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Abstract

The emphasis of multilevel modeling techniques in the
neurosciences has led to an increased need for large-
scale, computationally-accessible databases containing
neuroscientific data. Despite this, such databases are
not being populated at a rate commensurate with their
demand amongst Neuroinformaticians. The reasons for
this are common to scientific database curation in gen-
eral, namely, limitation of resources. Much of neu-
roscience’s long tradition of research has been docu-
mented in computationally inaccessible formats, such
as the pdf, making large-scale data extraction labori-
ous and expensive. Here, we present a system for al-
leviating one bottleneck in the workflow for curating a
typical knowledge base of neuroscience-related infor-
mation. Finna is designed to rank-order the composite
paragraphs of a publication that is predicted to contain
information relevant to a knowledge base, in terms of
the probability that each documents relevant data. We
were able to achieve excellent performance with our
classifier (AUC > 0.90) on our manually-curated neu-
roscience document corpus. Our approach would allow
curators to read only a median of 2 paragraphs for each
document, in order to identify information relevant to
a neuron-related knowledge base. To our knowledge,
this is the first system of its kind, and will be a useful
baseline for developing similar resources for the neuro-
sciences, and curation in general.

Introduction
The manual creation of discipline-specific knowl-
edge bases is an expensive and time-consuming
process that requires the efforts of domain experts
over an extended period of time. Although some
general-purpose tools have been developed for stream-
lining biocuration workflows (Burns et al. 2009;
Hirschman et al. 2012; Karamanis et al. 2007;
Pokkunuri et al. 2011; Ramakrishnan et al. ;
Rodriguez-Esteban, Iossifov, and Rzhetsky 2006;
Wiegers et al. 2009; Wiegers 2009; Burge et al. 2012),
and some work has been directed toward developing
task-specific solutions using text-mining (particularly for
the curation of systematic reviews (Ananiadou et al. 2009;
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Cohen, Ambert, and McDonagh 2009; 2009; Cohen et
al. 2010; 2010; Cohen, Ambert, and McDonagh 2010;
Wallace et al. 2010; Yang, Cohen, and McDonagh 2008)),
there remain time-consuming tasks in biocurators’ work-
flows that can be made more efficient using machine
learning methods. Many of these approaches have focused
on classifying documents in terms of whether they contain
information that is likely to be relevant to the curation task
at hand. This, however, only solves one part of the efficiency
problem–given a likely relevant document, curators must
still spend time reading through it, in an effort to locate
the information that will eventually be included in the
knowledge base.

Here, we describe Finna, a system which, given a document
that is likely to contain information relevant to a scientific
publication-sourced knowledge base that is narrow in
scope, will re-order its composite paragraphs in terms
of the likelihood that each contains the information of
interest. This addresses an important bottle-neck in typical
biocuration workflows (Ambert and Cohen 2012). As a part
of the curation process, knowledge base curators review
any submissions they believe necessitate review (either
from manual prioritization of submissions, or using auto-
mated machine learning-based approaches, as in (Cohen,
Ambert, and McDonagh 2010; Ambert and Cohen 2012;
Yang, Cohen, and McDonagh 2008)). Once a potentially-
relevant publication has been identified, curators typically
need to manually extract the information, reading most or
all of the publication to do so. The goal of our system is
to minimize the amount of time curators need to spend
reading information that will not, ultimately, contribute to,
and speed up, the development of their knowledge base,
thus helping them efficiently use their time.

Our work here uses the entries in the Neuron Registry (NR),
a community-curated knowledge base under the direction of
the Neuron Registry Task Force (NRTF1), a part of the In-
ternational Neuroinformatics Coordinating Facility (INCF)
Program on Ontologies of Neural Structures (PONS). The
primary goal of the NRTF is to create the infrastructure for
machine-readable knowledge bases of neuronal cell types,

1http://pons.neurocommons.org/page/Neuron registry
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providing a formal means for describing and quantifying
existing cell types from their properties, and populating it
with information that has been extracted from the primary
literature. The Neuron Registry, in particular, was chosen
for our work for several reasons. First, biologically-sound
multilevel models of neural circuitry will all necessarily
leverage the information contained in a database of neuronal
attributes. As such, the Neuron Registry stands to become
an important source of modeling information in Neuroin-
formatics. Second, is the small amount of already curated
information contained in the Neuron Registry. The process
of identifying and verifying new material for inclusion in
the such a database is laborious, and so it is unsurprising
that the Neuron Registry houses only a small amount of
information to date, which means it will benefit from our
efforts. Finally, our previous work in helping bootstrap the
development of the NR (Ambert 2013) means that there
are sufficient positive-class publications referenced in the
knowledge base to adequately build a baseline system of the
sort we are interested in here.

