
Toward an Understanding of Local Search Cost in Job-Shop Scheduling

Jean-Paul Watson, J. Christopher Beck, Adele E. Howe, and L. Darrell Whitley
Colorado State University, Fort Collins, CO 80523-1873 USA

{watsonj, howe, whitley}@cs.colostate.edu
ILOG, S.A., 9, rue de Verdun, B.P. 85

F-94523 Gentilly Cedex France
cbeck@ilog.fr

Abstract
Local search algorithms are among the most effective
approaches for solving the JSP, yet we have little under-
standing of why these algorithm work so well, and un-
der what conditions. We develop descriptive cost mod-
els of local search for the job-shop scheduling prob-
lem (JSP), borrowing from the models developed for
MAX-SAT. We show that several factors known to in-
fluence the difficulty of local search in MAX-SAT di-
rectly carry over to the general JSP, including the num-
ber of optimal solutions, backbone size, the distance be-
tween initial solutions and the nearest optimal solution,
and an analog of backbone robustness. However, these
same factors only weakly influence local search cost
in JSPs with workflow, which possess structured con-
straints. While the factors present in the MAX-SAT cost
models provide an accurate description of local search
cost in the general JSP, our results for workflow JSPs
raise concerns regarding the applicability of cost mod-
els derived using random problems to those exhibiting
specific structure.

Introduction
Local search algorithms, in particular those based on tabu
search, are among the most effective approaches for solving
the JSP (Blażewicz, Domschke, and Pesch 1996). Yet, we
have little understanding as to why these algorithms work so
well, and under what conditions. In this paper, we examine
descriptive cost models of local search in the JSP. Descrip-
tive cost models relate search space features to search cost;
better models account for more of the variance in search cost
observed for different problem instances. We develop our
models using the tabu search algorithm introduced in (Éric
D. Taillard 1994), which is closely related to many state-of-
the-art algorithms for the JSP (e.g., (Nowicki and Smutnicki
1996)), but is significantly more amenable to analysis.

Researchers have expended significant effort in recent
years to produce relatively accurate descriptive cost mod-
els of local search in MAX-SAT (Singer, Gent, and Smaill
2000). Intuitively, we would expect some of the factors
present in these models, such as the number of optimal solu-
tions, to influence the difficulty of local search in other prob-
lems such as the JSP. At the same time, both the search space
Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and constraint structures of the JSP differ in many important
ways from MAX-SAT, making the a-priori applicability of
these models unclear.

We investigate whether the descriptive cost models for
MAX-SAT can be leveraged in an effort to understand lo-
cal search cost in the JSP. We demonstrate that the factors
present in the MAX-SAT cost models also influence local
search cost in the JSP, including the number of optimal so-
lutions (Clark et al. 1996), backbone size (Parkes 1997), the
distance between initial solutions and the nearest optimal
solution (Singer, Gent, and Smaill 2000), and an analog of
backbone robustness (Singer, Gent, and Smaill 2000). To-
gether, these factors form the basis of a relatively accurate
descriptive model of local search cost in the general JSP.

In contrast to real-world problems, the constraints in both
MAX-SAT and the general JSP (clauses and machine pro-
cessing orders, respectively) are randomly generated. We
also consider descriptive cost models for JSPs with work-
flow, in which the machine processing orders are structured.
Here, our experiments indicate that the factors present in the
cost models for MAX-SAT and the general JSP only weakly
influence search cost in workflow JSPs.

The JSP and Problem Difficulty
We consider the well-known n × m static JSP, in which n
jobs must be processed exactly once on each of m machines
for an arbitrary, pre-specified duration. Each machine can
process only one job at a time, and once initiated, process-
ing cannot be interrupted. Any job can start at time 0, and
the objective is to minimize the makespan, or the maximum
completion time of any job. In the general JSP, the machine
processing orders are independently sampled from a uniform
distribution. In the workflow JSP, machines are typically di-
vided into two equal-sized partitions containing machines 1
through m/2 and m/2 + 1 through m, respectively, and ev-
ery job must be processed on all machines in the first parti-
tion before any machine in the second partition. Within each
partition, the machine processing orders are sampled from a
uniform distribution.

