
Approximate Planning for Factored POMDPs

Zhengzhu Feng
Computer Science Department

University of Massachusetts
Amherst MA 02062

fengzz@cs.umass.edu
New address: zhengzhu@gmail.com

Eric A. Hansen
Computer Science Department

Mississippi State University
Mississippi State MS 39762

hansen@cs.msstate.edu
New address: hansen@cse.msstate.edu

Abstract

We describe an approximate dynamic programming al-
gorithm for partially observable Markov decision pro-
cesses represented in factored form. Two complemen-
tary forms of approximation are used to simplify a
piecewise linear and convex value function, where each
linear facet of the function is represented compactly by
an algebraic decision diagram. ln one form of approxi-
mation, the degree of state abstraction is increased by
aggregating states with similar values. In the second
form of approximation, the value function is simplified
by removing linear facets that contribute marginally to
value. We derive an error bound that applies to both
forms of approximation. Experimental results show that
this approach improves the performance of dynamic
programming and extends the range of problems it can
solve.

Introduction
Markov decision processes (MDPs) have been adopted
as a framework for research in decision-theoretic plan-
ning (Boutilier et al. 1999). An MDP models planning prob-
lems for which actions have an uncertain effect on the state,
and sensory feedback compensates for uncertainty about the
state. An MDP is said to be completely observable if sensory
feedback provides perfect state information before each ac-
tion. It is said to be partially observable if sensory feedback
is noisy and provides partial and imperfect state informa-
tion. Although a partially observable Markov decision pro-
cess (POMDP) provides a more realistic model, it is much
more difficult to solve.

Dynamic programming is the most common approach to
solving MDPs. However, a drawback of classic dynamic
programming algorithms is that they require explicit enu-
meration of a problem’s state space. Because the state space
grows exponentially with the number of state variables,
these algorithms are prey to Bellman’s “curse of dimension-
ality.” To address this problem, researchers have developed
algorithms that exploit a factored state representation to cre-
ate an abstract state space in which planning problems can
be solved more efficiently. This approach was first devel-
oped for completely observable MDPs, using decision trees

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to aggregate states with identical values (Boutilier et al.
1995). Improved performance was subsequently achieved
using algebraic decision diagrams (ADDs) in place of deci-
sion trees (Hoey et al. 1999). A factored representation has
also been exploited in solving POMDPs using both decision
trees (Boutilier & Poole 1996) and ADDs (Hansen & Feng
2000).

Although this approach improves the efficiency with
which many problems can be solved, it provides no benefit
unless there are states with identical values that can be ag-
gregated. Moreover, the degree of state abstraction that can
be achieved in this way may be insufficient to make a prob-
lem tractable. Many large MDPs and even small POMDPs
resist exact solution. Thus, there is a need for approxima-
tion to allow a tradeoff between optimality and computation
time. For completely observable MDPs, an approach to ap-
proximation that increases the degree of state abstraction by
aggregating states with similar (rather than identical) val-
ues has been developed, using both decision trees (Boutilier
& Dearden 1996) and ADDs (St-Aubin et al. 2000). This
paper develops a related approach to approximation for the
partially observed case.

Whereas the value function of a completely observable
MDP can be represented by a single ADD, the value func-
tion of a POMDP is represented by a set of ADDs. This
makes development of an approximation algorithm for fac-
tored POMDPs more complex. We describe two compli-
mentary forms of approximation for POMDPs. The first is
closely related to approximation in the completely observ-
able case and involves simplifying an ADD by aggregating
states of similar value. In the second form of approximation,
the set of ADDs representing the value function is reduced
in size, by removing ADDs that contribute only marginally
to value. The latter technique is often used in practice, but
has not been analyzed before in the literature. We clarify the
relationship between these two forms of approximation, and
derive a bound on their approximation error. Experimental
results show that this approach to approximation can im-
prove the rate of convergence of dynamic programming, as
well as the range of problems it can solve.

