
Improved Integer Programming Models
and Heuristic Search for AI Planning

Yannis Dimopoulos
Department of Computer Science

University of Cyprus
Nicosia, Cyprus

yannis@cs.ucy.ac.cy

Abstract

Motivated by the requirements of many real-life applications,
recent research in AI planning has shown a growing inter-
est in tackling problems that involve numeric constraints and
complex optimization objectives. Applying Integer Program-
ming (IP) to such domains seems to have a significant poten-
tial, since it can naturally accommodate their representational
requirements. In this paper we explore the area of applying
IP to AI planning in two different directions.
First, we improve the domain-independent IP formulation of
Vossen et al., by an extended exploitation of mutual exclusion
relations between the operators, and other information deriv-
able by state of the art domain analysis tools. This informa-
tion may reduce the number of variables of an IP model and
tighten its constraints. Second, we link IP methods to recent
work in heuristic search for planning, by introducing a variant
of FF’s enforced hill-climbing algorithm that uses IP models
as its underlying representation. In addition to extending the
delete lists heuristic to parallel planning and the more expres-
sive language of IP, we also introduce a new heuristic based
on the linear relaxation.

Introduction
Many recent successful approaches to AI planning, includ-
ing planning graphs (Blum and Furst 1995), propositional
satisfiability (Kautz and Selman 1999) and heuristic search
(Bonet, Loerincs, and Geffner 1997), are essentially re-
stricted to planning domains representable in propositional
logic. It seems however that many practical applications are
beyond this representational framework, as they require ex-
pressing features like resources, numeric constraints, costs
associated with actions, and complex objectives. Integer
Programming (IP), and its underlying language of linear in-
equalities, seem to meet many of these requirements, at least
from the representation perspective.

The study of the relevance of IP techniques to AI plan-
ning has only recently started to receive some attention. The
LPSAT engine (Wolfman and Weld 1999) integrates propo-
sitional satisfiability with an incremental Simplex algorithm;
Lplan (Bylander 1997) uses the linear relaxation as a
heuristic in a partial-order causal-link planner; ILP-PLAN

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Kautz and Walser 1999) uses IP models for solving prob-
lems with resources, actions costs and complex objective
functions; Bockmayr and Dimopoulos (Bockmayr and Di-
mopoulos 1999) show how IP models can be used to in-
corporate strong forms of domain knowledge and represent
compactly numeric constraints; finally, Vossen et al. (Vossen
et al. 1999) introduce a strong, domain-independent, method
for translating STRIPS planning into IP models.

The IP models intend to enhance previous approaches to
AI planning, like BLACKBOX or GRAPHPLAN , that es-
sentially view planning as a constraint satisfaction prob-
lem. All these methods provide optimality guarantees for
the solutions they generate, usually with respect to plan
length. Recently, (McDermott 1996) and (Bonet, Loer-
incs, and Geffner 1997) introduced a new promising ap-
proach to AI planning that is based on heuristic search.
Planners of this family, eg. (Bonet and Geffner 1999;
Hoffmann and Nebel 2001; Refanidis and Vlahavas 1999),
automatically extract heuristic functions from a planning
problem specification and use it to guide the search for a
solution in the state space. These planners do not provide
any optimality guarantees, unless they employ admissible
heuristics combined with optimal search algorithms, as eg.
in (Haslum and Geffner 2000).

In this paper we extend previous work on using IP in AI
planning in two different directions. First, we improve the
IP formulation of (Vossen et al. 1999). Second, we link IP
methods to recent work in heuristic search for planning.

In the first part of the paper we describe an improved
formulation of STRIPS planning, that exploits more fully
the mutual exclusion relations between both the operators
and the fluents, than this is done in (Vossen et al. 1999).
Mutex information can strongly influence the way a plan-
ning problem is translated into inequalities, as it can yield
formulations with fewer variables and constraints. More-
over, richer forms of information that can be derived au-
tomatically by domain analysis tools (Fox and Long 1998;
Gerevini and Schubert 2000), can further tighten the IP for-
mulation of a planning domain.