Methods
Constructing the Paragraph Document Collection
The full text of all positive-class documents with a PubMed
ID that were added to the NR during 2012 were acquired and
randomly assigned to either a training set (128 documents),
or a hold-out testing set (33 documents). Every document
in the entire corpus was broken up into its respective com-
posite paragraphs, following plain-text extraction, using the
pdftotext utility (a part of the xpdf tool suite2), and cleaning
up, with a set of regular expressions. Paragraphs were
inferred, based on new-line separation–abstract sections and
titles typically constituted their own paragraphs. Each NR
entry was located in the text of its associated reference by
a trained Neuroscientist (KHA), and the section name and
paragraph number in which each was found were recorded.
Thus, the paragraphs contained in every document were
assigned either a positive- or negative-class label, according
to whether each contained the NR information associated
with their respective documents. After this procedure, the
training collection had 9983 paragraphs (158 positive-class,
9825 negative-class), and the testing collection had 2026
paragraphs (35 positive-class, and 1991 negative-class).

Paragraph Classifier System Design
Of the many text classification algorithms available to
use, we limited our system design experiments to Sup-
port Vector Machine (SVM) algorithm (linear kernel,
c-parameter set to 1.0) (Joachims 1998), as our previous
work has shown it to perform well on neuroscience-
related text (Ambert and Cohen 2012; Ambert 2013),
and biomedical text in general (Ambert and Cohen 2009;
Cohen 2008).

2http://www.foolabs.com/xpdf/

Feature Methods The present task differs from typical
document classification tasks in an important way: many of
the typical sorts of features that one would use (e.g., docu-
ment title, abstract, MeSH terms) can’t be used here, since
that type of document-level metadata is associated with ev-
ery paragraph in a given document. Thus, we constructed a
set of features that apply specifically to only a single para-
graph at a time–n-grams of varying lengths (n = 1−5), and
a set of quantitative features derived from the text contained
in a paragraph. We used the vertebrate neuron branch of
the community-curated ontology NeuroLex3 to create regu-
lar expressions for identifying the presence of each neurolex
term within the text of the paragraphs. Initial investigation
showed that the only term which was directly identifiable
in the training corpus was retinal ganglion cell, which oc-
curred multiple times in both positive- and negative-class
documents. This is not entirely surprising–neuroscience is a
heterogeneous research discipline that is composed of inves-
tigators from a variety of academic backgrounds, and each
has its own particular way of referring to neuroanatomi-
cal entities and writing conventions. For example, amygdala
basolateral nucleus stellate neuron, could be referred to in
a publication as stellate neuron in the basolateral nucleus
of the amygdala, which would not be matched by our ap-
proach. Because manually creating a list of regular expres-
sions covering all the possible ways each of the 247 neu-
roanatomical entities in the NeuroLex would be impractical,
we instead hand-selected substrings from the NeuroLex en-
tries which would likely be found in whatever way some-
one used to refer to the concept. For example, the amygdala
basolateral nucleus stellate neuron became stellate neuron,
and the retinal ganglion cell became ganglion cell. In ad-
dition, we hypothesized that annotated information might
tend to occur in similar places between documents. Thus, we
created a continuous-valued feature indicating the absolute
paragraph order number within a document. Since recursive
partitioning tended to be the most useful continuous-valued
feature modeling technique in the previous study, we used
it here as well. Here, our recursive partitioning method con-
sisted of transforming the continuous-valued feature into a
series of binary features representing sub-ranges of the fea-
tures values in the training data; the cut-off points for these
sub-ranges were selected based on the minimum description
length principle (Fayyad and Irani 1993).

System Evaluation Since this the classification task
described in this study is fundamentally a ranking task, we
used AUC as our primary performance metric, which we
defined as the area under the precision/recall curve. System
configurations were done by performing five repetitions of
2-way cross-validation on the training data set. The feature
configurations that showed some usefulness were then used
in a train/classify experiment, in which a model is trained
using the training data set, and classified using the hold-out
test data set.