99

Proceedings of the Sixth European Conference on Planning

Partially observable Markov decision
processes

We assume a discrete-time POMDP with finite sets of states
S, actions A, and observations O. The transition function
Pr(s′|s, a), observation function Pr(o|s′, a), and reward
function r(s, a) are defined in the usual way. We assume
a discounted infinite-horizon optimality criterion with dis-
count factor β ∈ (0, 1]. A belief state, b, is a probability
distribution over S maintained by Bayesian conditioning. As
is well-known, it contains all information necessary for opti-
mal action selection. This gives rise to the standard approach
to solving POMDPs. The problem is recast as a completely
observable MDP with a continuous, |S|-dimensional state
space consisting of all possible belief states, denoted B. In
this form, the POMDP can be solved by iteration of a dy-
namic programming operator T that improves a value func-
tion V : B → R by performing the following “one-step
backup” for all belief states b.

Vn(b) = TVn−1(b) = max
a∈A
{r(b, a)+β

∑
o∈O

Pr(o|b, a)Vn−1(bao)},

(1)
where r(b, a) =

∑
s∈S b(s)r(s, a), bao is the up-

dated belief state after action a and observation o;
and Pr(o|b, a) =

∑
s,s′∈S Pr(o, s

′|s, a)b(s) where
Pr(o, s′|s, a) = Pr(s′|s, a)Pr(o|s′, a).

The theory of dynamic programming tells us that the op-
timal value function V ∗ is the unique solution of the equa-
tion system V = TV , and that V ∗ = limn→∞ TnV0, where
Tn denotes n applications of operator T to any initial value
function V0. We note that Tn corresponds to the value itera-
tion algorithm.

An important result of Smallwood and Sondik (Small-
wood & Sondik 1973) is that the dynamic-programming
operator T preserves the piecewise linearity and convex-
ity of the value function. A piecewise linear and convex
value function V can be represented by a finite set of |S|-
dimensional vectors of real numbers, V = {v0, v1, . . . , vk},
such that the value of each belief state b is defined as:

V (b) = max
0≤i≤k

∑
s∈S

b(s)vi(s).

Several algorithms for computing the dynamic-
programming operator have been developed. The most
efficient, called incremental pruning (Cassandra et al.
1997), relies on the fact that the updated value function Vn
of Equation (1) can be defined as a combination of simpler
value functions, as follows:

Vn(b) = max
a∈A

V an (b)

V an (b) =
∑
o∈O

V a,on (b)

V a,on (b) =
r(b, a)

|O|
+ βPr(o|b, a)Vn−1(bao)

Each of these value functions is also piecewise linear and
convex, and can be represented by a unique minimum-size
set of vectors, denoted Vn, Van, and Va,on respectively.

The cross sum of two sets of vectors, U and W , is de-
fined as U ⊕ W = {u + w|u ∈ U , w ∈ W}. An opera-
tor that takes a set of vectors U and reduces it to its unique
minimum form is denoted PRUNE(U). Using this notation,
the minimum-size sets of vectors defined above can be com-
puted as follows:

Vn = PRUNE(∪a∈AVan)
V an = PRUNE(⊕o∈OVa,on)

Va,on = PRUNE({va,o,i|vi ∈ Vn−1}),
where va,o,i is the vector defined by

va,o,i(s) =
r(s, a)

|O|
+ β

∑
s′∈S

Pr(o, s′|s, a)vi(s′). (2)

Incremental pruning gains its efficiency (and its name)
from the way it interleaves pruning and cross-sum to com-
pute V an , as follows:

V a
n = PRUNE(. . . PRUNE(PRUNE(Va,o1

n ⊕Va,o2
n)⊕Va,o3

n) . . .Va,ok
n).