In the second part of the paper we present a variant of
FF’s (Hoffmann and Nebel 2001) enforced hill-climbing al-
gorithm that uses the IP models as its underlying representa-
tional language and is capable of generating parallel plans.
Moreover, we introduce a new method for heuristic evalua-

50

Proceedings of the Sixth European Conference on Planning

tion, that is based on solving the linear relaxation of the IP
models, and compare it with the IP formulation of the delete
lists relaxation method of FF.
As one may expect, FF clearly outperforms the new heuris-
tic methods in term of running speed. This can be attributed
partly to the fact that FF finds totally-ordered plans, while
the new algorithms generate parallel plans. Moreover, while
FF and similar planners, utilize highly optimized special-
purpose techniques to speed-up heuristic evaluation, we rely
on general purpose algorithms like Simplex and branch and
bound. Nevertheless, generality has the advantage of ex-
tended expressiveness, as our approach can handle any do-
main representable in the language of linear inequalities.
Moreover, we reiterate that the new algorithms generate
parallel plans, a feature that can increase their usability in
domains that are inherently parallel. This should be con-
trasted with most heuristic search based planners that gener-
ate totally-ordered plans, with the exception of recent work
by Haslum and Geffner (Haslum and Geffner 2000). Addi-
tionally, the IP models can easily accommodate declarative
domain knowledge and exploit it in the heuristic evaluation.
Finally, IP formulations, combined with the linear relaxation
heuristic allow us to implement a variety of strategies that
offer a trade-off between search time and solution quality.

The paper is organized as follows. Section 2 presents very
briefly the IP formulation of (Vossen et al. 1999) and then in-
troduces the improved models. In section 3 we discuss new
heuristic search methods that are based on the IP models.
In section 4 we present and discuss some experimental re-
sults with the new IP formulation and the heuristic search
algorithms, and in section 5 we conclude.

IP Models for Planning Problems
Integer Programming is a more general representation lan-
guage than propositional logic. In order to represent a gen-
eral linear inequality exponentially many clauses (in the
number of variables) may be needed. Integer programming
combines propositional logic with arithmetic and therefore
allows for more compact formulations. On the other hand,
any propositional clause x1∨. . .∨xk∨x̄k+1∨. . .∨x̄k+l can
be easily represented as a linear inequality x1 + . . . + xk −
xk+1 − . . .− xk+l ≥ 1− l in 0-1 variables. However, such
a straightforward translation usually leads to poor perfor-
mance. Problem solving with IP techniques often requires
a different translation of a problem into linear inequalities.
Deriving a strong model for the problem to be solved is a
fundamental issue for successfully applying IP.

As it is shown in (Vossen et al. 1999) similar obser-
vations hold for AI planning. Instead of simply translat-
ing a SAT encoding into linear inequalities, (Vossen et al.
1999) presented a different, substantially stronger, domain-
independent IP formulation of planning problems. A brief
presentation of this approach follows (see (Vossen et al.
1999) for details).

Domain Independent Modeling
Any STRIPS planning problem can be represented by a set
of variables divided into action and state change variables.

For each action a in the domain, we introduce an action vari-
able ya,i which assumes the value true if a is executed at
period i, and false otherwise. For each fluent f we define
four variables, namely xadd

f,i , xpre−add
f,i , xpre−del

f,i , xmaintain
f,i .

Variable xmaintain
f,i encodes ’no-op’ actions, while the other

variables are defined as follows (symbol / denotes set dif-
ference). ∑

a∈pref/delf

ya,i ≥ xpre−add
f,i

ya,i ≤ xpre−add
f,i ∀a ∈ pref/delf

∑
a∈addf/pref

ya,i ≥ xadd
f,i

ya,i ≤ xadd
f,i ∀a ∈ addf/pref

∑
a∈pref∩delf

ya,i = xpre−del
f,i

Informally, xadd
f,i = 1 iff an action is executed at time point

i that has f as an add effect but not as a precondition. Sim-
ilarly, xpre−add

f,i = 1 iff an action is executed at time point
i that has f as a precondition but does not delete it, and
xpre−del
f,i = 1 if this action has f both as a precondition and

a delete effect.
The constraints below prohibit parallel execution of mutu-
ally exclusive actions.