While no descriptive cost models for the JSP exist, two
general qualitative observations regarding problem difficulty
have emerged:

1. For both general and workflow JSPs, “square” (n/m ≈ 1)

217

Proceedings of the Sixth European Conference on Planning

problem instances are significantly harder than “rectangu-
lar” (n/m � 1) problem instances.

2. Given fixed n and m, workflow JSPs are substantially
more difficult than general JSPs.

Clearly, any descriptive cost model must be consistent with
these observations.

(Mattfeld, Bierwirth, and Kopfer 1999) identify signifi-
cant differences in the search spaces of some well-known
50× 10 general and workflow JSPs. Specifically, they show
that the extension of the search space (as measured by the
average distance between random local optima) is larger in
workflow JSPs, suggesting a cause for the larger search cost
associated with these problem instances. Similar differences
were observed for two other quantitative search space mea-
sures (entropy and correlation length).

While there are significant differences in the search spaces
of general and workflow JSPs, it is unclear whether these
differences account for the often large variance in local
search cost observed for different problem instances of the
same size and workflow configuration. In preliminary ex-
periments, we found that while the factors introduced in
(Mattfeld, Bierwirth, and Kopfer 1999) did influence search
cost, the influence was much weaker than for the factors we
discuss in Section . Furthermore, (Mattfeld, Bierwirth, and
Kopfer 1999) did not account for the relative difficulty of
square versus rectangular JSPs.

The MAX-SAT Descriptive Cost Model
Many difficulty models have found application in a wide
variety of problems, for example phase transitions and the
associated peak in search cost. Given such apparent univer-
sals, it is important to examine, and if possible leverage, any
existing work. To date, researchers have only developed de-
scriptive cost models of local search for only two, related
problems: MAX-SAT and MAX-CSP. Outside of these two
examples, the dominant methods for quantifying problem
difficulty are unable to account for the large cost variance
found in different problem instances of a given size. For
example, correlation length (Riedys and Stadler 2001) is
strictly a function of problem size (e.g., the number of cities
in the TSP).

Intuitively, a decrease in the number of optimal solu-
tions should yield an increase in local search cost. This
observation formed the basis of the first descriptive cost
model for MAX-SAT, in which (Clark et al. 1996) demon-
strated a relatively strong (negative) log-log correlation be-
tween the number of solutions and local search cost, with
r-values ranging anywhere from −0.77 to −0.91. However,
the model failed to account for the large cost variance in
problems with small numbers of optimal solutions, where
model residuals varied over three orders of magnitude.

A subsequent model was introduced in (Singer, Gent, and
Smaill 2000) that largely corrected for this deficiency, and
went further by proposing a causal model of local search
cost in MAX-SAT. The backbone of a problem instance is
a key concept in this model. The backbone of a MAX-SAT
instance consists of the subset of literals that have the same
truth value in all optimal solutions(Parkes 1997). (Singer,

Gent, and Smaill 2000) demonstrated that the backbone size
does influence search cost in MAX-SAT, showing that when
the backbone is small, there is a strong (negative) log-log
correlation (r ≈ −0.77) between the number of optimal
solutions and local search cost. However, this correlation
nearly vanishes (r ≈ −0.12) when the backbone is large.

Local search algorithms for MAX-SAT quickly locate
sub-optimal quasi-solutions, in which relatively few clauses
are unsatisfied. These quasi-solutions form a sub-space that
contains all optimal solutions, and is largely interconnected;
once a point in this sub-space is identified, local search al-
gorithms for MAX-SAT typically restrict search to this sub-
space. This observation led (Singer, Gent, and Smaill 2000)
to hypothesize that the size of this sub-space dictates the
overall search cost.

To test this hypothesis, (Singer, Gent, and Smaill 2000)
measured the mean Hamming distance (the number of dif-
fering variable assignments) between the first quasi-solution
encountered during local search and the nearest optimal so-
lution, which we denote dinit-opt, and computed the corre-
lation between dinit-opt and the logarithm of local search
cost. The resulting correlations were extremely high (r ≈
0.95) for problems with small backbones, and degraded only
slightly for problems with larger backbones (r ≈ 0.75).
Consequently, dinit-opt, and not the number of optimal solu-
tions, is the primary factor influencing local search cost in
MAX-SAT.

