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Abstract

Autonomous robots, such as robot office couriers, need con-
trol routines that support flexible task execution and effec-
tive action planning. This paper describes XFRMLEARN,
a system that learns structured symbolic robot action plans
for navigation tasks. Given a navigation task, XFRMLEARN
learns to structure continuous navigation behavior and repre-
sents the learned structure as compact and transparent plans.
The structured plans are obtained by starting with monolithi-
cal default plans that are optimized for average performance
and adding subplans to improve the navigation performance
for the given task. Compactness is achieved by incorporat-
ing only subplans that achieve significant performance gains.
The resulting plans support action planning and opportunis-
tic task execution. XFRMLEARN is implemented and exten-
sively evaluated on an autonomous mobile robot.

1 Introduction

Robots operating in human working environments and solv-
ing dynamically changingsets of complex tasks are challeng-
ing testbeds for autonomous robot control. The dynamic na-
ture of the environments and the nondeterministic effects of
actions requires robots to exhibit concurrent, percept-driven
behavior to reliably cope with unforeseen events. Most
physical control processes are continuous in nature and dif-
ficult to repre-sent in discrete symbolic structures.

In order to apply high-level plan-based control tech-
niques, robots need adequate and realistic representations of
their control processes that enable their planning routines to
foresee problems and forestall them. In this paper we take
the navigation behavior of autonomous mobile robots as our
prototypical example.

Different approaches have been proposed to specify the
navigation behavior of such robots. A number of researchers
consider navigation as an instance of Markov decision prob-
lems (MDPs) (Kaelbling, Cassandra, and Kurien 1996).
They model the navigation behavior as a finite state automa-
ton in which navigation actions cause stochastic state tran-
sitions. The robot is rewarded for reaching its destination
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quickly and reliably. A solution for such problems is a pol-
icy, a mapping from discretized robot poses into fine-grained
navigation actions. MDPs form an attractive framework for
navigation because they use a uniform mechanism for ac-
tion selection and a parsimonious problem encoding. The
navigation policies computed by MDPs aim at robustness
and optimizing the average performance. One of the main
problems in the application of MDP planning techniques is
to keep the state space small enough so that the MDPs are
still solvable.

Another approach is the specification of environment- and
task-specific navigation plans, such as structured reactive
navigation plans (SRNPs) (Beetz 1999). SRNPs specify a
default navigation behavior and employ additional concur-
rent, percept-driven subplans that overwrite the default be-
havior while they are active. The default navigation behavior
can be generated by an MDP navigation system. The (de-
)activation conditions of the subplans structure the continu-
ous navigation behavior in a task-specific way.

SRNPs are valuable resources for opportunistic task ex-
ecution and effective action planning because they provide
high-level controllers with subplans such as traverse a par-
ticular narrow passage or an open area. More specifically,
SRNPs (1) can generate qualitative events from continuous
behavior, such as entering a narrow passage; (2) support on-
line adaptation of the navigation behavior (drive more care-
fully while traversing a particular narrow passage), and (3)
allow for compact and realistic symbolic predictions of con-
tinuous, sensor-driven behavior. The specification of good
task and environment-specific SRNPs, however, requires tai-
loring their structure and parameterizations to the specifics
of the environment.

We propose to bridge the gap between both approaches by
learning SRNPs, symbolic plans, from executing MDP navi-
gation policies. Our thesis is that a robot can autonomously
learn compact and well-structured SRNPs by using MDP nav-
igation policies as default plans and repeatedly inserting
subplans into the SRNPs that significantly improve the nav-
igation performance. This idea works because the policies
computed by the MDP path planner are already fairly gen-
eral and optimized for average performance.If the behavior
produced by the default plans were uniformly good, mak-
ing navigation plans more sophisticated would be of no use.
The rationale behind requiring subplans to achieve signifi-



cant improvements is to keep the structure of the plan sim-
ple.

2 An Overview on XFRMLEARN

We have implemented XFRMLEARN a realization of this
learning model and applied it to learning SRNPs for an au-
tonomous mobile robot that is to perform office courier ser-
vice. XFRMLEARN is embedded into a high-level robot
control system called structured reactive controllers (SRCs)
(Beetz 1999). SRCs are are controllers that can revise their
intended course of action based on foresight and planning
at execution time. SRCs employ and reason about plans
that specify and synchronize concurrent percept-driven be-
havior. Concurrent plans are represented in a transparent
and modular form so that automatic planning techniques can
make inferences about them and revise them.

XFRMLEARN is applied to the RHINO navigation system
(Burgard et al. 2000), which has shown impressive results in
several longterm experiments. Conceptually, this robot nav-
igation system works as follows. A navigation problem is
transformed into a Markov decision problem to be solved by
a path planner using a value iteration algorithm. The solu-
tion is a policy that maps every possible location into the op-
timal heading to reach the target. This policy is then given to
a reactive collision avoidance module that executes the pol-
icy taking the actual sensor readings into account (Burgard
et al. 2000).