xadd
f,i + xmaintain

f,i + xpre−del
f,i ≤ 1

xpre−add
f,i + xmaintain

f,i + xpre−del
f,i ≤ 1

The explanatory frame axioms are encoded as

xpre−add
f,i + xmaintain

f,i + xpre−del
f,i ≤

xadd
f,i−1 + xmaintain

f,i−1 + xpre−add
f,i−1

while the initial state constraints are represented by setting
xadd
f,0 to 1 if f is true in the initial state and 0 otherwise.

Finally, if i ∈ 1, .., t, for each goal f we add the constraint
xadd
f,t + xmaintain

f,t + xpre−add
f,t ≥ 1.

Exploiting Domain Structure
The domain independent models of planning problems de-
scribed above can be substantially improved by exploiting
properties of the specific planning domain at hand. In par-
ticular, by analyzing in greater detail than in (Vossen et
al. 1999) the mutual exclusion relations between the oper-
ators and the fluents of a domain, we may be able to re-
duce the number of state-change variables and tighten the
constraints of the IP model. We assume the availability of
suitable domain analysis tools capable of identifying these
relations, as those described eg. in (Fox and Long 1998;

51

Gerevini and Schubert 2000). We describe first, two im-
provements that aim at reducing the number of variables of
the IP model.

• For each fluent f such that
∑

a∈addf/pref

ya,i ≤ 1, define

xadd
f,i as xadd

f,i =
∑

a∈addf/pref

ya,i. This is a simple modifi-

cation that allows us to substitute out variable xadd
f,i . Sim-

ilar observations hold for the xpre−add
f,i variables.

• Let f be a fluent such that ya1,i + ya2,i ≤ 1 holds for ev-
ery pair of actions a1 ∈ pref/delf and a2 ∈ addf/pref .
Then merge xpre−add

f,i and xmaintain
f,i substituting out vari-

able xpre−add
f,i . With this modification we can omit all

constraints that refer to xpre−add
f,i but we need to in-

clude constraints of the form ya,i ≤ xmaintain
f,i for all

a ∈ pref/delf that reflect the new, extended, meaning
of the xmaintain

f,i variables.

The first improvement is straightforward, while the
second deserves some further discussion. Since every
a1 ∈ pref/delf is mutually exclusive with every a2 ∈
addf/pref , the variables xpre−add

f,i and xadd
f,i , are also

exclusive. Instead of adding an additional constraint,
we omit variable xpre−add

f,i and “transfer” its role in the
model to the corresponding variable xmaintain

f,i . Note
that while exclusion constraints of the form xpre−add

f,i +

xmaintain
f,i + xpre−del

f,i ≤ 1 are dropped, the constraints
xadd
f,i + xmaintain

f,i + xpre−del
f,i ≤ 1 remain in the formula-

tion, marking xadd
f,i and xmaintain

f,i (and therefore the deleted
xpre−add
f,i) as mutually exclusive.
We now discuss some techniques that can further tighten

the IP model of a planning domain. Our method is based
on the derivation of single-valuedness and XOR constraints
as described in (Gerevini and Schubert 2000). We restrict
our discussion to binary fluents. A single valuedness con-
straint is a constraint of the form (f(y, ∗z), C(y)) stating
that for every value of variable y that satisfies constraint
C(y) there can be only one value for (the “starred”) variable
∗z. An XOR constraint is a constraint of the form (XOR
f1(y, z), f2(y, u), C(y)) stating that for every state and for
every value of y satisfying C(y) either f1(y, z) or f2(y, u)
must be true (for some values of z and u) but not both.

