
Flexible Integration of Planning and Information Gathering

David Camacho and Daniel Borrajo and Jos

´

e M. Molina and Ricardo Aler

Universidad Carlos III de Madrid, Computer Science Department
Avenida de la Universidad n 30

CP 28911, Leganés, Madrid, Spain
{dcamacho, dborrajo, molina}@ia.uc3m.es, aler@inf.uc3m.es

Abstract

The evolution of the electronic sources connected through
wide area networks like Internet has encouraged the develop-
ment of new information gathering techniques that go beyond
traditional information retrieval and WEB search methods.
They use advanced techniques, like planning or constraint
programming, to integrate and reason about hetereogeneous
information sources. In this paper we describe MAPWEB.
MAPWEB is a multiagent framework that integrates planning
agents and WEB information retrieval agents. The goal of this
framework is to deal with problems that require planning with
information to be gathered from the WEB. MAPWEB decou-
ples planning from information gathering, by splitting a plan-
ning problem into two parts: solving an abstract problem and
validating and completing the abstract solutions by means of
information gathering. This decoupling allows also to address
an important aspect of information gathering: the WEB is a
dynamic medium and more and more companies make their
information available in the WEB everyday. The MAPWEB
framework can be adapted quickly to these changes by just
modifying the planning domain and adding the required in-
formation gathering agents. For instance, in a travel assistant
domain, if taxi companies begin to offer WEB information, it
would only be necessary to add new planning operators re-
lated to traveling by taxi, for a more complete travel domain.
This paper describes the MAPWEB planning process, focus-
ing on the aforementioned flexibility aspect1.

Introduction

In recent years there has been a lot of work in Web in-
formation gathering. Information gathering intends to in-
tegrate a set of different information sources with the aim
of querying them as if they were a single information
source (Fan and et al. 1999; Lambrecht and Kambhampati
1997). Many different kinds of systems, named mediators,
have been developed. They try to integrate information from
multiple distributed and heterogeneous information sources,
like database systems, knowledge bases, web servers, elec-
tronic repositories. . . (an example is the SIMS (Knoblock
et al. 1997) architecture). In order that these systems are

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Current affiliation of David Camacho: Universidad Au-
tonoma de Madrid, Computer Science Department, email:
david.camacho@uam.es

practical, they must be able to optimize the query process
by selecting the most appropriate WEB sources and order-
ing the queries. For this purpose, different algorithms and
paradigms have been developed. For instance, Planning by
Rewriting (PbR) (Ambite and Knoblock 1998; 1997) builds
queries by using planning techniques.

Other examples of information gathering systems are:

• Ariadne (Knoblock et al. 1997): This system includes a
set of tools to construct wrappers that make WEB sources
look like databases. It also uses mediation techniques
based on SIMS.

• Heracles (Knoblock et al. 2001): This framework is used
to develop different information assistant systems that use
a set of information agents (Ariadne, Theseus, Electric
Elves). It uses a dynamic, hierarchical constraint prop-
agation network to integrate the different information
sources. Two assistant systems have been implemented:
The Travel Planning Assistant (specialized in assisting
tourists to plan their trips) and The WorldInfo Assistant
(for a user-specified location, it retrieves information like
weather, news, holidays, maps, airports, . . .).

• WebPlan (Hullen, Bergmann, and Weberskirch 1999): it is
a WEB assistant for domain-specific search on the Inter-
net based on dynamic planning and plan execution tech-
niques. The existing planning system CAPlan has been
extended in different ways in order to deal with incom-
plete information, information seeking operators, user in-
teraction, and interleaving planning and execution. Web-
Plan is specialized in localizing specific PC software on
the Internet.

Some of the previous approaches use planning techniques
to select the appropriate WEB sources and order the queries
to answer generic user queries. That is, they use planning as
a tool for selecting and sequencing the queries. In this paper
we describe MAPWEB, an information gathering system
that also uses planning, but with a different purpose (some
preliminary work can be found in (Camacho, Molina, and
Borrajo 2000; Camacho et al. 2001)). MAPWEB uses plan-
ning for both determining the appropriate generic sources
to query and solving actual planning problems. For in-
stance, in this paper, the MAPWEB framework is applied

10

Proceedings of the Sixth European Conference on Planning

to a travel planning assistant domain (e-tourism),2 where the
user needs to find a plan to travel along several places. Each
plan not only determines what steps the user must perform,
but which information sources should be accessed. For in-
stance, if a step is to go from A to B by plane, the system
gives the user the information of what airplane companies
should be consulted for further information.