The RHINO navigation system can be parameterized in
different ways. The parameter PATH is a sequence of in-
termediate points which are to be visited in the specified
order. COLLI-MODE determines how cautiously the robot
should drive and how abruptly it is allowed to change di-
rection. RHINO’s navigation behavior can be improved be-
cause RHINO’s path planner solves an idealized problem that
does not take the desired velocity, the dynamics of the robot,
the sensor crosstalk, and the expected clutteredness fully
into account. The reactive collision avoidance component
takes these aspects into account but makes only local deci-
sions.

We propose an “analyze, revise, and test” cycle as a com-
putational model for learning SRNPs. XFRMLEARN starts
with a default plan that transforms a navigation problem into
an MDP problem and passes the MDP problem to RHINO’s
navigation system. After RHINO’s path planner has deter-
mined the navigation policy the navigation system activates
the collision avoidance module for the execution of the re-
sulting policy. XFRMLEARN records the resulting naviga-
tion behavior and looks for stretches of behavior that could
be possibly improved. XFRMLEARN then tries to explain
the improvable behavior stretches using causal knowledge
and its knowledge about the environment. These explana-
tions are then used to index promising plan revision meth-
ods that introduce and modify subplans. The revisions are
then tested in a series of experiments to decide whether they
are likely to improve the navigation behavior. Successful
subplans are incorporated into the symbolic plan.
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Figure 1: Visualization of a behavior trace. The center of the
circles denote the robot’s position and the size of the circle
the current speed of the robot.

3 Structured Reactive Navigation Plans
Let us now take a more detailed look at the representation of
SRNPS.

navigation plan (desk-1,desk-2)
with subplans

TRAVERSE-NARROW-PASSAGE((635,1274),(635,1076))

parameterizations  colli-mode < slow
path constraints (635,1274),(635,1076)
Justification narrow-passage-bug-3

TRAVERSE-NARROW-PASSAGE(...)
TRAVERSE-FREE-SPACE(...)
DEFAULT-GO-TO (desk-2 )

The SRNP above contains three subplans: one for leaving
the left office, one for entering the right one, and one for
speeding up the traversal of the hallway. The subplan for
leaving the left office is shown in more detail. The path con-
straints are added tothe plan for causing the robot to traverse
the narrow passage orthogonally with maximal clearance.
The parameterizations of the navigation system specify that
the robot is asked to drive slowly in the narrow passage and
to only use laser sensors for obstacle avoidance to avoid the
hallucination of obstacles due to sonar crosstalk.

SRNPs are called structured because the subplans explic-
itly represent task-relevant structure in continuous naviga-
tion behavior. They are called reactive because “perceived”
qualitative events, such as entering or leaving a narrow pas-
sage, trigger the activation and termination of subplans.

4 XFRMLEARN in Detail

A key problem in learning structured navigation plans is to
structure the navigation behavior well. Because the robot
must start the subplans and synchronize them, it must be ca-
pable of “perceiving” the situations in which subplans are
to be activated and deactivated. Besides being perceiveable,
the situations should be relevant for adapting navigation be-
havior. Among others, we use the concept of narrowness
for detecting the situations in which the navigation behavior
is to be adapted. Based on the concept of narrowness the
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Figure 2: Behavior trace of the default plan (a). Low T-Vel subtraces (b). Learned SRNP (c).

robot can differentiate situations such as free space, travers-
ing narrow passages, entering narrow passages, and leaving
narrow passages.

Diagnosis of Conspicous Subtraces. Upon carrying out
a navigation task, RHINO produces a behavior trace like
the one shown in Figure 1. The robot’s position is de-
picted by a circle where the size of the circle is propor-
tional to the robot’s translational speed. Behavior feature
subtraces such as low and high translational speed, turning
in place, and frequent stopping often hint at which behav-
ior stretches can be improved. To infer how the improve-
ments might be achieved, XFRMLEARN first tries to explain
a behavior feature subtrace by finding environment feature
subtraces, such as “traversing a narrow passage” or “pass-
ing an obstacle” that overlap with it. We use the predicate
MAYCAUSE(F1,F2) to specify that the environment feature
F1 may cause the behavior feature F2 like narrow passages
causing low translational velocity. If there is sufficient over-
lap between a behavior feature subtrace b and an environ-
ment feature subtrace e then the behavior is considered to
be a behavior flaw. The diagnosis step is realized through a
simple diagnostic rule that, depending on the instantiation
of MAYCAUSE(?F1,?F2) can diagnose different kinds of
flaws:

D-1 Low translational velocity is caused by the traversal of
narrow passages.

D-2 Stopping is caused by the traversal of narrow passage.

D-3 Low translational velocity is caused by passing an ob-
stacle too close.