• Let f(y, z) be a binary fluent for which the single-
valuedness constraint (f(y, ∗z), C(y)) holds. Then, for
each y that satisfies C(y), replace the set of constraints
xadd
f,i + xmaintain

f,i + xpre−del
f,i ≤ 1 that refer to each pos-

sible value of z, with a single constraint∑
z

xadd
f,i +

∑
z

xmaintain
f,i +

∑
z

xpre−del
f,i ≤ 1

where
∑
z

denotes the sum over the domain of the second

parameter of fluent f , namely z.
Going one step further we can exploit the XOR constraints

and modify the mutual exclusion constraints as follows.

• Let f1(y, ∗z) and f2(y, ∗u) be two single-valued fluents
on their second arguments, for which the constraint (XOR
f1(y, z), f2(y, u), C(y)) holds. Then, replace all mutual
exclusion constraints on f1 and f2 that refer to some spe-
cific object satisfying C(y) with the constraint∑

z

xadd
f1,i +

∑
z

xmaintain
f1,i +

∑
z

xpre−del
f1,i

+∑
u

xadd
f2,i +

∑
u

xmaintain
f2,i +

∑
u

xpre−del
f2,i

≤ 1

Moreover, if the model does not contain any of the vari-
ables xpre−add

f1,i
and xpre−add

f2,i
(meaning that all actions

that have f1 or f2 as a precondition, also have it as a delete
effect), we can replace ≤ in the above constraint with an
equality.

The following simplification relates to the frame axioms.

• Let f be a fluent such that every action that adds it, has f
as its sole add effect. Then, if f is true at time i − 1 we
can safely add the constraint

xadd
f,i−1 + xmaintain

f,i−1 + xpre−add
f,i−1 ≤

xpre−add
f,i + xmaintain

f,i + xpre−del
f,i

which combined with the corresponding explanatory
frame axiom, namely

xpre−add
f,i + xmaintain

f,i + xpre−del
f,i ≤

xadd
f,i−1 + xmaintain

f,i−1 + xpre−add
f,i−1

gives rise to an equality of the form

xpre−add
f,i + xmaintain

f,i + xpre−del
f,i =

xadd
f,i−1 + xmaintain

f,i−1 + xpre−add
f,i−1

To see that the above transformation is valid, note that if a
fluent f is true at time i− 1 (meaning that one of the xadd

f,i−1,
xmaintain
f,i−1 , xpre−add

f,i−1 is true), and all actions that add f have
no other add effects, then assigning false to xadd

f,i , does not
have unwanted complications. In fact, if we adopt the above
simplification, xadd

f,i will necessarily be assigned false, if f is
true at time i− 1 and f does not have an associated variable
xpre−add
f,i or this variable is assigned the value false.

We note that the above transformation of the frame axioms
into equalities can be extended to more general cases, but
we do not discuss this issue further.

Example: Consider the rocket domain with the usual load
and unload operators for packages and fly for airplanes.
We note that all actions that add in for packages are mu-
tually exclusive, therefore the fluent variables xadd

in,i can be

substituted out and replaced by
∑

a∈addin/prein

ya,i, where a

is a load action that adds the corresponding in proposition.
Similar constraints hold for at for both planes and packages,

52

hence all corresponding xadd
f,i can be omitted from the for-

mulation. Now consider the variable xpre−add
at,i correspond-

ing to the fluent at that refers to airplanes. Note that ev-
ery action ai ∈ preat/delat (ie. load and unload actions)
is mutually exclusive with every action aj ∈ addat/preat
(ie. fly actions) and therefore we can merge xpre−add

at,i with
xmaintain
at,i , by omitting all xpre−add

at,i and adding the con-
straints yld,i ≤ xmaintain

at,i and yun,i ≤ xmaintain
at,i for the

corresponding load (denoted as yld,i) and unload (yun,i) ac-
tions.
Moreover the single-valuedness of in(x, ∗y), where x refers
to packages and y to planes, will tighten the mutual exclu-
sion constraint

