
A Forward Search Planning Algorithm with a Goal Ordering Heuristic

Igor Razgon and Ronen I. Brafman
Computer Science Department

Ben-Gurion University, 84105, Israel
{irazgon,brafman}@cs.bgu.ac.il

Abstract
Forward chaining is a popular strategy for solving classical
planning problems and a number of recent successful
planners exploit it. To succeed, a forward chaining algorithm
must carefully select its next action. In this paper, we
introduce a forward chaining algorithm that selects its next
action using heuristics that combine backward regression
and goal ordering techniques. Backward regression helps the
algorithm focus on actions that are relevant to the achieve-
ment of the goal. Goal ordering techniques strengthens
this filtering property, forcing the forward search process to
consider actions that are relevant at the current stage of the
search process. One of the key features of our planner is its
dynamic application of goal ordering techniques: we apply
them on the main goal as well as on all the derived sub-goals.
We compare the performance of our planner with FF – the
winner of the AIPS’00 planning competition – on a number
of well-known and novel domains. We show that our planner
is competitive with FF, outperforming it on more complex
domains in which sub-goals are typically non-trivial.

List of keywords: forward chaining, backward regres-
sion, goal ordering, relaxed problem

1 Introduction
Forward chaining is a popular strategy for solving classi-
cal planning problems. Early planning systems, such as
GPS (Korf 1985), used forward chaining but were quickly
overcome by regression-based methods such as partial-order
planning (Weld 1994) and, more recently, GRAPHPLAN
(Blum and Furst 1997). These methods were viewed as more
informed, or focused. However, with the aid of appropri-
ate heuristic functions, recent forward-chaining algorithms
(Bonet and Geffner 1999; Hoffman and Nebel ) have been
able to outperform other planners on many domains.

To succeed, a forward-chaining planner must be informed
in its selection of actions. Ideally, the action chosen at
the current state must bring us closer to the goal state. To
achieve this goal, recent forward-chaining planners use new,
improved heuristic functions in which regression techniques
play an important role. The idea of backward regression
through forward chaining was first explicitly stated by Mc-
Dermott (McDermott 1999). It was implicitly used in GPS

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and FF (Hoffman and Nebel ) and in its more general form
in GRAPHPLAN and its descendants (Blum and Furst 1997;
Kambhampati, Parker, and Lambrecht 1997; Koehler et al.
1997) (as a polynomial structure constructed in a direction
opposite to the main search direction). It was used also in
(Bacchus and Teb 1998) for relevance computation.

In this paper we extend regression-based relevance fil-
tering techniques with a dynamic goal-ordering heuristics.
This results in a planning algorithm – RO (Regression +
Goal-Ordering) – that has a better chance of choosing ac-
tions that are relevant and timely. The backward regression
heuristics used in our planner is somewhat similar to the one
used in GPS. That is, we construct a sequence of subgoals,
where the first subgoal is the main goal and the last subgoal
is satisfied in the current state. The difference between RO
and previous algorithms is in the way this subgoal sequence
is generated. More specifically, given the current subgoal in
the constructed sequence, the next subgoal is computed as
follows: we select the proposition that we believe should be
achieved first in the current subgoal – we use a goal ordering
heuristics to make this selection. Then, we select an action
that has this proposition as an add-effect. Finally, we add
the preconditions of this chosen action to the beginning of
the constructed sequence. Thus, we have a combination of a
backward regression method with a goal ordering technique,
where the ordering is computed dynamically for all subgoals
of the sequence of goals generated by the backward regres-
sion process.

The combination of backward regression with goal order-
ing is based on the following intuition: One of the main
goals of backward search in the context of forward chaining
algorithm is to avoid considering irrelevant actions. (Bac-
chus and Teb 1998). However, when a relevant action is in-
serted in an inappropriate place in the plan, we either obtain
a plan that is longer than necessary or we must perform ex-
pensive backtracking. By ordering subgoals, we strengthen
the filtering property of backward regression and reduce the
need for backtracking because we force the forward chain-
ing process to consider actions that are relevant at the current
stage of the search process.