PRUNE reduces a set of vectors to a unique, minimal-
size set by removing “dominated” vectors, that is, vectors
that can be removed without affecting the value of any belief
state. There are two tests for dominated vectors. One test
determines that vector w is dominated by some other vector
u ∈ V when

w(s) ≤ u(s), ∀s ∈ S. (3)
Although this test can be performed efficiently, it cannot

detect all dominated vectors. Therefore, it is supplemented
by a second, less efficient test that determines that a vectorw
is dominated by a set of vectors V when the following linear
program cannot be solved for a value of d that is greater than
zero.

variables: d, b(s)∀s ∈ S
maximize d
subject to the constraints∑

s∈S b(s)(w(s)− u(s)) ≥ d, ∀u ∈ V∑
s∈S b(s) = 1

In a single iteration of incremental pruning, many linear
programs must be solved to detect all dominated vectors,
and the use of linear programming to test for domination has
been found to consume more than 95% of the running time
of incremental pruning (Cassandra et al. 1997). The number
of variables in each linear program is determined by the size
of the state space. The number of constraints in each linear
program (as well as the number of linear programs that need
to be solved) is determined by the size of the vector set being
pruned. This reflects the two principal sources of complex-
ity in solving POMDPs. One source of complexity is shared
by completely observable MDPs: the size of the state space.

100

The other source of complexity is unique to POMDPs: the
number of linear functions needed to represent the piecewise
linear and convex value function.

In this paper, we explore two forms of approximation that
address these two sources of complexity. We use state ab-
straction to reduce the number of variables in each linear
program. We use relaxed tests for dominance to reduce the
number of constraints in each linear program, as well as
the number of linear programs that need to be solved. Be-
fore describing our approximation algorithm, we describe
the framework for state abstraction.

State abstraction and algebraic decision
diagrams

We consider an approach to state abstraction for MDPs and
POMDPs that exploits a factored representation of the prob-
lem. We assume the relevant properties of a domain are
described by a finite set of Boolean state variables, X =
{X1, . . . , Xn}, and observations are described by a finite
set of Boolean observation variables Y = {Y1, . . . , Ym}.
We define an abstract state as a partial assignment of truth
values to X , corresponding to a set of possible states.

Algebraic decision diagrams Instead of using matrices
and vectors to represent the POMDP model, we use a data
structure called an algebraic decision diagram (ADD) that
exploits state abstraction to represent the model more com-
pactly. Decision diagrams are widely used in VLSI CAD
to represent and evaluate large state space systems (Bahar
et al. 1993). A binary decision diagram is a compact rep-
resentation of a Boolean function, Bn → B. An algebraic
decision diagram (ADD) generalizes a binary decision di-
agram to represent real-valued functions, Bn → R. Oper-
ations such as sum, product, and expectation (correspond-
ing to similar operations on matrices and vectors) can be
performed on ADDs, and efficient packages for manipulat-
ing ADDs are available (Somenzi 1998). Hoey et al, (Hoey
et al. 1999) show how to use ADDs to represent and solve
completely observable MDPs. Hansen and Feng (Hansen &
Feng 2000) extend this approach to POMDPs, based on ear-
lier work of Boutilier and Poole (Boutilier & Poole 1996). In
the rest of this section, we summarize this approach to state
abstraction for POMDPs.

Model We represent the state transition function for
each action a using a two-slice dynamic belief network
(DBN). The DBN has two sets of variables, one set X =
{X1, . . . , Xn} refers to the state before taking action a, and
the other set X ′ = {X ′1, . . . , X ′n} refers to the state after.

For each post-action variable X ′i , the conditional proba-
bility function P a(X ′i|X) of the DBN is represented com-
pactly using an ADD. It is convenient to construct a sin-
gle ADD, P a(X ′|X), that represents in factored form the
state transition function for all post-action variables. Hoey
et al. (Hoey et al. 1999) call this a complete action diagram
and describe the steps required to construct it.

The observation model of a POMDP is represented in fac-
tored form, in a similar way. We use an ADD P a(Yi|X ′)
to represent the probability that observation variable Yi is
true after action a is taken and the state variables change to

X ′. Given an ADD, P a(Yi|X ′), for each observation vari-
able Yi, it is again convenient to construct a single ADD,
P a(Y|X ′), that represents in factored form the observation
function for all observation variables. We call this a com-
plete observation diagram, and it is constructed in the same
way as a complete action diagram.