∑
L

yun,i + xmaintain
in,i +

∑
L

yld,i ≤ 1 into

the stronger constraint∑
Pl

∑
L

yun,i +
∑
Pl

xmaintain
in,i +

∑
Pl

∑
L

yld,i ≤ 1

where
∑

Pl denotes sum over all planes and
∑

L, sum
over all locations. A similar constraint can be derived for
fluent at that refers to packages being at locations. Since
fluents in and at are related with a XOR constraint (mean-
ing that, at each time, a package must be in some plane,
or at some location but not both) we can combine the two
constraints and derive∑

Pl

∑
L

yun,i +
∑
Pl

xmaintain
in,i +

∑
L

xmaintain
at,i +∑

Pl

∑
L

yld,i = 1

Finally, since the only operator that adds at for a package
and a location is unload, and at is the only add effect of
this operator, the corresponding frame axioms can be con-
verted into equalities. Similar observations hold for the other
propositions of the domain.

In the next section, when we introduce the constraint re-
laxation heuristic, we will need IP models for domains with
operators that do not contain delete effects. For this special
case we use a straightforward translation of propositional
satisfiability planning theories into linear inequalities.

Heuristic Search
The above modifications in the IP formulation of planning
problems, can substantially improve performance. However,
as it happens with other approaches that generate optimal
plans, in many domains, IP models do not scale well. In
this section, we attempt to address this issue in a flexible
way, by bringing together IP modeling and heuristic search.
Heuristic search methods derive a heuristic function from
the problem specification and use it to guide the search in
the state space. The heuristic function h for a problem P is
derived by considering a relaxed problem P ′.

We consider two different relaxations of a planning prob-
lem. The first, which we call the constraint relaxation (CR)
approach, was introduced in (Bonet, Loerincs, and Geffner
1997) and modified in FF (Hoffmann and Nebel 2001). Here

the relaxed problem is obtained from the original by ig-
noring the delete effects of the operators. In the second
approach, which we call linear relaxation (LR) approach,
the relaxed problem is obtained from the original problem
by dropping the integrality constraint from the integer vari-
ables.

The heuristic function we use is the same as in FF. Let
O1, O2, ..., Om be the sets of actions selected (action selec-
tion can be a fractional number greater than 0, if the LR
approach is used) in the solution of the relaxed problem
at time i. Variable m, called the length invariant, equals
the number of time steps needed so that the relaxed prob-
lem becomes solvable (ie., the relaxation with m − 1 time
steps is infeasible). We define our heuristic function as
h(S) =

∑
i=1,...,m |Oi|.

The search method we use in our approach is a variant of
the enforced hill-climbing introduced in FF. It can be de-
scribed briefly as follows.

Algorithm MEHC(step,nd-limit,cutoff)
i:=0; solved:=false;
while not solved

i:=i+1;
Solve the relaxed problem using i time steps;
if feasible then solved:=true;
endwhile
m:=i; /*Length invariant m used in the heuristic function*/
Set obj to the value of the objective function and current plan
to empty;
S :=Initial State; h(S) = obj;
while h(S) 6= 0 do

Call EBFS(m,step,nd-limit,cutoff ,h(S)) in order to
breadth-first search for a state S′ with h(S′) < h(S);
if (no such state is found) then report failure and stop;
Add the selected actions to current plan, set S := S′ and
h(S) := h(S′);

endwhile

Algorithm MEHC differs from FF in the way it performs
the search for the successor state at each of its iterations.
The new search method is implemented by procedure EBFS,
which is presented below.

For a planning problem P , let Pt denote the set of con-
straints in the IP formulation of P over the time interval t.
Moreover, let P lr

t denote the set of constraints obtained if
the integrality constraints of Pt are dropped. Finally, let P cr

t
denote the set of constraints, over the time interval t, of the
IP model of the problem obtained from P by dropping the
delete list of the operators. Then, procedure EBFS below
implements the breadth-first search for a state with a bet-
ter heuristic value, where P ′t stands for any of P lr

t and P cr
t

depending on the method we employ.