Typically, goal ordering is done for the original goal only,
and prior to the initiation of search – it is static in na-
ture. Next, the problem is divided into smaller subprob-
lems, each of which can be solved separately (Korf 1985;

183

Proceedings of the Sixth European Conference on Planning



Koehler and Hoffman 2000). Dynamic ordering of proposi-
tions is often seen in CSP problems. It was used in the con-
text of GRAPHPLAN’s backward search, viewed as a CSP
problem, in (Kambhampati and Nigenda 2000). This pa-
per is among the first to use dynamic goal ordering in the
planning process, and the particular dynamic goal ordering
approach we introduce here is the main novel contribution
of this paper.

The rest of this paper is organized as follows: Section 2
provides a short review of related work. Section 3 describes
the proposed algorithm. In Section 4 we provide an empir-
ical comparison between our planner and the winner of the
AIPS 2000 planning competition, FF (Hoffman and Nebel
). The main conclusion of our experimental analysis is that
RO is competitive with FF, outperforming it on domains in
which the subproblems obtained after ordering the top level
goal are non-trivial. Finally, Section 5 concludes this paper.

2 Related Work

In this section we provide a short review of forward search
algorithms and goal ordering methods and their use in plan-
ning. This will help provide some of the necessary back-
ground and will place this work in its proper context.

2.1 Recent forward search algorithms

HSP The HSP algorithm (Bonet and Geffner 1999) is a for-
ward chaining algorithm without backtrack. Each step, the
action leading to the state with minimal approximated dis-
tance to the goal is chosen. This distance is approximated
by solving a relaxed problem in which the delete effects
of all actions were removed. Given this relaxed problem,
we approximate the distance from the current state cur to
a state s using the sum (or maximum) of the weights of
the propositions that hold in s. The weight of a proposi-
tion p is 0 if it belongs to cur. Otherwise, weight(p) =
minall acts achieving p 1 + dist(precond(act)), i.e., one
more than the minimal distance of the set of preconditions
of actions that achieve p.
FF FF (Fast Forward) (Hoffman and Nebel ) is a forward
search algorithm that selects an action at each step using
an approximated distance measure. The distance from the
current state to the goal is approximated by the plan length
for achieving the goal in a relaxed problem induced by the
current problem. FF uses GRAPHPLAN to solve the relaxed
problem. Because the relaxed problem does not have del-
effects, there are no mutually exclusive pairs of propositions
and actions in the problem. Therefore, it can be solved in
polynomial time. To make the measure near-optimal, vari-
ous heuristics for decreasing the length of the extracted so-
lution are applied.

The algorithm applies breadth-first search from the cur-
rent state s until it finds a state s′ that has a strictly better
value. The ordering technique from (Koehler and Hoffman
2000), described below, is applied to make FF more effec-
tive. FF won the AIPS 2000 planning competition.

2.2 Goal ordering methods
There has been much work on goal ordering methods and
their use in planning. Most of this work addresses the fol-
lowing four questions

1. How to order two propositions? (Hullen and Weberskirch
1999; Koehler and Hoffman 2000; Kambhampati and Ni-
genda 2000)

2. How to derive a total order on propositions given an or-
dering on all pairs of propositions? (Koehler and Hoffman
2000)

3. How to use a total order on goal propositions in planning?
(Korf 1985; Koehler and Hoffman 2000; Kambhampati
and Nigenda 2000)

4. How to incorporate propositions that are not in the top-
level goal into the goal order? (J.Porteous and L.Sebastia
2000)

For our purpose, the first and the third questions are the
most relevant.

An interesting classification of methods determining the
order between two given propositions is introduced in
(Hullen and Weberskirch 1999). According to it, we may
conclude that p < q if at least one of the following condi-
tions holds.

1. Goal subsumption. To achieve q we must achieve p

2. Goal clobbering. When achieving p we destroy q if it
existed in some previous state. An example of goal clob-
bering is the pair of propositions on(1, 2) and on(2, 3) in
the BlocksWorld problem. on(2, 3) has to be achieved be-
fore on(1, 2), because on(1, 2) is destroyed in the process
of achieving on(2, 3)

3. Precondition violation. Achievement of q makes
achievement of p impossible (dead-end).

Two criteria for ordering propositions based on the prin-
ciple of goal clobbering are given in (Koehler and Hoffman
2000). A modified version of the first of them is used is the
proposed algorithm and described in detail in the next sec-
tion.