(Singer, Gent, and Smaill 2000) also posited a causal ex-
planation for the variance in dinit-opt across different MAX-
SAT instances, which is based on the notion of backbone

robustness. A MAX-SAT instance is said to have a robust

backbone if a substantial number of clauses can be deleted
before the backbone size is reduced by at least half. Con-
versely, an instance is said to have a fragile backbone if the
deletion of just a few clauses reduces the backbone size by
half or more. (Singer, Gent, and Smaill 2000) argued that
“backbone fragility approximately corresponds to how ex-
tensive the quasi-solution area is” ((Singer, Gent, and Smaill
2000), p. 251), by noting that a fragile backbone allows for
large dinit-opt because of the sudden drop in backbone size,
while dinit-opt is necessarily small in problem instances with
robust backbones.

As evidence of this hypothesis, (Singer, Gent, and Smaill
2000) measured a moderate (≈ −0.5) negative correlation
between backbone robustness and the log of local search
cost for large-backboned MAX-SAT instances. Surprisingly,
this correlation degraded as the backbone size was de-
creased, leading to the hypothesis that “finding the backbone
is less of an issue and so backbone fragility, which hinders
this, has less of an effect” ((Singer, Gent, and Smaill 2000),
p. 254), although this conjecture was not explicitly tested.

Algorithms, Test Problems, and Methodology

We now introduce the tabu search algorithm, test problems,
and methodology that we use to investigate descriptive cost
models for the JSP.

218

Algorithm Description

Our analysis is based on the tabu search algorithm intro-
duced in (Éric D. Taillard 1994), which we denote TStaillard.
TStaillard was the first tabu search algorithm for the JSP and is
the basis for more advanced, state-of-the-art JSP algorithms
such as that of (Nowicki and Smutnicki 1996). TStaillard uses
the move operator introduced in (van Laarhoven, Aarts, and
Lenstra 1992), which is often denoted by N1 . The N1
neighborhood is generated by swapping all adjacent pairs
of jobs on any critical path in the current solution. As in
most tabu search algorithms for the JSP, recently swapped
pairs of jobs are prevented from being re-established for a
particular duration, called the tabu tenure; the tabu tenure is
dynamically updated to avoid cycling behavior. All runs are
initiated from randomly generated “semi-active” local op-
tima (Éric D. Taillard 1994). In each iteration of TStaillard, all
N1 neighbors are generated, and the best non-tabu move is
taken; ties are broken randomly. The only long-term mem-
ory mechanism is a simple aspiration criterion, which over-
rides the tabu status of any move that results in a solution that
is better than any encountered during the current run. As in-
dicated in (Éric D. Taillard 1994)(p. 110), frequency-based
long-term memory is only necessary for problems that re-
quire a very large (> 1 million) number of iterations, which
is not the case for the test problems introduced later in this
section.

The cost required to solve a given problem instance us-
ing TStaillard is naturally defined as the number of iterations
required to locate an optimal solution. However, the num-
ber of iterations is stochastic (with an approximately expo-
nential distribution (Éric D. Taillard 1994)), due to both the
randomly generated initial solution and random tie-breaking
when more than one ’best’ move is available. Consequently,
we define the local search cost for a problem instance as
the median number of iterations required to locate an op-
timal solution over 5000 independent runs, which we de-
note costmed. With 5000 samples, the estimate of the median
is somewhat stable (Hoos 1998) (Singer, Gent, and Smaill
2000).

For analysis purposes, the most important feature of
TStaillard is the N1 move operator. More advanced critical
path move operators for the JSP, such as that used in (Now-
icki and Smutnicki 1996), can induce search spaces that are
disconnected, such that it is not always possible to move
between random solutions and an optimal solution. Con-
sequently, any algorithm using such a move operator is
not Probabilistically Approximately Complete (PAC) (Hoos
1998): even with infinite run-time, the algorithm is not guar-
anteed to locate an optimal solution. This severely compli-
cates algorithm analysis, as it is unclear how to define the
search cost associated with a problem instance. In contrast,
N1 induces a connected search space, enabling TStaillard (at
least empirically) to be PAC: in producing the results dis-
cussed in Sections and , no trial of TStaillard failed to locate
an optimal solution.