Given a complete action diagram and a complete observa-
tion diagram, a single ADD, P a,o(X ′|X), representing the
transition probabilities for all state variables after action a
and observation o, is constructed as follows:

P a,o(X ′|X) = P a(X ′|X)P a(Y|X ′).
The ADD P a,o(X ′|X) represents the probabilities

Pr(o, s′|s, a), just as P a(X ′|X) represents the probabili-
ties Pr(s′|s, a) and P a(Y|X ′) represents the probabilities
Pr(o|s′, a).

The reward function for each action a can also be repre-
sented compactly by an ADD, denoted Ra(X). Similarly, a
piecewise linear and convex value function for a POMDP
can be repesented compactly by a set of ADDs. We use the
notation V = {v1(X), v2(X), . . . , vk(X)} to denote this
value function.

Dynamic programming Hansen and Feng (Hansen & Feng
2000) describe how to modify the incremental pruning algo-
rithm to exploit this factored representation of a POMDP for
computational speedup. We briefly review their approach,
and refer to their paper for details.

The first step of incremental pruning is generation of the
linear functions in the sets Va,on . For a POMDP represented
in factored form, the following equation replaces Equation
(2):

va,o,i(X) = Ra(X)
|O|

+ β
∑
X ′

P a,o(X ′|X)vi(X ′).

All terms in this equation are represented by ADDs. The
symbol

∑
X ′ , denotes an ADD operator called existential

abstraction that sums over the values of the state variables in
P a,o(X ′|X)vi(X ′), exploiting state abstraction to compute
the expected value efficiently.

State abstraction is also exploited to perform pruning
more efficiently. Recall that the value function is represented
by a set of linear functions, Each linear function is repre-
sented compactly by an ADD that can map multiple states
to the same value, corresponding to a leaf of the ADD. In
this case, the leaf corresponds to an abstract state. Hansen
and Feng (Hansen & Feng 2000) describe an algorithm that
finds a partition of the state space into abstract states that
is consistent with the set of ADDs. Given this abstract state
space, both tests for dominance can be performed more ef-
ficiently. In particular, the number of variables in the linear
program used to test for dominace is reduced in proportion
to the reduction in size of the state space. Because linear pro-
gramming consumes most of the running time of incremen-
tal pruning, this significantly improves the performance of
the algorithm in the best case. In the worst case, performance
is only slightly worse since the overhead for this approach is
almost negligible. Hansen and Feng (Hansen & Feng 2000)

101

report speedups of up to a factor of twenty for the problems
they test. The degree of speedup is proportional to the degree
of state abstraction.

Approximation algorithm
As an approach to scaling up dynamic programming for
POMDPs, the exact algorithm reviewed in the previous sec-
tion has two limitations. First, there may not be sufliciently
many (or even any) states with identical values to create an
abstract state space that is small enough to be tractable. Sec-
ond, although the size of the state space contributes to the
complexity of POMDPs, the primary source of complexity
is the potential exponential growth in the number of linear
functions (ADDs) needed to represent the value function.

We now describe an approximate dynamic programming
algorithm that addresses both of these limitations by ignor-
ing differences of value less than some error threshold 6.
lt runs more efficiently than the exact algorithm because it
computes a simpler, approximate value function for which
we can bound the approximation error. There are two places
in which the algorithm ignores value differences – in rep-
resenting state values, and in representing values of belief
states. These correspond to two complementary forms of ap-
proximation, one in which an ADD representing state values
is simplified, and the other in which a set of ADDs represent-
ing belief state values is reduced in size. In other words, one
form of approximation reduces the size of the state space
(using state abstraction) and the other reduces the size of the
value function (by pruning more aggressively). Before de-
scribing the algorithm, we define what we mean by approx-
imate dynamic programming and present some theoretical
results that allow us to bound the approximation error.

Approximation with bounded error We begin by defining
what we mean by an approximate value function and an ap-
proximate dynamic programming operator.

Definition 1. A value function V̂ approximates a value func-
tion V with approximation error δ if ||V − V̂ || ≤ δ. (Note
that ||V − V̂ || denotes maxb∈B |V (b)− V̂ (b)|).
Definition 2. An operator T̂ approximates the dynamic pro-
gramming operator T if for any value function V , ||TV −
T̂ V || ≤ δ.