A widespread method for using a goal ordering in plan-
ning is to iteratively apply the planning algorithm to achieve
increasing subsets of the goal. For example if we have a goal
ordering (p1, ..., pn), then first we try to achieve a state s1 in
which {p1} holds, starting at the initial state. Next, we try
to achieve {p1, p2} starting at s1, etc. The last plan achieves
the required goal from s1, . . . , sn−1. By concatenating the
resulting plans, we get a complete plan.

3 Algorithm description.
We now proceed to describe the RO planning algorithm. In
Section 3.1 we describe the algorithm and its action selec-
tion heuristic. In Section 3.2 we provide more details on
some of the subroutines used during action selection. In Sec-
tion 3.3, we discuss some optimization implemented in the
current version of RO. Finally, in Section 3.4., we demon-
strate the work of RO on a running example.

184



ComputeP lan(CurState, n, CurP lan)
1. For i = 1 to Num Feasible Do //Num Feasible is the number of actions feasible in the current state
2. Begin
3. If Goal ⊂ CurState then return CurP lan
4. If n = 0 then return FAIL
5. act := BackwardReg(CurGoal,MaxDeep) //this function chooses an action which was not chosen before
6. NewCurState := apply(CurState, act)
7. NewCurP lan := append(CurP lan, act)
8. Answer = ComputeP lan(NewCurState, n− 1, NewCurP lan)
9. If Answer is not FAIL then return (Answer)
10. End
11. Return FAIL

Figure 1: The main algorithm

3.1 The Proposed Algorithm and its Action
Selection Heuristic

RO is a forward chaining planner with chronological back-
tracking. It receives a domain description as input and an
integer n denoting search-depth limit (the default value of n
is 2000).

The first step of RO is to compute some data that will be
useful during the search process. In particular RO constructs
an approximated set of pairs of mutually exclusive proposi-
tions. It is known that exact computation of all mutual exclu-
sive pairs of preconditions is not less hard than the planning
problem (Blum and Furst 1997). Therefore, only approxi-
mation algorithms are acceptable in this case. RO obtains an
approximate set of mutual exclusive pairs as the complement
of a set of reachable pairs which is found by a modification
of Reachable-2 algorithm (Brafman 1999).

Next, a standard depth-first search with chronological
backtracking is performed (Figure 1). (Note, that to obtain
the desired plan, we have to run this function on the ini-
tial state and the empty plan). The heart of this algorithm
is the heuristic selection of action that will be appended to
the current plan (line 5). This heuristics is based on back-
ward search without backtracks (backward regression). The
depth of this regression phase, MaxDeep, is a parameter of
the planner (the default value of MaxDeep is 50). The code
of this procedure is given in Figure 2.

As we can see from the code in Figure 2, this procedure
builds a sequence of subgoals, starting with the main (i.e.,
original) goal as its first element. At each iteration, the cur-
rent (last) subgoal in this sequence is processed as follows:
its propositions are ordered (line 2) and the minimal propo-
sition that is not satisfied in the current state (the required
proposition) is selected (line 3). Next, an action achieving
this proposition is chosen (line 4). If this action is feasi-
ble in the current state, it is returned. Otherwise, the set of
preconditions of this action is appended to the subgoal se-
quence becoming the new current subgoal, and the process
is repeated.

We see that RO combines goal ordering and backward re-
gression techniques: each time a new subgoal is selected, its
propositions are ordered, and this ordering is used to select
the next action for the regression process. This combination
is the main novel contribution of this work.

3.2 Auxiliary procedures for the proposed
forward search heuristics

In this section, we describe two auxiliary procedures (lines
2 and 4 of the BackwardReg function). The first orders
the propositions of a given subgoal. The second finds an
action achieving the given proposition and satisfying some
additional constraints.

Goal ordering is based on a number of criteria. The main
criterion is a modified version of the GRAPHPLAN criterion
from (Koehler and Hoffman 2000). This criterion is men-
tioned in 2.2. It states that for two propositions p and q, p
must be achieved before q if every action achieving p con-
flicts with q. The modified version used here states that p
must be achieved before q if the percent of actions conflict-
ing with q among actions achieving p is more than the per-
cent of actions conflicting with p among actions achieving
q.