As a secondary performance metric for our train/classify ex-
periments, we examined the median number of paragraphs

3http://neurolex.org/wiki/Vertebrate Neuron overview
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that would need to be read for each publication in the hold-
out classification set, in order to identify a paragraph con-
taining information that is relevant to the neuron registry.
We re-examined each the best-performing system in the
train/classify experiments from this perspective. For the pur-
poses of interpreting this metric, we compared this value to
the median number of paragraphs a reviewer would have to
read, if they started from the first paragraph, as published
in the pdf version of the manuscript, and stopped once they
reached the sentence(s) leading to the manuscript being in-
cluded in the NR.

Results
Our initial classification experiment was done using five rep-
etitions of two-way cross-validation on the training data col-
lection. We examined two sets of system configurations–n-
grams, where n=1-5, with paragraph locations, and para-
graph locations alone. The results of this experiment are
shown in Figure 1. From this figure, it is clear that in-
creasing the number of n in the n-grams improves perfor-
mance, which asymptotically approaches its peak by n = 5.
Adding paragraph locations give a small, but not insignifi-
cant, performance boost, with maximum performance being
achieved at 5-grams with paragraph location information.
We ran the same system configurations training on the en-
tire training collection, and evaluating the resultant models
against the hold-out testing collection. The results of these
experiments are shown in Figure 2. The results observed
here mirror those seen in the cross-validation experiments–a
steady increase in performance with increasing size of
n-grams, and a small performance boost obtained by adding
paragraph location information. Interestingly, if we compare
the performance increases between 4-gram and 5-gram
in the cross-validation and train/classify experiments, it
appears that AUC has begun to level off in the train/classify
experiments, implying that investigating larger n-grams, or
more training data, may not lead to dramatic improvements
in performance. Based on these observations, we chose
4-grams with paragraph location information as our best-
performing system, since it performed negligibly worse than
the 5-gram system (0.906 v. 0.907), and was considerably
faster.

Finally, we looked at the median number of paragraphs in
the best-performing system (4-grams, and paragraph loca-
tions) that would have to be read in each document, in order
to find the paragraph containing the positive-class sentence,
if they were read in order of the system-generated rankings.
We chose median as our measure of central tendency,
as the distributions were highly positively skewed). We
compared this value to the standard approach to document
review–starting from the first paragraph, and reading until
the information leading to a positive annotation has been
identified. Based on looking at the distribution of paragraph
rankings and paragraph locations (the standard) (see Figure
3), the proper measure of central tendency for these metrics
appears to be the median. For the Finna approach, a median
of 2 paragraphs in each document would have to be read
by annotators, whereas in the standard approach, a median

of 6 paragraphs would have to be read. The respective
shapes of these distributions highlights another interesting
difference. Comparing the distributions tails (e.g., from 20
paragraphs read and up), Finna tends to perform better–the
standard approach has a consistently diminishing number
of documents that require reading many paragraphs, as one
moves up the x-axis, whereas there were only a handful
where this would have been the case for the Finna system
(e.g., at around 27 and 40).

The Finna system tended to perform very well on the major-
ity of documents (1-4 paragraphs needing to be read), while
the standard approach was more variable (sdFinna = 9.4
v. sdStandard = 15.4), resulting in many documents requir-
ing over 20 paragraphs to be read. Although Finna yielded
an average 7.4 paragraphs savings in reading, over the stan-
dard approach, there were a few documents that were out-
liers, in system performance. To delve into our results fur-
ther, we examined Finna’s performance in terms of the doc-
ument locations of the annotated information (abstract, re-
sults, methods, & figure captions). Table 1 summarizes the
results of this analysis. Overall, the Finna system tended to
out-perform the standard approach, especially resulting in
large reading savings for annotations found in the results
section and figure captions. Annotations found in the doc-
ument title, however, tended to lead to a small loss in para-
graphs needing to be read.

Discussion
The present set of experiments describes a classification
system that can be used for rank-ordering the paragraphs
within a manuscript, in terms of their likelihood for con-
taining information of interest to a neuroscience biocuration
task. By training off of a subset of expert annotated docu-
ments known to contain information that is relevant to the
NR, (Ambert 2013) we were able to create a system that
performed well, both in terms of AUC (0.906), and a new
metric, median number of paragraphs to read in a set of
documents (median = 2).