This domain is similar to the travel planning assistant
built using the Heracles framework. However, Heracles con-
strained network, which is a kind of plan schema, needs to
be reprogrammed everytime the planning domain changes.
MAPWEB tries to be more flexible by using planning tech-
niques to create the plans. For instance, if it is desired to
add a new information source to the system, it is only nec-
essary to change the planning domain instead of reprogram-
ming the plan schema by hand. For instance, if taxi fares
were made suddenly available in the WEB, it would only be
necessary to add a move-by-taxi operator among with the as-
sociated WebAgent.3 Actually, MAPWEB can handle plan-
ning operators which are not associated to any information
source (because it is not yet available). This is useful, be-
cause even if no specific information is supplied, at least the
user is told that he can fulfill that step by taxi.

MAPWEB System Architecture

MAPWEB is structured into several logic layers whose pur-
pose is to isolate the user from the details of problem solv-
ing and WEB access. More specifically, we considered four
layers between users and the WEB : the physical world
(the users), the reasoning layer (that includes user agents,
planning agents, and control agents), the access information
layer (that contains WebAgents to retrieve the desired in-
formation), and the information world (which represents the
available information). This four-layer architecture can be
seen in Figure 1.

Figure 1: MAPWEB three-layer architecture.

2This domain is a modified version of the Logistics domain.
3A WebAgent is an information agent specialized in consulting

a particular information source.

MAPWEB deploys this architecture using a set of hetero-
geneous agents.Next, each of these types of agents will be
described:
• UserAgents: They pay attention to user queries and dis-

play to users the solution(s) found by the system. When
an UserAgent receives problem queries from the users,
it gives it to the PlannerAgent and when it answers back
with the plans, they provide them to the user.

• ControlAgents: They handle several control functions
like the insertion and deletion of agents in the system and
communication management.

• PlannerAgents: They receive an user query, build an ab-
stract representation of it, and solve it by means of plan-
ning. Then, the PlannerAgent fills in the information de-
tails by querying the WebAgents. The planner that has
been used by the PlannerAgent is PRODIGY4.0 (Veloso
et al. 1995).

• WebAgents: Their main goal is to fill in the details of the
abstract plans obtained by the PlannerAgents. They obtain
that information from the WEB.
The way these agents cooperate is as follows. First, the

user interacts with the UserAgent to input his/her query.
The query captures information like the departure and return
dates and cities, one way or return trip, maximum number of
transfers, and some preference criteria. This information is
sent to the PlannerAgent, which transforms it into a planning
problem. This planning problem retains only those parts that
are essential for the planning process, which is named the
abstract representation of the user query. PRODIGY4.0 pro-
vides several abstract solutions to the user query. The plan-
ning operators in the abstract solutions require to be com-
pleted with actual information that can be retrieved from the
WEB. To accomplish this, the PlannerAgent sends informa-
tion queries to specialized WebAgents, that return several
records for every information query. Then, the PlannerAgent
integrates and validates the solutions and returns the data to
the UserAgent, which in turn displays it to the user. MAP-
WEB agents use a subset of the KQML speech acts (Finin et
al. 1994). The whole process will be described in full detail
in the next section.

The Planning Process

As mentioned before, in MAPWEB, the information gath-
ering process is carried out by a set of WebAgents, but this
process is guided by the PlannerAgent that reasons about the
requested problem and the different information sources that
would be available.

The planning process is divided into two parts: solving an
abstract problem, and completing it with information gath-
ered from the WEB. Planning is decoupled this way because
of two reasons:

• The abstract planning problem is easier to solve by clas-
sical planners. This is because if all the information about
all the available flights, all possible trains, etc. was in-
cluded in the planning process, planning would be unfea-
sible.