Thus, if for two given propositions p and q the “chance”
that q will be destroyed while achieving p is higher than the
“chance” that p will be destroyed while achieving q, it is
preferable to achieve p before q. The original version of
this criterion was derived from analysis of problems such
as BlocksWorld, HanoiTower and so on, where it is directly
applicable. The proposed modification of this method ex-
tends its applicability. For example it is applicable for many
Logistics-like problem.

Intuitively, the action selection function uses the follow-
ing rule: Select an action that can be the last action in a plan
achieving the required proposition from the current state. In
particular, the action selection function performs three steps.
First, it computes the relevant set which contains the re-
quired proposition and all propositions that are mutually
exclusive with it. The non-relevant set is determined as the
complement of the relevant set. Next, it builds a transition
graph whose nodes correspond to the elements of the rele-
vant set. This graph contains an edge (a, b) for each action
with a precondition a and an add-effect b. Finally, it selects
an action corresponding to the last edge in a path from a
proposition that is true in the current state to the required
proposition. If there is no such path, it returns FAIL. If
there are few such paths, it chooses a path with the minimal
number of non-relevant preconditions of the corresponding
actions (in order to find a path as close as possible to a ”real”
plan).

185



BackwardReg(CurGoal,MaxDeep)
1. If MaxDeep = 0 Choose randomly an action feasible in the current step that was not chosen before, and return it
2. Order propositions of CurGoal by order of their achievement
3. Let CurProp be the proposition of the CurGoal, which is minimal in CurGoal \ CurState
4. Choose an action act achieving CurProp that was not chosen before in the CurState.
5. If it is not possible to choose such an action, then choose randomly an action feasible in the current step that was not
chosen before, and return it
6. If act is feasible in the current state then return act
7. Let NewCurGoal be the set of preconditions of act
8. Return(BackwardReg(NewCurGoal,MaxDeep− 1))

Figure 2: The Main Heuristic of the Algorithm

3.3 Optimizations
The actual implementation of RO introduces a number of op-
timizations to the above algorithm. We describe them next.

The first feature is a more complicated backtrack con-
dition. There are basically two conditions that can trigger
backtracking: either the plan exceeds some fixed length or
a state has been visited twice. However, the first backtrack
must be triggered by the first condition. The state we back-
track to is determined as follows: If no state appears more
than once (i.e., we backtracked because of plan length), we
simply backtrack one step. If a state appears twice in the
current state sequence, we backtrack to the state prior to
second appearance of the first repeated state. For example,
suppose our maximal plan length is 6, the state sequence is
(A,C,B,B,C,D), and we have not backtracked before. In
this sequence, both B and C appear twice. However, B is
the first state to occur twice. Therefore, we backtrack to be-
fore the second appearance of B. Thus, the new sequence,
after backtracking, is (A,C,B). From this point on, we
backtrack whenever the current state appears earlier in the
sequence, even if plan length is smaller than the maximal
length.

The second optimization is the memoization of the se-
quence of subgoals generated by the main heuristics. In-
stead of recomputing the whole subgoal sequence in each
application of the search heuristic, we use the subgoal se-
quence that was constructed in the previous application (if
such a sequence exists). The modified algorithm eliminates
from the tail of the subgoal sequence all subgoals that were
achieved in the past, and continues construction from the re-
sulting sequence.

This memoization method has two advantages. First, it
saves time by avoiding the computation of the full subgoal
sequence. Second, and more importantly, is that it maintains
a connection between subsequent applications of the search
heuristics. This way, each application of the search heuristic
application builds on top of the results of the previous ap-
plication and avoids accidental destruction of these results.
The running example in the next section demonstrates the
usefulness of this approach.

3.4 A Running Example
Consider a well-known instance of the BlocksWorld do-
main called the Sussman Anomaly. It is an instance
with three blocks, its initial state is {on(3, 1), on −
table(1), clear(3), on− table(2), clear(2)} and the goal is

{on(1, 2), on(2, 3)}. Note, there is only a single reachable
state that satisfies the goal criteria. In this state, the propo-
sition on − table(3) holds. However, on − table(3) is not
stated explicitly in the goal. This raises a difficulty for algo-
rithms that employ goal ordering because they are strongly
affected by interactions between actions in the goal. For
example, in our case, the propositions of the goal have to
be ordered as follows (on(2, 3), on(1, 2)). However, before
achieving on(2, 3), it is necessary to achieve on− table(3).

