1994),
• recent work in symbolic reachability in formal verifica-

tion, see (Biere et al. 1999; Copty et al. 2001).
Beside the already cited (Bonet and Geffner 2000; Cimatti

and Roveri 1999), two other works on conformant planning
are (Smith and Weld 1998) and (Rintanen 1999). In (Smith
and Weld 1998), the authors propose an approach based on
plan graphs. The underlying idea is to construct a planning
graph for every possible deterministic version of the origi-
nal planning problem. Constraints over planning graphs en-
sure conformance. The main weakness of the approach is
that there can be exponentially many deterministic version,
causing the creation of exponentially many planning graphs.
In (Rintanen 1999), Rintanen reduces the problem of confor-
mant and conditional planning to the problem of deciding
the satisfiability of a Quantified Boolean Formula (QBF).
Our approach is similar to Rintanen’s: The search performed

by our generate and test procedure resembles the one of a
QBF solver if run on formulas corresponding to conformant
planning problems. On the other hand, by dealing with the
original planning problem, we are able to introduce opti-
mizations —like the ones described in Section — which take
into account the nature of the original problem.

In (Cimatti et al. 2001), a new algorithm for conformant
planning based on “heuristic-symbolic search”, is proposed
and the experimental results are impressive. A detailed anal-
ysis of the paper and the results is in our agenda.
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