11

• It is not necessary to access the WEB during the planning
process. Queries to the WebAgents are carried out only
when plans are ready. This allows to reduce the number
of queries, because only those queries that are required
by the solution are ever made.
Planning works as follows. First, the PlannerAgent re-

ceives a query from any UserAgent. This query is analyzed
and translated into an abstract planning problem. Second,
the PlannerAgent uses its own skills and knowledge about
the problem and tries to solve it. If the solving process is
successful, the PlannerAgent has a set of abstract solutions.
These solutions are too general and only have the essen-
tial information for the planning process. Those abstract so-
lutions need specific information to complete and validate
them. The PlannerAgent builds a set of information queries
(queries to other agents in the system to request specific in-
formation). It is important to try to optimize the number of
queries due to the high number of possible instantiations.
When the queries have been built, the PlannerAgent selects
the set of WebAgents that will be asked. Finally, when the
WebAgents answer with the information found in the WEB
(if WebAgents are successful) the PlannerAgent integrates
all the specific information with the abstract solutions to
generate the final solutions that will be sent to the UserA-
gent. In Figure 2 the modular description of the planning
process is shown.

Figure 2: Planning Process developed by the PlannerAgent.
The user query is transformed into an abstract planning
problem, which is subsequently solved by PRODIGY4.0.
Each solution is partially instantiated by means of domain
dependent heuristics. Every operator in a solution generates
several WEB queries, which is sent to the appropriate We-
bAgents by using the agent hierarchy. The agents return sev-
eral records, that are used to complete and validate the ab-
stract solutions.

The next subsections explain this process in detail by fo-
cusing in the data structures used by each of the relevant
agents: the user query generated by the UserAgent, the ab-
stract problem, the abstract solutions, the specific knowledge
used by the PlannerAgent, and finally the specific informa-
tion records retrieved by the WebAgents.

The User Query

The planning process starts when the user supplies a prob-
lem to be solved. A user query is a sequence of stages. Each
stage is a template that represents a leg of the trip, and con-
tains several fields to be filled by the user. Table 1 shows an

Leg Stage Date Restrictions N Transfers
1 Turin ! Madrid Sep. 11th Plane or train 0 or 1
2 3 nights stay Sep. 11th < 15.000 pts -
3 Madrid ! Toledo Sep. 14th Plane or train 0 or 1
4 Toledo ! Turin Sep. 14th Plane or train 0 or 1

Table 1: A user problem to go from Turin to Madrid by air-
plane or train.

instance of a possible user query. It will be used to illustrate
the rest of the article. This query is then sent to the Planner-
Agent.

The planning domain and the abstract solutions

In order to solve abstract problems, PRODIGY4.0 requires
a domain where the planning operators are described. Us-
ing planning at this stage (instead of using pre-programmed
plans) provides two main advantages:

1. Flexibility: the system can be adapted to many different
versions of travel domains and problems by just changing
the domain description or the abstract problem generation
method, respectively.

2. Easy integration of new WEB sources. The WEB is a dy-
namic medium: more and more companies make their in-
formation available in the web everyday. If a new infor-
mation source (like taxi fares) is made available, MAP-
WEB can be adapted quickly by just adding a new plan-
ning operator and establishing a relation with a WebAgent
specialized in gathering the information from the WEB.

The abstract problem would be given to the PlannerAgent
planner (PRODIGY4.0) which would obtain several possi-
ble abstract solutions. In this case, the planner would reply
with the plans shown in Figures 3 (solutions with 0 transfers)
and 4 (1 transfer).

Figure 3: Abstract solutions generated by PRODIGY4.0 for
Leg 1 with 0-Transfers.

This is a set of abstract plans that contain no actual de-
tails. Some of the plan steps might not even be possible
because, for instance, there are no companies linking two
cities. Therefore, those plans need to be validated and com-
pleted. The PlannerAgent acomplishes this task in the fol-
lowing way:

1. The abstract steps in the solution contain unbound vari-
ables that relate to transfer cities. They need to be bound

12

Figure 4: Abstract solutions generated by PRODIGY4.0 for
Leg 1 with 1-Transfers.

before the WebAgents are queried. The PlannerAgent re-
stricts the number of bindings by applying a geographic
heuristic. This is achieved as follows:
• If the origin and arrival cities belong to the same coun-

try, only the cities in that country are considered as pos-
sible transfer cities.