Let us run RO on this instance. We consider the simplest
version of the BlocksWorld domain with two actions only:
one for moving a block from the table on top of another
block, and one for moving a block to the table. Below we
show the result of each application of the search heuristics.

First application.
The current state is the initial state, i.e. {on(3, 1)on −

table(1), clear(3), on−table(2), clear(2)}, the subgoal se-
quence is not constructed yet, so it needs to be constructed
from scratch. Its first subgoal is the main goal which is or-
dered as (on(2, 3), on(1, 2)). The required proposition of
this level is on(2, 3), RO selects action put − on(2, 3) to
achieve this proposition. This action is feasible in the cur-
rent state and it is returned, so the first application is finished
here. Note, that the first application of the search heuristics
selects a wrong action!

Second application.
The current state is {on(2, 3), on(3, 1), on −

table(1), clear(2)}.
The only subgoals in the subgoal sequence are

(on(2, 3), on(1, 2)). RO chooses the required proposi-
tion to be on(1, 2) and selects action put − on(1, 2) to
achieve this proposition. As we can see, this action is
not feasible in the current state and so the subgoal se-
quence is extended. Now, it contains both the main goal
and the preconditions of action put − on(1, 2), namely,
it is ((on(2, 3), on(1, 2))(clear(1), clear(2))). Note, that
the ordering of the second subgoal is chosen randomly and
it does not matter here. Now, the required proposition
is clear(1). The action selection heuristic chooses action
take−out(3, 1). This action is also not feasible and this fact
leads us to further extend the subgoal sequence. The next or-
dered subgoal in this sequence will be (on(3, 1), clear(3))
(again, the order of the propositions does not matter here).
The new required proposition will be clear(3). To achieve
this proposition, RO selects action take − out(2, 3), which
is returned, because it is feasible in the current state. Note
that in spite of the fact that after an application of this action

186



we arrive at a state that appeared before, backtracking is not
performed because the first backtrack occurs only once we
exceed the maximal plan length – and this did not occur, yet.

Third application.
The new current state is the initial state! How-

ever, we have learned something in the process, and this
is reflected in the sequence of subgoals we now have:
((on(2, 3), on(1, 2))(clear(1), clear(2))). (The last sub-
goal was eliminated because it was fully achieved). This
information was not available when we started our search.
In fact, the new required proposition is clear(1), a propo-
sition that does not appear in the original goal. Because we
have chosen it as the required proposition, we will not repeat
past mistakes. The algorithm selects action take−out(3, 1)
to achieve this proposition. This action is feasible in the cur-
rent state, therefore, it is returned.

During the fourth and the fifth application, the algorithm
achieves the main goal in a straightforward way: it puts
block 2 on block 3 and then block 1 on block 2.

The resulting plan is : (put − on(2, 3), take −
out(2, 3), take− out(3, 1), put− on(2, 3), put− on(1, 2))

Obviously, this plan is not optimal. The first two appli-
cations were spent constructing a subgoal sequence which
then forced RO to select the right actions. This feature of
RO frequently leads to non-optimal plans. However, we be-
lieve that the resulting non-optimal plan usually contains a
near-optimal plan as a subsequence. Therefore, we can run
a plan refinement algorithm (Bacchus and Teb 1998) on the
output of RO and obtain a near optimal plan. In some cases,
this may be a more effective approach for obtaining a near
optimal plan.

4 Experimental Analysis
To determine the effectiveness of RO, we performed a num-
ber of experiments comparing its performance to the FF
planner – the winner of the AIPS 2000 planning competi-
tion. These results are described and analyzed in this sec-
tion.

All experiments were conducted on a SUN Ultra4 with
1.1GB RAM. Each result is given in the form A/B where
A is the running time for the given instance, and B is the
length of the returned plan. The input language is a restricted
version of PDDL without conditional effects.

The main conclusion of our experimental analysis is that
RO is competitive with FF, outperforming it on domains in
which the subproblems obtained after ordering the top level
goal are non-trivial.