Defining a Backbone for JSP
The definition of a backbone depends on how the solutions
are represented. TStaillard encodes solutions using a disjunc-

tive graph, which contains n(n−1)/2 Boolean “order” vari-
ables for each of the m machines, each of which represents
a precedence relation between a distinct pair of jobs on a
machine. We define the backbone of a JSP, therefore, as the
set of order variables that have the same value in all optimal
solutions. We define the backbone size as the fraction of the
possible mn(n − 1)/2 order variables that are fixed to the
same value in all optimal solutions.

Test Problems
For a variety of reasons, we are restricted to relatively small
problem sizes in our experiments. From a technical stand-
point, the factors present in our descriptive cost model are
functions of all optimal solutions to a problem instance,
which can number in the millions for small problem in-
stances. From a pragmatic standpoint, our experimental de-
sign necessitates examination of over 4000 problem in-
stances, and includes computing the median search cost over
5000 independent runs for each instance; even for the small
problems we consider, the overall time invested was approx-
imately 6 CPU months on 1.5 GHz Pentium 4 workstations.

In our experiments, we examine 6 × 4 and 6 × 6 prob-
lems, both with and without workflow partitions. Operation
durations are sampled uniformly from the interval [1, 99].
Backbone size is an integral factor in our descriptive cost
model. Unfortunately, even for these problem sizes, it is in-
feasible to control for a specific backbone size: computation
of the backbone is considerably more expensive in the JSP
than in MAX-SAT. Instead, we filter for problems within
±5% of a target backbone size X , 0.0 ≤ X ≤ 1.0. We de-
note the backbone size of the resulting set of problems by
≈ X . For each problem size, we generated 100 general and
workflow JSP instances at each of the following backbone
sizes: ≈ 0.1, ≈ 0.3, ≈ 0.5, ≈ 0.7, and ≈ 0.9. Finally, we
used a constraint-directed scheduling algorithm to compute
the optimal makespan, the backbone size, and to enumerate
all optimal solutions. The specific algorithm is documented
in (Beck and Fox 2000).

A Descriptive Cost Model for the General JSP
A-priori, it is unclear whether the factors present in the
MAX-SAT cost models affect problem difficulty in the JSP.
The MAX-SAT search space is dominated by plateaus of
equally-fit quasi-solutions, and the main challenge for lo-
cal search is to either find an exit from a plateau to an im-
proving quasi-solution, or to escape the plateau by accepting
a short sequence of dis-improving moves (Frank, Cheese-
man, and Stutz 1997). In contrast, the JSP search space is
thought to be dominated by local optima with variable-sized
and variable-depth attractor basins, and the focus is on es-
caping or avoiding the attractor basins of local optima. In
this section, we demonstrate that despite qualitative differ-
ences in search space topologies, the MAX-SAT cost model
factors do form the basis of an accurate descriptive model of
local search cost in the JSP.

219

The Number of Optimal Solutions and Search Cost
The first factor we consider is the number of optimal solu-
tions to a problem instance, which we denote |opt|. In Ta-
ble 1, we report summary statistics for both |opt| and costmed

for our general JSPs. We see both a dramatic drop in |opt|
and a gradual increase in costmed as the backbone size is in-
creased. Further, at a fixed backbone size the difference in
costmed between the 6 × 6 and 6 × 4 problems is minimal,
and can be attributed to differences in the size of the search
spaces.

In the bottom third of Table 1, we report the log10– log10
correlation between |opt| and costmed. The r-values indicate
that both |opt| and backbone size influence local search cost
in the general JSP; the unexpectedly weak r-value for the
6 × 4 ≈ 0.1 problems is due to the large number of 0-
cost samples. As in MAX-SAT, the correlation is relatively
strong for small-backboned problems, and drops rapidly
with increases in backbone size. Although additional factors
are required to fully account for the variance in local search
cost for large-backboned general JSPs, these results demon-
strate that the interaction effect between backbone size and
the number of solutions is not unique to MAX-SAT.

