
From SDK to xPST:
A New Way to Overlay a Tutor on Existing Software

Stephen B. Blessing1, Stephen B. Gilbert2, Liz A. Blankenship3, Bhavesh Sanghvi2
1
University of Tampa,

2
Iowa State University,

3
University of Michigan

1
401 W. Kennedy Blvd., Tampa, FL 33606;

2
 1620 Howe Hall, Ames, IA 50011

3
 1085 South University Ave., 304 West Hall, Ann Arbor, MI 48109

sblessing@ut.edu, gilbert@iastate.edu, lizblank@umich.edu, bsanghvi@cs.iastate.edu

Abstract
Our past work has investigated the use of the Cognitive
Model Software Development Kit (SDK) for creating the
cognitive models that underlie model-tracing Cognitive
Tutors. Though successful at increasing the number of
people who could author such a cognitive model, for certain
kinds of situations the Cognitive Model SDK proved
cumbersome. The present work discusses a new authoring
system, xPST, that allows an example-based tutor to be built
on top of existing software.1xPST-based tutors have been
built for two real-world systems that had existing interfaces.

Starting Point: The Cognitive Model SDK

We have met with success at developing a SDK for
cognitive models (Blessing & Gilbert, 2008). The
Cognitive Model SDK allowed authors to develop the
representations necessary for the cognitive models for
model-tracing intelligent tutors. Carnegie Learning, Inc.
uses this SDK to create their Cognitive Tutors for math, a
commercially successful intelligent tutoring system.
 The Cognitive Model SDK enables the creation of
cognitive models that contain abstracted instruction over
instances. However, we have struggled with its use in other
situations. In two of the tutors we had built, for example,
the authors created a lot of declarative and procedural
representations that ultimately received very little use. For
example, Hategekimana, Gilbert, and Blessing (2008)
created a tutor for Paint.NET, software similar to Adobe
Photoshop. One exercise taught users how to resize and
scale an image. While one could imagine using this
instruction in multiple image-manipulation instances, in
the actual tutor it was used in only a couple of exercises.
The power of having a model-tracing tutor, in which the
instruction could be abstracted over multiple instances, was
lost. However, the author still spent much time creating the
representations that contained the instruction.

This material is based upon work supported by the National Science
Foundation under Grant No. EEC-9876363.
Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 Likewise, when we created the tutor for the CAPE Web-
based Authoring Tool used at Vanderbilt University as part
of the VaNTH ERC (Roselli et al., 2008), the authoring
process contained similar issues. Ultimately, the tutored
instruction centered over a set of 8 problems. Much work
went into the declarative and procedural structures of the
tutor, but their re-use was not nearly as great as what one
would see in a Carnegie Learning math tutor. Ultimately,
the effort spent developing those representations seemed
disproportionate to their usefulness in the completed
model. What we desired for these situations was a more
streamlined system where the tutoring could be developed
without the need for as much underlying structure typical
of model-tracing tutors. The result has been the Extensible
Problem Specific Tutor (xPST) authoring system.

The xPST Authoring System

The xPST Authoring System shares some in common with
another authoring tool, the Cognitive Tutor Authoring Tool
(CTAT; Aleven et al., in press). CTAT allows authors to
create Example-based Tutors. These tutors are specific to a
certain problem or a narrow class of problems. Likewise,
an xPST tutor is specific to a certain problem scenario. The
intent of both the CTAT and xPST authoring tools is to
allow the author to quickly create a model for a particular
problem instance by creating hints and other tutoring
aspects while the author manipulates the interface itself.
 The other goal of xPST is to allow tutoring on any
interface. Whereas it is possible to do so with CTAT in
some circumstances, typical tutors are built with CTAT-
specific widgets. The power of xPST’s approach should be
apparent. It will enable the creation of a model-tracing-like
tutor to be created for any piece of software, opening up
possibilities in both academic and commercial settings.
 The architecture used by xPST to communicate with
third-party software is similar to that used by the Cognitive
Tutor SDK to communicate with off-the-shelf software.
This architecture, called TutorLink, is shown in Figure 1.
 TutorLink serves as the intermediary between the third-
party application and the Tutoring Agent (xPST in the
current case). It knows how to map actions in the interface