53

procedure EBFS(m,step,nd-limit,cutoff ,h(S))
i=step;
while (i<cutoff+step)

set branch and bound node limit to nd-limit, and
solve min(

∑
a∈A

∑
j∈[i+1,m+i]

ya,j) subject to

P[0,i] ∪ P ′[i+1,m+i]∪ {
∑
a∈A

∑
j∈[i+1,m+i]

ya,j < h(S)};

if (feasible) then return solution else i:=i+1;
endwhile

Note that the set of constraints P[0,i] allows for parallel ac-
tion execution, and therefore, the successor of a state S can
be any state that can be reached from S by executing a set
of parallel actions. Hence, the algorithm generates parallel
plans.

Procedure EBFS uses branch and bound in order to per-
form the search for the successor state, and therefore its the-
oretical time complexity is determined mainly by the num-
ber of integer variables of the problem it solves. If the linear
relaxation heuristic is used, each iteration of EBFS has time
complexity which is, in the worst case, exponential in the
number of variables of P[0,i]. In the case of the constraint re-
laxation heuristic, this complexity is higher, as it is exponen-
tial in the number of variables of P[0,i] ∪ P cr

[i+1,m+i]. How-
ever, our experimentation revealed that, in many domains,
the set of constraints P lr

t is much harder to satisfy than the
corresponding set P cr

t . Consequently, the constraint relax-
ation heuristic can outperform the linear relaxation one in
terms of running speed.

Moreover, the use of branch and bound in EBFS has some
interesting implications. For instance, in the case of the con-
straint relaxation approach, the algorithm can branch on any
of the variables of P[0,i] ∪ P cr

[i+1,m+i], interleaving in this
way the selection of the successor state with its evaluation.
Furthermore, the objective function, which minimizes the
number of actions, can provide substantial guidance in the
search of a low cost successor state.

The new algorithm is parametric to the values of step, nd-
limit, and cutoff. Parameter nd-limit defines the node limit
of the branch and bound search algorithm. Parameter step
defines the minimum distance (number of parallel steps) of
the successor state from the current state, while cutoff de-
fines the maximum such distance. Parameters step and nd-
limit allow us to implement a variety of search strategies that
trade-off solution quality for performance. Higher values for
nd-limit may generate successor states with better heuristic
values, while higher values for step usually lead to more in-
formed choices in the selection of the successor state. There-
fore, higher values for these parameters usually yield better
plans, while lower values better run times.

Experimental Results
We run some initial experiments with the new IP formulation
and the heuristic search method on a variety of planning do-
mains. The models were generated by hand, using the alge-
braic modeling system PLAM (ProLog and Algebraic Mod-

eling) (Barth and Bockmayr 1998) and following the steps
described in section 2. In all the experiments CPLEX 6.6
was used. All variables were declared integer. The setting
was the following. At each node of the branch and bound
dual simplex with “steepest-edge pricing” was used. Prob-
ing was set to 1, leading to some simplifications of the mod-
els, as well as clique cuts derivation. The variable selection
strategy was set to “pseudo-reduced costs”, and the node se-
lection strategy to best-bound search. All experiments were
run on a Sun Ultra-250 with 512 MB RAM.

Table 1 compares the performance of the IP formulation
of (Vossen et al. 1999) (column OIP) and the improved
formulation discussed in section 2 (column IIP) on blocks
world and rocket domain problems. The objective function
in both domains was set to minimize the number of actions.
In the rocket domain, some flight minimization experiments
were also run, and are marked with the problem name suf-
fix fl-min in Table 1. The entries under “First” refer to
the run time and number of nodes explored until the first
solution was found. For the blocks world problems the en-
tries under “Optimal” refer to solving these problems to op-
timality (the time needed to prove optimality is included).
The same entries for the, more difficult, rocket problems re-
fer to finding a solution with cost that is provably not more
than 10% higher than the cost of the optimal solution. The
data of Table 1 were obtained using, in each domain and for
each formulation, the cut generation strategy that seems to
perform best. In the blocks world domain the default val-
ues were used for both formulations. In the rocket domain,
different Clique and Gomory cut generation strategies were
used for the different formulations and the different opti-
mization objectives, but we do not discuss this issue further.