D-4 Stopping caused by passing an obstacle too close.
D-5 High target velocity caused by traversing free space.

The “revise” step uses programming knowledge about
how to revise navigation plans and how to parameterize the
subsymbolic navigation modules that is encoded in the form
of plan transformation rules. In their condition parts trans-
formation rules check their applicability and the promise of
success. These factors are used to estimate the expected util-
ity of rule applications. XFRMLEARN selects the rule with
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a probability proportional to the expected utility and applies
it to the plan.

For the purpose of this paper, XFRMLEARN provides the
following revisions:

R-1 If the behavior flaw is attributed to the traversal of a
narrow passage then insert a subplan to traverse the pas-
sage orthogonally and with maximal clearance.

R-2 Switch off the sonar sensors while traversing narrow
passages if the robot repeatedly stops during the traversal.

R-3 Insert an additional path constraint to pass a closeby
obstacle with more clearance.

R-4 Increase the target velocity for the traversal of free
space where the measured velocity almost reaches the cur-
rent target velocity.

R-5 Insert an additional path constraint to avoid abrupt
changes in the robot’s heading.

Because XFRMLEARN'’s transformation rules are heuris-
tic, their applicability and the performance gain that can be
expected from their application is environment and task-
specific. Therefore XFRMLEARN learns the environment
and task specific expected utility of rules based on experi-
ence.

The “test” step. Because plan transformation rules check
their applicability and parameterization with respect to ide-
alized models of the environment, the robot, the perceptual
apparatus, and operation of the subsymbolic navigation sys-
tem, XFRMLEARN cannot guarantee any improvements of
the existing plan. Therefore, XFRMLEARN tests the result-
ing candidate plans against the original plan by repeatedly
running the original and the revised plan and measuring the
time performance in the local region that is affected by the
plan transformation. The new candidate plan is accepted, if
based on the experiments there is a 95% confidence that the
new plan performs better than the original one.

S Experimental Results
To empirically evaluate XFRMLEARN we have performed
two long term experiments in which XFRMLEARN has im-
proved the performance of the RHINO navigation system for



given navigation tasks by up to 44 percent within 6 to 7
hours.

Figure 2a shows the navigation task (going from the desk
in the left room to the one in the right office) and a typical
behavior trace generated by the MDP navigation system. Fig-
ure 2b visualizes the plan that was learned by XFRMLEARN.
It contains three subplans. One for traversing the left door-
way, one for the right one, and one for the traversal of the
hallway. The ones for traversing the doorways are TRA-
VERSENARROWPASSAGE subplans, which comprise path
constraints (the black circles) as well as behavior adaptations
(depicted by the region). The subplan is activated when the
region is entered and deactivated when it is left. A typical
behavior trace of the learned SRNP is shown in Figure 2c.
We can see that the behavior is much more homogeneous
and that the robot travels faster. This visual impression is
confirmed by statistical tests. The t-test for the learned SRNP
being at least 24 seconds (21%) faster returns a significance
of 0.956. A bootstrap test returns the probability of 0.956
that the variance of the performance has been reduced.

In the second learning session the average time needed
for performing a navigation task has been reduced by about
95.57 seconds (44%). The t-test for the revised plan being at
least 39 seconds (18%) faster returns a significance of 0.952.
A bootstrap test returns the probability of 0.857 that the vari-
ance of the performance has been reduced.

6 Conclusions

We have described XFRMLEARN, a system that learns
SRNPs, symbolic behavior specifications that (a) improve
the navigation behavior of an autonomous mobile robot gen-
erated by executing MDP navigation policies, (b) make the
navigation behavior more predictable, and (c) are structured
and transparent so that high-level controllers can exploit
them for demanding applications such as office delivery.

XFRMLEARN is capable of learning compact and modu-
lar SRNPs that mirror the relevant temporal and spatial struc-
tures in the continuous navigation behavior because it starts
with default plans that produce flexible behavior optimized
for average performance, identifies subtasks, stretches of be-
havior that look as if they could be improved, and adds sub-
task specific subplans only if the subplans can improve the
navigation behavior significantly.

The learning method builds a synthesis among various
subfields of Al: computing optimal actions in stochastic do-
mains, symbolic action planning, learning and skill acqui-
sition, and the integration of symbolic and subsymbolic ap-
proaches to autonomous robot control. Our approach also
takes a particular view on the integration of symbolic and
subsymbolic control processes, in particular MDPs. In our
view symbolic representations are resources that allow for
more economical reasoning. The representational power of
symbolic approaches can enable robot controllers to better
deal with complex and changing environments and achieve
changing sets of interacting jobs. This is achieved by mak-
ing more information explicit and representing behavior
specifications symbolically, transparently, and modularly. In
our approach, (PO)MDPs are viewed as a way to ground sym-
bolic representations.
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