The Distribution of Backbone Sizes
While rectangular JSPs tend to be much easier than square
JSPs, this difference was not observed in the local search
costs reported in Table 1. In a straightforward experiment,
we generated 100 6×4 and 6×6 general JSPs and computed
costmed for each problem instance, leaving the backbone size
uncontrolled. The mean costmed were 47.73 and 322.41 for
the 6 × 4 and 6 × 6 problem sets, respectively, suggesting
strong differences in the backbone size distributions.

In MAX-SAT, the distribution of backbone sizes depends
on the ratio of the number of clauses c to the number of vari-
ables v (Parkes 1997). Under-constrained problems (with
small values of c/v) tend to have small backbones, while
over-constrained problems (with large values of c/v) tend
to have large backbones; the relative frequency of large-
backboned problems increases rapidly in the so-called “crit-
ically constrained” region. In the JSP and many other opti-
mization problems, there is no known parameter analogous
to c/v by which we can control for the expected degree of
constrainedness. Consequently, we can only observe the rel-
ative frequency of backbone sizes in these problems.

We generated 50 000 6× 4 and 6× 6 problems, and com-
puted the backbone size for each instance. In Figure 1, we
provide histograms illustrating the relative frequencies of the
backbone sizes. The most common backbone size for the
square 6 × 6 instances is roughly 0.9, and backbones be-
low 0.3 are very rare. In contrast, the distribution for the
rectangular 6 × 4 instances is more uniform, with a slight
bias toward smaller backbone sizes. We have also gener-
ated similar histograms for other small problem sizes: for
ratios of n/m > 1.5, the bias toward small backbones be-
comes more pronounced, while for ratios < 1, the bias to-
ward larger backbones is further magnified. Finally, we note
that the utility of the correlation between |opt| and costmed

depends heavily on problem size; the influence is negligible

for nearly all 6 × 6 JSPs (which generally have large back-
bones), and for many 6× 4 JSPs.

The Distance to Global Optima and Search Cost

For each of our general JSPs, we generated 5000 local op-
tima, computed the Hamming distance to the nearest optimal
solution for each of the resulting optima, and recorded the
mean of the 5000 distances (the Hamming distance between
two solutions in the JSP is the number of order variables, out
of the mn(n−1)/2 possible, with different assigned values);
as with MAX-SAT, we denote this measure by dinit-opt. We
generated the local optima by applying a steepest-descent al-
gorithm from random “semi-active” solutions(Éric D. Tail-
lard 1994); when multiple equally good neighbors are avail-
able, ties are broken randomly.

In Table 2, we report the correlations between dinit-opt and
log10(costmed). For backbone sizes of ≈ 0.1 through ≈ 0.5,
the correlation is extremely high, and only moderately de-
grades for the two larger backbone sizes. The r-values are
uniformly and significantly better than those achieved us-
ing the number of optimal solutions, and account for a sig-
nificant proportion of the variance in local search cost for
large-backboned problems; as with |opt|, the unexpectedly
weak r-value for the 6 × 4 ≈ 0.1 problems is due to the
large number of 0-cost samples. To conclude, we also find
that the distance between random local optima and global
optima, and not the number of global optima, is the primary
factor influencing the cost of local search in the general JSP,
independent of backbone size.

Backbone Robustness and Search Cost

In (Singer, Gent, and Smaill 2000), backbone robustness is
proposed as a causal factor in determining the size of the
quasi-solution sub-space in MAX-SAT. Abstractly, back-
bone robustness is a measure of the number of problem con-
straints that must be relaxed to produce a problem with a
significantly smaller backbone. While in the JSP there is no
analog to relaxing individual constraints (as is possible in
MAX-SAT), there is a parameter controlling the global con-
strainedness: deviation from the optimal makespan. Thus,
we define backbone robustness for the JSP as the minimum
percentage above the optimal makespan at which the back-
bone size is reduced by at least half (subject to integral
makespan constraints).

In the lower half of Table 2 we report the correlation be-
tween the backbone robustness and log10(costmed) for our
general JSPs. The results are very similar to those reported
in (Singer, Gent, and Smaill 2000) for MAX-SAT; a moder-
ate negative correlation for large-backboned instances, and
a gradual decay as backbone size is decreased. Analogous
to MAX-SAT, backbone robustness does appear to partially
dictate the size of the sub-space containing local optima in
the general JSP. As we noted in Section , a justification for
the lower correlations for small-backboned instances in pro-
vided in (Singer, Gent, and Smaill 2000).