We observed some variation in system performance, de-
pending on where the annotatable information was found in
the original document. In general, Finna lead to a savings
in the amount of reading needing to be done by annotators,
as compared with the standard approach, except in the
case of information found in document titles. Although
the standard approach is a logical standard of comparison,
in terms of evaluating the practical utility of a paragraph
re-ranking system, for understanding the performance from
a machine learning perspective, this may not be the best
metric. For example, using our paragraph parsing method,
the title is always the first paragraph of the document,
so any small changes in paragraph rank by our system
can result in apparent performance degradation. Results
sections, conversely, tend to occur toward the end of a
manuscript, putting paragraph re-rankers at an advantage,
from the perspective of evaluating in terms of the number
of paragraphs reviewers have to read. Here, our system lead
to a mean savings of 17.6 paragraphs, for documents with
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Subsection Count Finna Standard Reading Savings (Finna)
Abstract 16 1.1 3.8 2.7

Title 3 5.0 2.0 -3.0
Results 7 11.1 28.7 17.6

Figure Captions 7 13.6 26.0 12.4
Methods 0 NA NA NA

Summary 33 2 6 7.4

Table 1: Table summarizing the results of the Finna paragraphs to read analysis, broken down by the mean results for the doc-
ument section in which the annotated information was found. The Finna system tended to out-perform the standard approach,
unless the annotated information was found in the Title section. Values in the summary row have different interpretations:
Count column–count, Finna column–median performance, Standard column–median performance, Reading Savings column–
mean savings. Data for annotations found in the Methods section are not present here, as, in the hold-out testing document
collection, no annotatable information was found in the Methods section.

annotatable information in the results section. This is not
to say that median paragraphs to read is a useless metric.
Rather, systems such as Finna, that need to be optimized
in terms of machine learning performance and practical
performance alike should be evaluated using more than
one metric. Here, we’ve created a system that performs
well using standard machine learning metrics for document
ranking (AUC), as well as in terms of a new metric designed
to measure performance for how the system will actually be
used.

An interesting question for future research to address is
whether it is practical for curators to read a document’s
composite paragraphs out of order. Some curators may be
uncomfortable reading paragraphs outside of the context
in which the author intended them to be read; future work
should compare interpretations of NR information based on
presentation of the paragraph in which it was found, versus
based on presentation of the document in which it was
found. It would also be interesting to examine how a system
which always presents documents’ titles and abstracts first,
followed by a prioritized list of the remaining paragraphs in
the publication.

Based on our results, this system is ready for evaluation
as a component of real-world biocuration workflow, likely
working in consort with a document classification system
for identifying publications that are likely to be relevant
to a knowledge base (Ambert 2013). In this situation,
biocurators would use a classification system to identify
publications that are highly-likely to contain information of
relevance to a particular biocuration task, and the system
would automatically re-order the paragraphs of each pre-
dicted positive-class publication in terms of their likelihood
for having the information that lead to being assigned a
positive-class label. In order to be truly useful to a team of
biocurators, such a system we need to be evaluated within
the context of their workflow–it would need to be integrated
in the least-obtrusive way, ideally allowing the curators to
focus on adding expert-annotated data to their databases,
rather than on using the system.

One limitation of our system is that the data it was trained

on was generated by a single Neuroscientist. Although the
curator had graduate-level training in the neurosciences, it
is not possible at this time to evaluate the extent to which
his annotations are generalizable to the larger population
of neuroscience-related publications. To do this, a data set
annotated by multiple experts would be needed, so that
inter-annotator agreement statistics could be computed.
Since the present set of experiments only used paragraph-
level information for classification, one possible extension
of the Finna system would be to incorporate document-level
information into the classification workflow. For example,
it may be possible to use the MEDLINE-derived MeSH
terms to adjust the prior probability of certain paragraphs
containing important information: the occurrence of certain
NeuroLex entries (Bandrowski 2011) in the MeSH terms
and certain paragraphs may imply that paragraph is more
likely to succinctly communicate the main finding(s) of the
manuscript. Beyond this, another way to improve future
systems would be to model MEDLINE-related elements of
the document (e.g., abstract and title) separately, removing
them from the document. This would likely improve Finna’s
handling of the Title paragraphs.

Conclusion
In this study we have demonstrated that an automated sys-
tem can be used to rank-order a publication’s paragraphs, in
terms of their likelihood for containing information that is of
interest to a biocuration task in the neurosciences. By train-
ing on a manually-curated neuroscience document set that
has been pre-filtered to only include documents that do, in
fact, contain information of interest, we showed that a sim-
ple configuration of an SVM-based classification system can
be used to identify paragraphs of interest. We were able to
achieve an AUC of 0.906 with our selected system, which
was able to complete the classification task on the order
of several seconds. Based on its level of performance and
its speed, this system could be integrated into a real-world
biocuration workflow, and used to streamline the process of
curating a knowledge base.
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