We define an approximate value iteration algorithm T̂n
in the same way that we defined the value iteration algo-
rithm Tn. The error between the approximate and exact n-
step value functions is bounded as follows.
Theorem 1. For any n > 0 and any value function V ,
||TnV − T̂ V || ≤ δ

1−β

To compute a bound on the error between a n-step approx-
imate value function and the optimal value function, we use
the Bellman residual between the (n− 1)th and nth approx-
imate value functions. The following theorem is essentially
the same as Theorem 12.2.5 of Ortega and Rheinboldt (Or-
tega & Rheinboldt 1970), who studied approximate contrac-
tion mappings for systems of nonlinear equations, and The-
orem 4.2 of Cheng (Cheng 1998), who first applied their re-
sult to POMDPs.

Theorem 2. The error between the current and optimal
value function is bounded as follows,

||T̂nV − V ∗|| ≤
β

1− β
||T̂nV − T̂n−1V ||+

δ

1− β
.

Value iteration using an approximate dynamic program-
ming operator converges “weakly,” that is, two successive
value functions fall within a distance 2δ

1−β in the limit. (De-
creasing δ after “weak” convergence will allow further im-
provement, as discussed later.)

Theorem 3. For any value function V and ε > 0, there is
an N such that for all n > N ,

||T̂nV − T̂n−1V || ≤
2δ

1− β
+ ε

Simplifying ADDs We first describe an approach to ap-
proximation that simplifies an ADD by ignoring small dif-
ferences in state values. It is based on a similar approach to
approximation for completely observable MDPs (St-Aubin
et al. 2000), although modifications are needed to extend
this approach to POMDPs.

For completely observable MDPs, a single ADD repre-
sents the value function. Each leaf of the ADD corresponds
to a distinct value. If more than one state has the same value,
the states are mapped to the same leaf. In this way, a leaf can
represent a set of states, or equivalently, an abstract state.
Because state abstraction can be exploited to accelerate dy-
namic programming, the approach to approximation is to in-
crease the degree of state abstraction by aggregating states
with similar (though not identical) values.

St-Aubin et al. (St-Aubin et al. 2000) introduce the fol-
lowing notation and terminology. The value of a state is rep-
resented as a pair [l, u], where the lower, l, and upper, u,
bounds on the values are both represented. The span of a
state, s, is given by span(s) = u − l. The combined span
of states s1, s2, . . . , sn with values [l1, u1], . . . , [ln, un],
is given by cspan(s1, s2, . . . , sn) = max(u1, . . . , un) −
min(l1, . . . , ln). The method of approximation is to merge
states (and correspondingly, leaves of an ADD) when their
combined span is less than δ. This approximation is per-
formed after each iteration of dynamic programming, The
simpler ADD allows computational speedup, at the cost of
some approximation error introduced by ignoring differ-
ences of value less than δ.

To implement this approach to approximation, St-Aubin
et al. (St-Aubin et al. 2000) modified the ADD package
so that a leaf of an ADD can represent a range of values,
and a single ADD can represent a ranged value function.
We don’t do this because the value function of a POMDP
is represented by a set of ADDs, instead of a single ADD,
and we are concerned with upper and lower bounds on the
values of belief states. The set of ADDs representing the
lower bound function may not be the same as the set of
ADDs representing the upper bound function. An alterna-
tive to a ranged value function is to use two ADDs to rep-
resent bounds on state values – one for lower bounds and
one for upper bounds. But this representation would require

102

performing incremental pruning twice – once to compute a
piecewise linear and convex lower bound function and once
to compute a piecewise linear and convex upper bound func-
tion – doubling the complexity of the algorithm. Instead, we
found that we can achieve an equally good result by com-
puting a piecewise linear and convex lower bound function
only, and representing the upper bound by using a scalar for
the approximation error.