4.1 Classical Domains
In this subsection we consider well known classical do-
mains, such as the BlocksWorld, the Hanoi Tower, and two
versions of the Logistics. The results are presented in the
table below.

We can see that RO is not competitive with FF on the
BlocksWorld. This stems from the simple nature of the sub-
problems obtained after goal ordering in this domain which
make the additional computational effort of RO redundant in
this case.

BlocksWorld Hanoi Tower
size RO FF size RO FF

10 0.4/12 0.08/12 6 0.2/63 0.12/63
15 2/18 0.14/17 7 0.3/127 0.3/127
20 7/27 0.4/26 8 0.6/255 1.3/255
25 19.9/36 1.01/35 9 1.3/511 3.61/511
30 46.5/44 2.64/44 10 2.9/1023 23.06/1023

Usual Logistics Logistics With Car Transportation
size RO FF size RO FF

10 0.8/105 0.65/95 10 0.7/109 0.47/80
20 8.5/210 10.5/191 20 7.3/239 8.83/165
30 63.4/287 100/312 30 31.2/349 57.29/250
40 127.9/419 248.3/383 40 92.7/479 234.17/335
50 314.3/522 806.3/479 50 226.3/583 813/420

Table 1: BlocksWorld Running Results

However, for some problems harder than BlocksWorld,
this computational effort is worthwhile. One such example
is the HanoiTower domain. On this domain, FF outperforms
RO for small problem sizes (less than 7 discs). But when the
number of discs is larger than 7, RO outperforms FF, with the
difference increasing as the domain size increases.

The last example in this part is the Logistics domain. We
consider two versions of this problem. The first one is the
classic domain. The second one is a slight modification of
the first, where airplanes can load and unload cars.

An instance of the Logistics is mainly characterized by the
initial and final distributions of packages among cities. If the
number of cities is small relative to the number of packages
or if the majority of packages have the same initial and final
locations, FF outperforms RO. However, when packages are
distributed among many cities and their final locations are
also different, RO outperforms FF. Table 1 contains running
times for both version on the Logistics domain. In all the
examples we used, each city contained exactly one package
and the initial and final location of each package was differ-
ent. In addition, each instance of the second version contains
a single car only.

4.2 Modified Classical Domains
In addition to classical domains, we considered two novel
domains which combine features of existing domains.

Combination of the Logistics with the BlocksWorld
The first such domain combines aspects of the Logistics
and BlocksWorld domains. Suppose we have n locations
and m objects placed in these locations. A proposition
at(i, k) means that object i is at location k. If object i can
move from location l to location k, this fact is expressed
as moves(i, k, l). We assume the graph of moves to be
undirected for each object, that is, moves(i, k, l) implies
moves(i, l, k). Objects can transport each other. Proposi-
tions transports(i, k) and in(i, k) mean that the object i
can transport the object k and that the object i is within the
object k respectively. For this domain, we assume that the
transport graph is a DAG. The transport graph is defined as
follows: the nodes are the objects and an edge (a, b) appears
in it iff the object a can transport the object b.

The BlocksWorld features of this domain are expressed by
the fact that we can put one object on another. The propo-
sition expressing BlocksWorld-like relations are clear(i),

187



at(i, k) and on(i, k). Note, that at(i, k) means that the ob-
ject i is “on the table” at the location k. This type of proposi-
tion plays the role of the connecting link between these two
combined domains.

The set of actions in this domain is the union of the actions
in the Logistics and the BlocksWorld domain with a few
small modifications. In particular, an object can be loaded
into another object or moved between locations only if it is
”clear” and ”on ground”; also we can put one object into
another only if they are in the same location and not within
another object.

This domain has an interesting property that neither the
Logistics nor the BlocksWorld have: Top level goals interact
with intermediate goals. An object, which is in intermediate
level of a tower at some location, may be required for trans-
portation of another object. To do so, we must remove all
the objects above this object.

To try planners on this domain, we constructed a simple
set of examples, in which the planner have to build towers
of blocks in a few different location, and the moving cubes
must be in bottom places of these towers. FF behaves badly
on this set: it runs more than hour on an example with 11
cubes. However much larger examples of this domain are
tractable for RO. For example, it orders 21 cubes in 50 sec-
onds and produces plan of length 628 steps.