466

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

to the proper pieces in the tutor model and how to display
hints and other tutoring information within the application.
TutorLink is what makes xPST extensible. Agents can be
written for TutorLink that allow it to communicate with
different kinds of off-the-shelf applications. When we did
the Paint.NET tutor, a piece was written that allowed it to
communicate with the .NET framework. When we did the
CAPE tutor, a Firefox plugin was written that allowed it to
communicate to most webpages. Writing an agent takes
expertise, but once it is done it will open up new interfaces.
We have had initial success with an agent that
communicates with any software on Windows using the
default MFC widget set by using the accessibility hooks.
 In Spring 2008 we developed a tutor to assist instructors
learning how to create online assignments using VaNTH’s
web-based authoring tool based on CAPE technology. This
tool allows instructors to author rich online learning
exercises. It is entirely web-based. A training workshop
had been developed in order to assist people in learning
how to use the tool. However, the tool's creators wanted
something to reduce the learning curve that still existed in
learning how to use it. To that end, we partnered with them
to create an ITS on top of their existing training exercises.
 The exercises consisted of 8 scenarios and extensions
that walked the instructor through various aspects of
creating online content with the web-based authoring tool.
In a workshop prior to the release of our ITS, only 2 of 8
students completed the training exercises, with many
people reporting that the tool was difficult to use.
 We created an ITS with the SDK that provided tutoring
for each step in these exercises. Results from a workshop
using this ITS were encouraging, with participants
completing more exercises. The two developers were both
first year graduate students, one who had SDK experience
and the other did not. Together they created all instruction.
The fact that these people (i.e., largely ITS author
neophytes, though one did assist on the Paint.NET tutor)
were able to create such rich instruction is testament to the
power of the SDK. As mentioned, though, we were still
dissatisfied regarding their progress and began to think of
alternative ways to author these kinds of tutors (i.e., tutors
based around a small set of problem scenarios, with not a
lot of model re-use between the problems).
 The resulting authoring tool is xPST, a streamlined
authoring process for specific problem scenarios
(http://code.google.com/p/xpst/). Like in CTAT the result
is a tutor containing specific hints and just-in-time
messages attached to particular interface elements at
various points in the problem’s solution. Unlike typical
CTAT tutors, the interface elements are not widgets
created specifically for the authoring tool.

 There are three steps in creating a xPST-based tutor, all
of which can be done in an online authoring tool. First, the
author maps interface elements to the subgoals needed to
solve the problem. For example, one step in solving a
particular problem may be to indicate an answer via a radio
button. The author can map the name the interface has for
that radio button to a name more indicative of the student’s
goals. Second, those problem subgoals can be sequenced in
the order needed to solve the problem. The xPST syntax
allows for different means of ordering these subgoals (e.g.,
goals that need to be solved in sequence, goals that are
unordered, and choices between various goal sequences).
Lastly, hints and just-in-time messages, along with the
correct answers are attached to these learning subgoals.
 One of the original graduate students transitioned the
VaNTH tutor to xPST. While it is hard to draw conclusions
on the comparison, the original development took around
250 hours, and the transition took 25 hours. The model
development was reportedly more straightforward and
streamlined, with debugging much easier. The two tutors
are functionally identical.

Conclusions

xPST allows for the fast creation of a model-tracing-like
tutor for a particular problem scenario. The architecture
can support an xPST tutor communicating with third-party
interfaces. We transitioned one SDK tutor to an xPST tutor
relatively quickly and with only a small effort. A current
study is examining how novice xPST authors, even those
with little to no programming experience, can learn to
create these kinds of tutors.

References

Aleven, V., McLaren, B.M., Sewall, J., & Koedinger, K.R.
(in press). Example-tracing tutors: A new paradigm for
intelligent tutoring systems. Special Issue on Authoring
Systems for ITSs International Journal of Artificial
Intelligence in Education.

Blessing, S. B., & Gilbert, S. (2008). Evaluating an
authoring tool for model-tracing intelligent tutoring
systems. In Proceedings of the ITS 2008 Conference (pp.
204-215), Montreal, Quebec. Berlin: Springer-Verlag.

Hategekimana, C., Gilbert, S. & Blessing, S. (2008).
Effectiveness of using an intelligent tutoring system to
train users on off-the-shelf software. In K. McFerrin et
al. (Eds.), Proceedings of Society for Information
Technology and Teacher Education International
Conference 2008 (pp. 414-419), Las Vegas, NV.
Chesapeake, VA: AACE.

Roselli, R.J., Gilbert, S., Howard, L., Blessing, S. B., Raut,
A., & Pandian, P. (2008). Integration of an Intelligent
Tutoring System with a Web-based Authoring System to
Develop Online Homework Assignments with Formative
Feedback. American Society for Engineering Education
2008 Conference.

Figure 1. TutorLink Architecture.

467