Figure 1 illustrates the effect of simplification. The ADD
on the left is simplified by merging leaves that have a com-
bined span of less than δ = 0.5. The ADD on the right rep-
resents a lower bound on the value of each abstract state.
Adding δ to each lower bound gives the upper bound. We
use the following algorithm to simplify an ADD. The input
is an ADD and approximation threshold δ. The output is a
simplified ADD with bounded error.

Figure 1: Example of ADD simplification.

QUEUE←all leaves of ADD sorted in increasing
order of value

s← remove first element from QUEUE
X ← {s}
While QUEUE is not empty

t← remove next element from QUEUE
if cspan(X ∪ {t}) ≤ δ
X ← X ∪ {t}

else
merge(X) and create new ADD leaf for X
X ← {t}

endif
endwhile

Because the complexity of each merge is |S|, the com-
plexity of this algorithm is O(|S|2). Performing this simpli-
fication algorithm on each ADD in a piecewise linear and
convex value function results in an approximate value func-
tion with approximation error δ.

Theorem 4. Let V = {v1, . . . , vn} be a piecewise linear
and convex value function and let V ′ = {v′1, . . . , v′n} be its
approximation such that for each v′i, we have ||vi−v′i|| ≤ δ.
Then ||V − V ′|| ≤ δ.

Pruning ADDs In the second Section, we described two
tests for dominated linear functions. It has long been rec-
ognized that both tests are sensitive to numerical impreci-

sion errors when the value representing the degree of domi-
nace is close to zero. Thus, a precision parameter is typically
used to prevent linear functions from being included in the
value function due to numerical imprecision error, Instead
of testing for a value greater than zero to ensure that a linear
function is not dominated, the test is for a value greater that
10−15, for example, or some number that represent the limit
of numerical precision on the computer.

Many practitioners have noticed that increasing this pre-
cision parameter (to a value of, say, 10−5), has the added
benefit of pruning vectors that contribute only marginally
to the value function, This often results in significant per-
formance improvement. Although this technique is widely
used in practice, the effect of this approximation on the er-
ror bound of the value function has not been analyzed be-
fore in the literature. We consider this second method of ap-
proximation in this paper because of its close, and comple-
mentary, relationship to our first method of approximation,
which also ignores small differences of value. Equation 3
gives a test for dominance that we generalize to allow ap-
proximation as follows.

Definition 3. A linear function w is approximately domi-
nated by another linear function u ∈ V when

w(s)− δ ≤ u(s), ∀s ∈ S,
where δ > 0.

The linear programming test for domination is general-
ized to allow approximation as follows.

Definition 4. A linear function w is approximately domi-
nated by a set of linear functions V , if the output of the linear
program, d, is less than δ > 0.

Let PRUNE′ be the pruning operator that employs these
two approximate dominance tests.

Theorem 5. For any set of vectors V ,

||PRUNE(V)− PRUNE′(V)|| ≤ δ.
Accumulation of error Both the approximate ADD sim-

plification algorithm and the approximate pruning algorithm
are applied repeatedly during incremental pruning. They are
applied to each set Va,on . They are applied to each of the |O|
sets of ADDs created by the cross-sum operator during the
computation of Van. Finally, they are applied to the set Vn
created by the union of the sets Van. Thus, we must consider
how approximation error accumulates during the progress of
incremental pruning.

Lemma 1. If a set of ADDs representing value function V is
simplified with approximation error δ1 and then pruned with
approximation error δ2, the resulting set of ADDs represents
a value function that approximates V with error δ1 − δ2.

Lemma 2. If V̂ 1 is an approximation of value function V 1

with approximation error δ1, and V̂ 2 is an approximation of
value function V 2 with approximation error δ2, then:

1. V̂ 1 + V̂ 2 is an approximation of V 1 + V 2 with approxi-
mation error δ1 + δ2, and

103

2. V̂ 1 ∪ V̂ 2 is an approximation of V 1 ∪ V 2 with approxi-
mation error max(δ1, δ2).

Theorem 6. Let T̂ denote an approximation of the dynamic
programming operator T computed by incremental pruning
with simplification error δ1 and pruning error δ2. For any
value function V ,

||TV − T̂ V || ≤ (2|O|+ 1)(δ1 + δ2).