220

Table 1: The number of optimal solutions, local search cost, and log10-log10 correlation (r) between the number of optimal
solutions and local search cost for general JSPs. X(Y) denotes a mean of X with a standard deviation of Y . The superscript
notation ∗(X) indicates that X instances (out of 100) had costmed = 0, and were not used in the computation of r.

Backbone Size
Problem Size ≈ 0.1 ≈ 0.3 ≈ 0.5 ≈ 0.7 ≈ 0.9

|opt|
6 × 4 481837(1 × 106) 30007(38072) 3221(3742) 642(1374) 22(22)
6 × 6 1.1 × 107(2 × 107) 1.4 × 106(3 × 106) 85292(157617) 9037(36713) 85(106)

costmed

6 × 4 1.05(3.19) 14.95(21.28) 41.9(56.96) 93.28(151.43) 323.25(388.33)
6 × 6 13.8(29.50) 20.69(29.78) 40.48(57.75) 75.7(120.93) 447.12(1550.56)

Correlation (r) between log10(|opt|) and log10(costmed)

6 × 4 −0.0837∗(82) −0.4332∗(14) -0.4852 -0.5080 -0.2846
6 × 6 −0.7641∗(38) −0.4491∗(9) -0.2651 -0.2398 -0.2298

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Backbone Size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

Backbone Size

Figure 1: Backbone size histograms for 6× 4 (left) and 6× 6 (right) general JSPs.

Table 2: Correlation of dinit-opt and backbone robustness with
local search cost in general JSPs. The superscript notation
∗(X) indicates that X instances (out of 100) had costmed = 0,
and were not used in the computation of r.
Problem Backbone Size
Size ≈ 0.1 ≈ 0.3 ≈ 0.5 ≈ 0.7 ≈ 0.9

Correlation (r) between dinit-opt and log10(costmed)

6 × 4 0.5295∗(82) 0.9391∗(14) 0.8957 0.8486 0.6855
6 × 6 0.9608∗(38) 0.9294∗(9) 0.8924 0.8815 0.7423

Correlation (r) between backbone robustness and log10(costmed)

6 × 4 −0.0357∗(82) −0.2727∗(14) -0.3705 -0.4827 -0.5349
6 × 6 −0.1829∗(38) −0.2194∗(9) -0.4082 -0.5195 -0.5723

Extending the Analysis to Workflow JSPs
In the JSP and MAX-SAT, the primary problem constraints
are the machine processing orders and the set of clauses,
respectively. In both cases, researchers typically generate
problem instances such that these constraints are uniformly
random. An important issue is then generalization: real-
world problems have non-random constraints, and it is un-
clear whether the descriptive cost models for MAX-SAT and
the general JSP are applicable to more structured problem
instances. To study the effect of non-random constraints on
the efficacy of our descriptive cost models, we extend the
analysis of Section to JSPs with workflow–which impose a
simple structure on the machine processing orders.

First, we consider the influence of |opt| on local search

cost in workflow JSPs, which we report in Table 3. As
with general JSPs, we see both a dramatic drop in |opt|
and a gradual increase in costmed as the backbone size is in-
creased. Workflow JSPs have significantly fewer optimal so-
lutions than general JSPs, and costmed is generally an order of
magnitude higher. However, the log10-log10 correlations be-
tween |opt| and costmed are qualitatively similar to the results
for general JSPs: correlation is strong for small-backboned
problems, but decays as backbone size is increased.

The backbone size histograms for both 6 × 4 and 6 × 6
workflow JSPs are shown in Figure 2. Relative to gen-
eral JSPs (Figure 1), it is clear that the presence of work-
flow partitions dramatically increases the frequency of large-
backboned problem instances. For the rectangular 6 × 4
problems, workflow changes a bias toward small backbones
in the general JSP into a relatively large bias toward large
backbones. For the 6×6 problems, workflow further magni-
fies the already strong bias toward large backbones found in
the general JSP. We note that the rarity of small-backboned
workflow JSPs further diminishes the utility of |opt| as a pre-
dictor of costmed for these instances.