• Else, if the origin and arrival cities belong to the same
continent, only the cities of that continent are consid-
ered.

• Otherwise, all cities are considered.

In the case of the first leg of the trip, as Turin and Madrid
belong to Europe, we extract the cities that belong to this
continent (currently, about 30).
Table 2 displays the queries that would be generated in
this case.

Query send to the WebAgents N? Transfers
(travel-by-airplane user1 plane0? Turin Toledo) 0
(travel-by-train user1 train0? Turin Toledo) 0
(travel-by-airplane user1 plane0? Turin Alicante) 1
(travel-by-airplane user1 plane0? Turin Barcelona) 1
(travel-by-airplane user1 plane0? Turin Paris) 1
(travel-by-train user1 train0? Turin Madrid) 1
.

Table 2: Queries partially instantiated

2. Planning operators of the abstract solutions and web
sources are related by means of a WebAgent hierarchy.
This hierarchy is used by the PlannerAgent to select the
relevant WebAgents that will be used to obtain the infor-
mation. This hierarchy allows the PlannerAgent to know
which WebAgents know how to retrieve the required in-
formation. In Figure 5 a description of this hierarchy is
shown.

3. Finally the PlannerAgent uses the previous infor-
mation to build a set of queries that will sent
to the selected WebAgents. If a planning opera-
tor is repeated in different abstract solutions, it is
only considered once, to avoid repeating queries.

Figure 5: Agents Hierarchy. It describes all the available
agents in MAPWEB and their information gathering skills.

For instance, in the solutions for 1-Transfer prob-
lems the operator (<travel-by-airplane user1
plane0 airport0 airport1>) would be trans-
lated as shown in Table 3:

Query send to the WebAgents WebAgent
(travel-by-airplane user1 plane0? Turin Toledo) Iberia, Amadeus-Flights
(travel-by-train user1 train0? Turin Toledo) Renfe, RailEurope
(travel-by-airplane user1 plane0? Turin Alicante) Iberia, Amadeus-Flights
(travel-by-airplane user1 plane0? Turin Barcelona) Iberia, Amadeus-Flights1
(travel-by-airplane user1 plane0? Turin Paris) Iberia, Amadeus-Flights
(travel-by-train user1 train0? Turin Madrid) Renfe, RailEurope
.

Table 3: Queries partially instantiated to the appropriate We-
bAgents.

Those queries (and all the additional information given
by the UserAgent) are sent to several WebAgents that know
about airplane travel, so that variable plane0? is instanti-
ated as well.

Filling the Abstract Solutions

The information queries are sent to the selected WebAgents
with the specific data (departure and arrival times, travel
cost, etc. . .) and the query that the PlannerAgent needs.
With this information the WebAgents automatically build
the specific WEB query that will be sent to the WEB infor-
mation sources the agent is specialized in. For every query,
each WebAgent will return to the PlannerAgent a list of
records by filling a template whose structure is shared by all
the agents (there exist different templates depending on the
kind of information). In Table 4 some of the retrieved flight-
records and train-records provided by different WebAgents
are shown for the Leg 1 in the travel example.

Finally, those records are received by the PlannerAgent
that will use them to complete the abstract solutions. If
the WebAgents return no records for a step of the ab-
stract solution, that particular solution is rejected. How-
ever, it is important to remark that if it is known in ad-
vance that there are no WEB sources to complete a partic-
ular step (for instance, <MOVE-BY-LOCAL-TRANSPORT
taxi ...>), then the user is told that s/he has to carry out
that step, even though no specific information about that step