Letting δ = (2|O|+1)(δ1+δ2), we can use Theorem 2 to
compute a bound on the error between the approximate and
optimal value functions.

Adjustment of approximation Finally, we note that with
exact dynamic programming, the difference between suc-
cessive value functions always decreases from one iteration
to the next. This is not necessarily the case with approxi-
mate dynamic programming. It suggests a strategy for reduc-
ing the approximation parameters over successive iterations.
Whenever there is an increase in the Bellman residual, we
reduce the approximation parameters (e.g., by the discount
factor 0.5) and the solution continues to improve. By using a
high degree of approximation initially and gradually reduc-
ing it, we may accelerate the rate of improvement in initial
iterations and still eventually achieve a result of equal qual-
ity as a result found by the exact algorithm. This is explored
in the next section.

Analysis of performance
Hansen and Feng (Hansen & Feng 2000) use seven test prob-
lems to evaluate the performance of their exact dynamic pro-
gramming algorithm for factored POMDPs. Among these,
the fourth test problem (with six state variables, five actions,
and two observation variables) illustrates the Worstcase per-
formance of the algorithm. Because there are strong depen-
dencies among all the state variables, the algorithm finds
no state abstraction. So we use this example as a test of
whether the approximation algorithm can create state ab-
stractions where the exact algorithm cannot. Figure 2 com-
pares the size of the abstract state space created by the ex-
act and approximation algorithms over successive iterations.
Approximate ADD simplification makes it possible to solve
the problem in an abstract state space that varies in size from
five to thirty states, compared to 64 states in the original state
space. This shows that ADD simplification can create useful
state abstractions for problems with little or no variable in-
dependence.

Figure 3 and 4 show the interaction between the two forms
of approximation by way of their effect on the two princi-
pal sources of POMDP complexity – the size of the state
space and the size of the value function. The data is col-
lected by running the program with different pruning and
simplification errors for 30 iterations. The average size of
the abstract state space and the average size of the value
function are then plotted as a function of the two types of ap-
proximation error. Figure 3 shows that increasing the ADD
pruning error has little or no effect on ADD simplification.
Figure 4 shows that increasing the ADD simplification er-
ror only slightly amplifies the effect of ADD pruning. Thus,
the performance improvement achieved from each form of

Figure 2: Size of abstract state space using exact and approx-
imate ADD simplification.

approximation is almost independent, with a slight positive
interaction effect. The two methods of approximation are
complementary. ADD simplification decreases the size of
the state space and ADD pruning decreases the size of the
value function.

Figure 3: Interaction between ADD simplification and prun-
ing error on size of abstract state space.

Figure 5 shows the separate effect of each form of approx-
imation on the rate of convergence, as well as their combined
effect. (The ADD simplification error is 0.1 and the ADD
pruning error is 0.0l.) lt shows that using both forms of ap-
proximation results in better performance than using either
one alone. It also shows that the approximation algorithm
can find a better solution than the exact algorithm, in the
same amount of time. The reason for this is that the approx-
imation algorithm approximates the dynamic-programming
operator, which performs a single iteration of dynamic pro-
gramming. Dynamic programming takes many iterations
to converge. Because approximation allows the dynamic-
programming operator to be computed faster in exchange
for slightly less improvement of the value function, approxi-
mation can have the effect of increasing the rate of improve-
ment. In other words, the approximation algorithm can per-
form more iterations in the same amount of time, and, as a
result, can find a better solution in the same amount of time.
This is true even though each iteration of the approximation

104

Figure 4: Interaction between ADD simplification and prun-
ing error on size of value function.

algorithm may not improve the value function as much as a
corresponding iteration of the exact algorithm.

Figure 5: Rate of convergence using both forms of approxi-
mation, separately and together..