Finally, we measured the correlation between dinit-opt and
log10(costmed); the results are reported in the upper portion
of Table 4. Here, we see a dramatic difference between gen-
eral JSPs and workflow JSPs: while the influence of dinit-opt

at small backbones is somewhat strong, it drops very rapidly,
ultimately vanishing at ≈ 0.9. Additionally, because of the
lesser influence of dinit-opt on local search cost, we see a cor-
responding drop in the influence of backbone robustness, as

221

Table 3: The number of solutions,local search cost, and log10-log10 correlation (r) between the number of solutions and local
search cost for JSPs with workflow. X(Y) denotes a mean of X with a standard deviation Y .

Backbone Size
Problem Size ≈ 0.1 ≈ 0.3 ≈ 0.5 ≈ 0.7 ≈ 0.9

|opt|
6 × 4wf 26971(69299) 81255(295593) 2515(4704) 294(425) 18(16)
6 × 6wf 1 × 106(7 × 106) 429102(2 × 106) 19017(44556) 4554(6898) 80(94)

costmed

6 × 4wf 107.47(81.67) 104.63(107.71) 297.3(213.36) 741.19(600.62) 1829.65(1458.91)
6 × 6wf 286.26(359.26) 511.51(1020.56) 845.28(695.91) 1178.85(1109.19) 4454.84(5012.81)

Correlation (r) between log10(|opt|) and log10(costmed)

6 × 4wf -0.7591 -0.7935 -0.4527 -0.3701 -0.2341
6 × 6wf -0.7718 -0.7591 -0.5346 -0.1997 -0.3089

shown in the bottom half of Table 4. Given the strong bias
toward large backbones in workflow JSPs, we conclude by
noting that the factors present in the MAX-SAT and general
JSP cost models are unable to account for any significant
proportion of the variance in local search cost in these prob-
lems.

Discussion and Implications
Our results demonstrate that dinit-opt is a good predictor of
local search cost in both the general JSP and MAX-SAT, de-
spite qualitative differences in the underlying search spaces.
In both cases, dinit-opt indirectly measures the size of the
search space explored by the respective local search algo-
rithms. Modern local search algorithms for MAX-SAT (e.g.,
Walk-SAT (Singer, Gent, and Smaill 2000)) basically per-
form a random walk over the quasi-solution sub-space. Con-
sequently, it is unsurprising that search cost is an exponen-
tial function of the sub-space size (Hoos 1998). However,
this inference also applies to TStaillard: it is effectively per-
forming a random walk in the space of local optima. The
ability of dinit-opt to predict local search cost also indicates
that there is no, or at most a very weak, bias in the search
spaces of both problems; if there were, distance alone would
fail to accurately predict local search cost.

In contrast, we found that dinit-opt was a very poor predic-
tor of local search cost in workflow JSPs. Follow-up experi-
ments indicate that there is a very strong bias toward partic-
ular sub-optimal solutions in some of these problems: there
are many more ’paths’ in the search space to sub-optimal so-
lutions than to optimal solutions. In other problems, we have
observed very distant clusters of optimal solutions, suggest-
ing that a more complicated definition of dinit-opt may be re-
quired. Our results also raise issues regarding the descriptive
cost models for MAX-SAT, as we have shown that the fac-
tors influencing local search cost in random and structured
problems may in fact be quite different.

We view this research as a first step toward understanding
why local search algorithms for the JSP are so effective. We
selected TStaillard precisely because it serves as a baseline for
more advanced algorithms, such as the tabu search algorithm
of (Nowicki and Smutnicki 1996), which enhance TStaillard

through either more advanced move operators or long-term
memory. With descriptive cost models for the basic algo-

Table 4: Correlation of dinit-opt and backbone robustness with
local search cost in workflow JSPs.