13

Inf-FLIGHTS record1 record2 record3 Inf-TRAINS record1 record2 record3
WebAgent Iberia Amadeus Amadeus WebAgent Renfe Renfe Renfe

air-company Iberia Iberia Portugalia train-company RENFE RENFE RENFE
http-address w3.iberia.es null null http-address w3.renfe.es w3.renfe.es w3.renfe.es
flight-id IB8797 IB8819 NI711 train-id 07054 07056 07058
ticket-fare 70641 null null ticket-fare 780 780 780
currency ESP ESP ESP currency ESP ESP ESP
flight-duration 3h45min 2h00min 2h10min departure-city MAD MAD MAD
airp-depart-city TRN TRN TRN departure-date 11-09-01 11-09-01 11-09-01
departure-date 11-09-01 11-09-01 11-09-01 departure-time 6:30 8:30 10:14
airp-arrival-city MAD MAD MAD arrival-city TOL TOL TOL
return-date null null null arrival-date 11-09-01 11-09-01 11-09-01
class Tourist null null arrival-time 7:53 9:47 11:30
n? passengers 1 1 1 class Tourist Tourist Tourist
round-trip one-way one-way one-way

Table 4: Retrieved records by the WebAgents.

is attached. The set of completed solutions are finally sent to
the UserAgent that requested the information.

Experimental Evaluation

The aim of this section is to carry out several experi-
ments with MAPWEB to evaluate its performance. First, the
example-trip we have used to illustrate the previous sections
will be tested. Second, a set of problems given by the user
will be evaluated to analyze the average behaviour of the
system.

Table 5 summarizes the example-trip (Turin to Toledo and
back). To solve this problem, a team of nine agents was
used. They include all the agents displayed in the agents-
hierarchy of Figure 5. In particular, airplane, train, and hotel
WebAgents have been used. The next parameters have been
measured:

• Validated abstract solutions/abstract solutions ratio
(val.sols/abs.sols). This value measures how many ab-
stract solutions provided by the planner were validated
by the information provided by the information gathering
agents.

• Number of instantiated solutions. It shows all the possible
solutions to the user problem. The solutions are computed
using the gathered records. The PlannerAgent uses the k
validated abstract solutions that contain li abstract opera-
tors. If there are bij retrieved records for the j-th operator
of the i-th solution, then the number of possible instanti-
ated solutions is:

Number of solutions =
kX

i=1

liY

j=1

bij

• Number of WEB Queries. This represent all the queries
made by the WebAgents to retrieve the specific informa-
tion.

• Number of gathered records (duplicated records are re-
moved).

• Time. It includes planning time and WEB gathering time.

Everyone of the previous parameters is measured for both
0 and 1 transfers (0-T and 1-T). In this example, there are no
solutions for the 0 transfers because it is impossible to com-
plete the fourth leg of the trip (there is no way to go from
Toledo to Turin directly). On the other hand, there are thou-
sands of possible combinations when 1 transfer is allowed.
It is important to remark that even though when 1 transfer is
used, it takes several thousand seconds to find the solutions,
only 1 second per leg is spent for actual planning.

We have also tested a set of 38 problems with different
configurations of MAPWEB. The problems include 15 trips
within Spain, 15 within Europe, and 8 Intercontinental ones.
Each problem has been tried with 0 and 1 transfers. The re-
sults are shown in Table 6. This experiment shows in prac-
tice the flexibility of MAPWEB when it is necessary to add
new information sources. In order to add a new information
source to MAPWEB, it is only necessary to add a planning
operator and the related WEB agent. The configurations that
have been used are as follows:

• N0: only one WebAgent specialized in retrieving infor-
mation from a particular Airplane Company (Iberia Air-
lines4) was considered.

• N1: different WebAgents specialized in gathering in-
formation of the same kind (flight information) were
used: WebAgent-Iberia, WebAgent-Avianca, WebAgent-
Amadeus-Flights, WebAgent-4Airlines-Flights. The two
last ones are meta-searchers engines.

• N2: only two WebAgents specialized in gathering infor-
mation of the same type (train information) were used:
WebAgent-Renfe, WebAgent-RailEurope.

• N3: finally this configuration integrates all the previous
WebAgents, that is, agents for retrieving both flight and
train information (N3=N1+N2).

In Table 6, we observe the following:

• With respect to N0, as it could be expected, many more
solutions are found when 1 transfer legs are allowed
(999.3 vs. 7.1). It can also be observed that MAPWEB

4www.iberia.com/iberia es/home.jsp

14

Leg Stage Val. sols Number of Number of Number of Time
per abs. sols solutions queries records (seconds)
0-T 1-T 0-T 1-T 0-T 1-T 0-T 1-T 0-T 1-T

1 Turin ! Madrid 0.5 0.667 2 1829 4 43 20 135 112.465 962.938
2 3 nights stay 1 1 6 6 1 1 20 20 62.384 62.384
3 Madrid ! Toledo 0.5 0.333 12 797 4 43 22 92 75.030 1692.839
4 Toledo ! Turin 0 0.333 0 432 4 43 0 67 76.236 3874.948

Table 5: MAPWEB request for the example-trip, with 0 and 1 transfers.