We are not only interested in improving the rate of con-
vergence of dynamic programming. We are also interested in
solving larger problems than the exact algorithm can solve.
The scalability of both the exact algorithm and the approx-
imation algorithm is limited by the same two factors – the
size of the state space and the size of the value function.
(The dynamic programming algorithm currently cannot han-
dle problems with more than about 50 states or value func-
tions with more than a few hundred ADDs.) The approxi-
mation algorithm scales better than the exact algorithm be-
cause it can control the size of the state space and the size
of the value function. It controls the size of the (abstract)
state space by using approximation to adjust the degree of
state abstraction. It controls the size of the value function
by using approximation to adjust the threshold for pruning
ADDs, and thus the number of ADDs that are pruned. This
allows the algorithm to find approximate solutions to prob-
lems with more states than the exact algorithm can handle,
and to avoid an exponential explosion in the size of the value
function. The quality of the solution that can be found within
these limitations is problem-dependent, but easily estimated

by computing the error bound.

Conclusion
POMDPs are very difficult to solve exactly and it is widely-
recognized that approximation is needed to solve realistic
problems. We have described two complementary forms of
approximation that improve the performance of a dynamic
programming algorithm that computes a piecewise linear
and convex value function. The first form of approxima-
tion increases the degree of state abstraction by ignoring
state distinctions that have little effect on value. The second
form of approximation reduces the number of linear func-
tions used to represent the value function by removing those
that have little effect on value. Both forms of approximation
allow computational speedup in exchange for a bounded de-
crease in solution quality. Both also have tunable parameters
that allow the degree of approximation to be adjusted to suit
the problem. We showed that this approach to approximation
improves both the rate of convergence of dynamic program-
ming; and its scalability.

References
Bahar; R.I.; Frohm; E.A.; Gaona; C.M.; Hachtel; G.D.;
Macii; E.; Pardo; A.; and Somenzi; F. 1993. Algebraic de-
cision diagrams and their applications. In Proceedings of
the International Conference on ComputerAided Design. pp
188-191.
Boutilier; C.; Dean; T.; and Hanks; S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. In Journal of Artificial Intelligence Re-
search, 11:1-94.
Boutilier; C.; Dearden; R.; and Goldszmidt; M. 1995. Ex-
ploiting structure in policy construction. In Proceedings of
the Fourteenth International Conference on Artificial Intel-
ligence (IJCAI-95). pp 1104-1111.
Boutilier; C. and Poole; D. 1996. Computing optimal poli-
cies for partially observable decision processes using com-
pact representations. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence (AAAI-96). pp
1168-1175.
Boutilier; C. and Dearden; R. 1996. Approximating value
trees in structured dynamic programming. In Proceedings of
the Fourteenth International Conference on Machine Learn-
ing. pp 54-62.
Cassandra; A.R.; Littman; M.L.; and Zhang; N.L. 1997. In-
cremental pruning: A simple; fast; exact method for partially
observable Markov decision processes. In Proceedings of
the Thirteenth Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI-97). pp 54-61.
Cheng; H. 1998. Algorithms for Partially Observable
Markov Decision Processes. PhD Thesis, University of
British Columbia.
Hansen; E. and Feng; Z. 2000. Dynamic programming for
POMDPs using a factored state representation. In Proceed-
ings of the Fifth International Conference on Artificial Intel-
ligence Planning and Scheduling, pp 130-139.

105

Hoey; J.; St-Aubin; R.; Hu; A.; and Boutilier; C. 1999.
SPUDD: Stochastic Planning using Decision Diagrams. In
Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence (UAI-99).
Ortega; J.M and Rheinboldt; W.C. 1970. Iterative Solu-
tion of Nonlinear Equations in Several Variables. Academic
Press, New York.
Smallwood; R.D. and Sondik; E.J. 1973. The optimal con-
trol of partially observable Markov processes over a finite
horizon. In Operations Research 21:1071-1088.
Somenzi; F. 1998. CUDD: CU decision diagram package.
Available from ftp://vlsi.colorado.edu/pub/.
St-Aubin; R.; Hoey; J.; and Boutilier; C. 2000. APRICODD:
Approximate Policy Construction using Decision Diagrams.
In Advances in Neural Information Processing Systems 13
(NIPS-00): Proceedings of the 2000 Conference.

106