Problem Backbone Size
Size ≈ 0.1 ≈ 0.3 ≈ 0.5 ≈ 0.7 ≈ 0.9

Correlation (r) between dinit-opt and log10(costmed)

6 × 4wf 0.6892 0.5283 0.4106 0.3023 0.1752
6 × 6wf 0.5714 0.4901 0.5835 0.2114 0.2559

Correlation (r) between backbone robustness and log10(costmed)

6 × 4wf -0.1298 -0.0752 -0.1301 -0.1296 -0.1930
6 × 6wf -0.0224 -0.0650 -0.1834 -0.1921 -0.2147

rithm, we can begin to systematically assess the influence
of these improvements on the descriptive cost model. Fi-
nally, we note that our analysis is only directly applicable
to tabu-like search algorithms for the JSP. Because descrip-
tive cost models are tied to specific algorithms, it seems
likely that other factors are responsible for local search cost
in algorithms such as iterated local search or genetic algo-
rithms, which are based on principles quite different from
tabu search.

Conclusions
Our results clearly demonstrate that the factors influencing
local search cost in MAX-SAT also influence local search
cost in the general JSP, despite qualitative differences in
the underlying search spaces. Consequently, we have a rel-
atively clear picture of local search cost in the general JSP,
although our model fails to account for a moderate amount
of the variance in local search cost of large-backboned prob-
lem instances. Our results also suggest the possibility that
these same factors may be applicable in a much wider range
of optimization problems.

We also shed more light on the observation that rectan-
gular JSPs are significantly easier than square JSPs. If we
control for backbone size, rectangular JSPs are not signifi-
cantly easier than square JSPs. Instead, the observed differ-
ence in difficulty stems primarily from the relative frequency
of backbone sizes in the two problems: large backbones are
very common in square problems, while we see a bias to-
ward smaller backbones in rectangular problems.

Finally, we also demonstrate that the factors influencing
search cost in the general JSP do not necessarily transfer

222

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

Backbone Size

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

Backbone Size

Figure 2: Backbone size histograms for 6× 4 (left) and 6× 6 (right) workflow JSPs.

to JSPs with workflow, suggesting that the descriptive cost
models for random and structured problems may in fact be
quite different.

Acknowledgments
The authors from Colorado State University were sponsored
by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant number F49620-00-
1-0144. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. J. Christopher Beck
would also like to thank Paul Shaw (ILOG, S.A.) for discus-
sions relating to this work.

References
Beck, J. C., and Fox, M. S. 2000. Dynamic problem struc-
ture analysis as a basis for constraint-directed scheduling
heuristics. Artificial Intelligence 117(2):31–81.
Blażewicz, J.; Domschke, W.; and Pesch, E. 1996. The
job shop scheduling problem: Conventional and new solu-
tion techniques. European Journal of Operational Research

93:1–33.
Clark, D. A.; Frank, J.; Gent, I. P.; MacIntyre, E.; Tomov,
N.; and Walsh, T. 1996. Local search and the number of
solutions. In Proceedings of the Second International Con-

ference on Principles and Practices of Constraint Program-

ming (CP-96), 119–133.
Éric D. Taillard. 1994. Parallel taboo search techniques for
the job shop scheduling problem. ORSA Journal on Com-

puting 6(2):108–117.
Frank, J.; Cheeseman, P.; and Stutz, J. 1997. When gravity
fails: Local search topology. Journal of Artificial Intelli-

gence Research 7:249–281.
Hoos, H. H. 1998. Stochastic Local Search - Methods, Mod-

els, Applications. Ph.D. Dissertation, Darmstadt University
of Technology.
Mattfeld, D. C.; Bierwirth, C.; and Kopfer, H. 1999. A
search space analysis of the job shop scheduling problem.
Annals of Operations Research 86:441–453.
Nowicki, E., and Smutnicki, C. 1996. A fast taboo search
algorithm for the job shop problem. Management Science

42(6):797–813.

Parkes, A. J. 1997. Clustering at the phase transition. In
Proceedings of the Fourteenth National Conference on Arti-

ficial Intelligence (AAAI-97), 340–345.
Riedys, C. M., and Stadler, P. F. 2001. Combinatorial land-
scapes. Technical Report 01-03-014, The Santa Fe Institute.
Singer, J.; Gent, I. P.; and Smaill, A. 2000. Backbone
fragility and the local search cost peak. Journal of Artifi-

cial Intelligence Research 12:235–270.
van Laarhoven, P. J. M.; Aarts, E. H. L.; and Lenstra, J. K.
1992. Job shop scheduling by simulated annealing. Opera-

tions Research 40:113–125.

223