Both domains allow for parallel actions. The largest prob-
lem in the blocks world domain, bw3, involves 13 blocks,
has plan length 9 and the optimal solution has 19 actions.
The IP formulation for this domain is strong, leading to
small integrality gaps and, consequently, good performance.
In some moderately sized problems, the first solution was
obtained by simply rounding the values of the variables ob-
tained after solving the linear relaxation.

In the rocket domain, the largest problem, rocket4, in-
volves 16 packages, 5 locations and 3 planes. The optimal
parallel plan length is 7, and the optimal solution contains
41 actions. Here the IP formulation is weaker. The inte-
grality gap is larger, and closes relatively slow, after many
iterations. Nevertheless, in most cases, the new formulation
is substantially stronger.

Table 2 shows some representative results from experi-
ments with the IP based heuristic methods on the parallel
rocket domain. The CR columns refer to the constraint re-
laxation heuristic, while the LR columns to the linear relax-
ation one. The FF column shows the number of actions in
the plan generated by FF, which solves all problems in a few
seconds.

In all problems the relaxation based algorithm was run
with the step and cutoff parameters set to 1. For the smaller
problems, rocket4 to rocket6, the nd-limit parameter
of the linear relaxation based algorithm was set to infinity,
ie. at each iteration the corresponding problem was solved

54

First Optimal
OIP IIP OIP IIP

Problem time nodes time nodes time nodes time nodes
bw1 93 5 25 0 93 5 28 11
bw2 310 0 108 0 310 0 108 0
bw3 7072 21 876 23 - - 1277 50
rocket1 98 371 13 56 631 2554 92 287
rocket2 109 297 10 28 1521 4237 132 260
rocket3 - - 408 459 - - 1885 1251
rocket4 7478 2522 461 456 - - 1886 993
rocket1-fl-min 1828 1734 19 14 3775 5417 59 422
rocket2-fl-min 591 384 80 320 3602 4754 82 360
rocket3-fl-min - - 236 260 - - 1685 4791
rocket4-fl-min 3391 372 210 150 - - 2083 4067

Table 1: Performance comparison of different IP formulations on action and flight (marked with the name suffix fl-min)
minimization problems. For each problem we give run time and number of nodes in the branch and bound tree. Times in
seconds. A dash denotes that no solution was found within about 2 hours (8000 sec) of CPU time.

LR CR FF
Problem pac pl loc time len actions time len actions actions
rocket4 16 3 5 29 9 45 25 13 46 53
rocket5 16 3 5 62 9 47 36 14 45 41
rocket6 16 3 5 33 9 43 31 13 49 52
rocket7-1 21 3 6 445 11 57 27 11 56 67
rocket7-2 21 3 6 427 12
rocket7-3 21 3 6 286 12
rocket8 27 4 7 1598 11 75 214 13 90 80

Table 2: Performance comparison of the heuristic search algorithms. For each problem we give the number of packages (pac),
planes (pl) and locations (loc), solution time in seconds (time), parallel plan length (len) and number of actions in the plan
(actions).

to optimality. However, for larger problems, like rocket7
and rocket8, when the linear relaxation heuristic is used,
the number of explored nodes has to be limited in order to
gain acceptable efficiency. The 3 entries of Table 2 prefixed
with rocket7, correspond to solutions of the same prob-
lem with different node bounds. Row rocket7-1 refers
to solving the problem without limiting the number of ex-
plored nodes, while rows rocket7-2 and rocket7-3
correspond to a limit of 1000 and 500 nodes respectively.
For problem rocket8 the node limit was set to 500. In the
problems we considered, restricting the number of nodes af-
fects only the first two iterations of the algorithm, as in the
subsequent iterations the optimal solution is found after ex-
ploring a few nodes. More specifically, in most problems,
the first two iterations make up more than 60% of the total
solution time.