Config. Number of Solved Number of Time
solutions problems queries (seconds)

0-T 1-T 0-T 1-T 0-T 1-T 0-T 1-T
N0 7.1 999.3 65.7% 74.3% 1 26.9 65.6 1485.7

� = 6.7 1480.5 � = 10.2 1319.2
N1 10.9 1338.1 94.2% 97.1% 4 91.2 162.4 2243.6

� = 8.0 1725.8 � = 200.5 1321.8
N2 3.7 3.7 25.7% 40.0% 2 51.4 70.1 1314.4

� = 7.9 7.9 � = 23.0 1124.3
N3 12.5 1340.2 94.3% 97.1% 6 143.9 165.3 2666.6

� = 8.8 1724.4 � = 199.6 1298.8

Table 6: Summary of the results for 38 user problems, with 0 and 1 transfers (0-T and 1-T).

cannot find a solution for some problems, although the
number of problems solved increases for the 1-T option
(74.3% vs. 65.7%). However, the number of queries and
the time required to fulfill them also increases quickly. It
is also noticeable that standard deviations are rather large.
This is because user problems can be very different; some
of them can be solved quickly because there are few re-
trieved records, whereas other problems can have many
possible solutions.

• N1 enlarges N0 by including more airplane companies.
MAPWEB does not find many more solutions per prob-
lem, because most of the user problems are within Eu-
rope, where Iberia (the only agent in N0) offers many
flights. However, many more problems are solved (94.2%
vs. 65.7% with 0 transfer, and 97.1% vs. 65.7%). Al-
though the number of queries is multiplied by 4 in N1, the
time required to fulfill them has been only doubled (162.4
vs. 65.6 for 0-T and 2243.6 vs. 1485.7 for 1-T). Time is
doubled because even though the four WebAgents work
in parallel, all the retrieved records must be analyzed by a
single PlannerAgent.

• N2 displays the results when only train travels are al-
lowed. Only a few problems can be solved: 25.7% with 0-
T and 40.0% with 1-T, and very few solutions per problem
are found (3.7). This is clearly due to the smaller number
of possibilities of fullfilling travels using only trains vs.
using airplanes.

• N3 integrates both airplane and train companies. Com-
pared to N1, almost the same number of user problems
are solved (94.3% vs. 94.2% and 97.1% vs. 97.1%), al-
though some more solutions per problem are found (12.5
vs. 10.9 and 1340.2 vs. 1338.1).

Conclusions and Future Work

The WEB is a dynamic medium: more and more companies
make their information available in the web everyday. WEB
information gathering systems need to be flexible to adapt to
these rapid changes. In this paper we have described in detail
MAPWEB, a multiagent framework that combines classical
planning techniques and WEB information retrieval agents.
MAPWEB decouples planning from information gathering,
by splitting a planning problem into two parts: solving an
abstract problem and validating and completing the abstract
solutions by means of information gathering. Flexible infor-
mation gathering is achieved by means of planning. In or-
der to add a new information source to the system, only the
planning domain has to be modified, besides adding the re-
lated WEB agent. For instance, in order to add information
sources about train travels, MAPWEB planning domain has
to be extended by adding a TRAVEL-BY-TRAIN operator
and a set of WebAgents specialized in retrieving this kind of
information.

In the future, several new skills will be developed for dif-
ferent agents in MAPWEB. These skills will try to improve
the performance of the global system in two ways: by in-
creasing the number and quality of solutions found by the
agents, and by minimizing the time and computational re-
sources used by MAPWEB to solve problems. We could
summarize these main future lines as follows:

1. To develop Distributed Planning Skills. Cooperation be-
tween different PlannerAgents (desJardins and Wolverton
1999) would allow to distribute the computational cost of
the plannings process. In the domain considered in this
paper, it seems easy to develop distributed approaches be-
cause the problems considered have independent goals.