A Modified Hanoi Tower A second domain we consider
is a modification of the Hanoi Tower domain. In this mod-
ified version the number of locations is arbitrary. Initially
all discs are in the first location. The task is to move them
to the last location using a number of rules. These rules are
almost the same as the Hanoi Tower domain rules with two
exceptions: The first one is that if a disc is placed on the
final location it can’t be taken back from this location. The
second one is that all discs are enumerated and it is possi-
ble to put disc number a on disc number b iff b = a + 1 or
b = a + 2. In essence, this domain is a simplified form of
the FreeCell domain.

The difficulty of an instance in this domain depends on
two factors: the number of discs and the number of cells.
The latter determines the constrainedness of the instance
(the fewer the cells, the more constrained the instance is).

For small number of discs (less than 12) FF outperforms
RO independently of constrainedness of the processed in-
stance. This is the case for weakly constrained instances
with large number of discs, as well. However, tightly con-
strained instances of this domain are practically intractable
for FF. The table below presents running results of RO for
instances whose solution for FF takes more than one and a
half hours. The size of an instance is given in form A/B,
where A is the number of discs, B is the number of loca-
tions except for the final one.

instance time/length instance time/length
17/5 527.3/933 25/8 152/287
18/6 76/279 26/9 155/243
20/7 52/160 28/9 269/207
22/7 62/185 30/9 550/303
24/8 120/265

Table 2: Running times for the Modified Hanoi Tower do-
main

5 Conclusions
In this paper we presented a forward search planning algo-
rithm. An implementation of this algorithm was shown to be
competitive with FF on domains in which subproblems ob-
tained as a result of goal ordering are themselves non-trivial.
Our algorithm makes a number of novel contributions:

• A forward search heuristics combining backward regres-
sion and goal ordering techniques.

• A complex memoization technique for reusing subgoal
sequences.

• A novel combination of the Logistics and the
BlocksWorld domain.

• A better understanding of the weaknesses and strengths of
FF.

References
Bacchus, F., and Teb, Y. 1998. Making Forward Chaining Rele-
vant. AIPS-98 54–61.
Blum, A., and Furst, M. 1997. Fast Planning Through Planning
Graph Analysis. Artificial Intelligence 90:281–300.
Bonet, B., and Geffner, H. 1999. Planning as Heuristic Search:
New Results. Artificial Intelligence, Proceedings of the 5th Euro-
pean Conference on Planning 359–371.
Brafman, R. I. 1999. Reachability, Relevance, Resolution and the
Planning as Satisfiability Approach. In Proceedings of the IJCAI’
99.
Hoffman, J., and Nebel, B. The FF PLANNING SYSTEM:FAST
PLAN GENERATION THROUGH EXTRACTION OF SUBPROB-
LEMS. to appear in JAIR.
Hullen, J., and Weberskirch, F. 1999. Extracting Goal orderings
to Improve Partial-Order Planning. PuK99 130–144.
J.Porteous, and L.Sebastia. 2000. Extracting and ordering land-
marks for planning. Technical report, Dept. of Computer Science,
University of Durham.
Kambhampati, S., and Nigenda, R. 2000. Distance-based Goal-
ordering Heuristics for Graphplan. AIPS2000 315–322.
Kambhampati, S.; Parker, E.; and Lambrecht, E. 1997. Under-
standing and Extending Graphplan. 4th European Conference of
Planning 260–272.
Koehler, J., and Hoffman, J. 2000. On Reasonable and Forced
Goal Ordering and their Use in an Agenda-Driven Planning Al-
gorithm. JAIR 12 339–386.
Koehler, J.; Nebel, B.; Hoffman, J.; and Dimopoulos, Y. 1997.
Extending Planning Graphs to ADL Subset. ECP97 273–285.
Korf, R. E. 1985. Macro-Operators: A Weak Method for Learn-
ing. Artificial Intelligence 26:35–77.
McDermott, D. 1999. Using regression-match graphs to control
search in planning. Artificial Intelligence 109(1-2):111–159.
Weld, D. 1994. An Introduction to Least Commitment Planning.
AI Magazine 15(4):27–61.

188