In most of the problems it seems that the linear relax-
ation heuristic offers a reasonably good trade-off between
search time and solution quality. For instance, if we compare
the solution time of the direct IP formulation of problem
rocket4 in Table 1, with the time needed for solving the
same problem with the linear relaxation heuristic algorithm
in Table 2, we note a decrease from 461 secs to 29 secs. This
speed-up comes with an increase of the plan length from 7

to 9.
It is interesting to compare the characteristics of the linear

and constraint relaxation methods. The constraint relaxation
heuristic almost always runs faster than the linear relaxation
one. But as far as parallel plan length is concerned, con-
straint relaxation is quite unstable, and in many cases (eg.
problems rocket5 and rocket8 in Table 2) generates
plans that underutilize the available resources (planes) and,
for this reason, are longer.

Conclusions and discussion
The results presented in (Vossen et al. 1999), suggest that
careful modeling can make IP effective in solving classi-
cal STRIPS problems. This has important practical impli-
cations, since many problems can be represented as a set of
STRIPS operators together with some additional complex
constraints. Solving such problems effectively, requires rea-
sonable performance on their STRIPS part.

In this paper we presented some improvements of the IP
formulation of (Vossen et al. 1999) that exploit more fully
the structure of the planning domains. The new transla-
tion method benefits from recent work in automated domain
analysis, but also recent advances in Integer Programming.
Indeed, advanced features of state-of-the-art IP solvers, such

55

as preprocessing, probing, and constraint derivation, most
notably in the form of Gomory and Clique cuts, have posi-
tive effect on the performance of the models. Our current
work focuses on further improving the IP formulation of
planning problems, and combining it with strong forms of
domain knowledge. More extensive experimentation, to be
reported in a longer version of this paper, gives encouraging
first results.

The enforced hill-climbing algorithm that we described in
the second part of the paper, can be understood as an attempt
towards combining IP models with heuristic search. This is
done in a way different than in the Lplan system (Bylander
1997), which uses the linear relaxation of an IP formulation,
which is different than ours, as a heuristic in a partial-order
causal-link planner.

Our intention is to develop algorithms that improve effi-
ciency at an acceptable cost in solution quality. In parallel
domains, which is our main focus, the degree of parallelism
of the generated plan is an integral part of solution quality.
It seems that the linear relaxation heuristic performs better
than the constraint relaxation in terms of solution quality,
but it is slower. We currently work on improving its perfor-
mance.

Obviously, the heuristic search algorithm we presented is
neither complete nor optimal. Future research will focus
on investigating the possibility of employing IP models in
heuristic search algorithms that satisfy both properties.

References
Barth, P., and Bockmayr, A. 1998. Modelling discrete opti-
misation problems in constraint logic programming. Annals
of Operations Research 81.
Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. In Proceedings of IJCAI-95.
Bockmayr, A., and Dimopoulos, Y. 1999. Integer programs
and valid inequalities for planning problems. In Proceedings
of ECP-99, 239–251.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of ECP-99, 360–372.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Proceed-
ings of AAAI/IAAI-97, 714–719.
Bylander, T. 1997. A linear programming heuristic for opti-
mal planning. In Proceedings of AAAI/IAAI-97, 694–699.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in tim. J. Artif. Intell. Res. (JAIR) 9:367–
421.
Gerevini, A., and Schubert, L. 2000. Discovering state con-
straints in DISCOPLAN: Some new results. In Proceedings
of AAAI-00.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proceedings of AIPS-00, 140–149.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. (JAIR) 14:253–302.

Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proceedings of IJCAI-99.
Kautz, H., and Walser, J. 1999. State-space planning by
integer optimization. In Proceedings of AAAI-99.
McDermott, D. V. 1996. A heuristic estimator for means-
ends analysis in planning. In Proceedings of AIPS-96, 142–
149.
Refanidis, I., and Vlahavas, I. P. 1999. GRT: A domain
independent heuristic for strips worlds based on greedy re-
gression tables. In Proceedings of ECP-99, 347–359.
Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On
the use of integer programming models in ai planning. In
Proceedings of IJCAI-99.
Wolfman, S., and Weld, D. 1999. The LPSAT engine and its
application to resource planning. In Proceedings of IJCAI-
99.

56