2. To develop Case-Based Planning Skills (CBP) (Bergmann
and Wilke 1996; Veloso and Carbonell 1993). The Plan-

15

nerAgents would store old successful plans and use Case-
Based Reasoning techniques, so that new planning prob-
lems can be solved by adapting previously solved plans
which were similar. This would reduce enormously the
planning process which might become computationally
expensive.

3. Optimizing the query information heuristic. It should be
possible to improve the heuristic used by the Planner-
Agent adding more knowledge to the city-world struc-
ture, and therefore optimize the number of the informa-
tion queries generated by those agents.

4. Reuse of information stored in WebAgents. These Agents
can learn from experience, and reuse information re-
trieved previously to reduce WEB access (Howe and
Dreilinger 1997; Lieberman 1995).

Acknowledgements

The research reported here was carried out as part of the
research project funded by CICYT TAP-99-0535-C02.

References

Ambite, J. L., and Knoblock, C. A. 1997. Planning by
rewriting: Efficiently generating high-quality plans. In In
Proceedings of the Fourteenth National Conference on Arti-
ficial Intelligence, 706–713.
Ambite, J. L., and Knoblock, C. A. 1998. Flexible and
scalable query planning in distributed and heterogeneous en-
vironments. In In Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, 3–
10.
Bergmann, R., and Wilke, W. 1996. Paris: Flexible plan
adaptation by abstraction and refinement. In Proceedings of
the Workshop on Adaptation in Case-Based Reasoning, th
European Conference on Artificial Intelligence. John Wiley
& Sons.
Camacho, D.; Molina, J. M.; Borrajo, D.; Aler, R.; and
Madrid, I. 2001. Mapweb: Cooperation between planning
agents and web agents. Information & Security: An Interna-
tional Journal. Volume 7 7:209–238.
Camacho, D.; Molina, J. M.; and Borrajo, D. 2000. A mul-
tiagent approach for electronic travel planning. In In Pro-
ceedings of the Second International Bi-Conference Work-
shop on Agent-Oriented Information Systems (AOIS-2000,
200–0. AAAI Press.
desJardins, M., and Wolverton, M. 1999. Coordinating a
distributed planning system. AI Magazine 20(4):45–53.
Fan, Y., and et al. 1999. Adaptive agents for information
gathering from multiple, distributed information sources.
Finin, T.; Fritzson, R.; McKay, D.; and McEntire, R. 1994.
Kqml as an agent communication language. In Proceedings
of the third international conference on Information and
knowledge management, CIKM ’94, 456–463. New York,
NY, USA: ACM.
Howe, A. E., and Dreilinger, D. 1997. Savvysearch: A meta-
search engine that learns which search engines to query. AI
Magazine 18.

Hullen, J.; Bergmann, R.; and Weberskirch, F. 1999. Web-
plan: Dynamic planning for domain-specific search in the
internet. In in the internet, in Workshop Planen und Konfig-
urieren (PuK-99.
Knoblock, C. A.; Minton, S.; Ambite, J. L.; Ashish, N.;
Modi, P. J.; Muslea, I.; Philpot, A. G.; and Tejada, S. 1997.
Modeling web sources for information integration.
Knoblock, C. A.; Minton, S.; Ambite, J. L.; Muslea, M.; Oh,
J.; and Frank, M. 2001. Mixed-initiative, multi-source infor-
mation assistants. In In The Tenth International World Wide
Web Conference (WWW10), Hong Kong, 697–707. ACM
Press.
Lambrecht, E., and Kambhampati, S. 1997. Planning for
information gathering: A tutorial survey. Technical report,
ASU CSE Techincal Report.
Lieberman, H. 1995. Letizia: An agent that assists web
browsing. In IJCAI (1), 924–929.
Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in prodigy: Automating case acquisition. In Stor-
age, and Utilization. Machine Learning.
Veloso, M.; Carbonell, J.; Prez, A.; Borrajo, D.; and Blythe,
J. 1995. Integrating planning and learning: The prodigy
architecture. Journal of Experimental and Theoretical Arti-
ficial Intelligence 7:81–120.

16

