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Abstract 

Over the last several decades research efforts have explored 
various forms of artificial life and embodied artificial life as 
methods for developing autonomous agents. Such ap-
proaches, although a part of the AI canon, are rarely used in 
research aimed at creating artificial general intelligence. 
This paper explores the prospects of using in silico artificial 
evolution to develop machine consciousness, or strong AI.  
It is possible that artificial evolution and situated self-
organizing agents could become viable tools for studying 
machine consciousness, but there are several issues that 
must be overcome.  One problem is the use of exogenous 
selection methods to drive artificial evolutionary processes.  
A second problem relates to agent representation that is in-
consistent with the environment in which the agents are sit-
uated.  These issues limit the potential for open-ended evo-
lution and fine-grained fitting of agents to environment, 
which are likely to be important for the eventual develop-
ment of situated artificial consciousness.   

 Introduction   

Some authors have advocated for the use of artificial life 

(ALife) and evolutionary learning as a primary component 

of strong AI (Parisi 1997, Looks and Goertzel 2006).  This 

paper discusses the long term prospects of using ALife to 

create, or at least shed light upon the question of, machine 

consciousness and artificial general intelligence (AGI). 

Largely due to automatic design aspects, machine con-

sciousness may (at some point) be achieved by a refined 

version of ALife even without a working understanding of 

consciousness.  Further, future versions of ALife may be 

able to side-step both the symbol grounding problem (Har-

nad 1990) that plagued early attempts at strong AI (Newell 

and Simon 1972) as well as the frame problem (Dennett 

2006, Wheeler 2008, Dreyfus 2007) that has been a more 

recent difficulty in situated AI (Froese and Ziemke 2009).  

 This paper is organized as follows: First, some common 

terminology is presented, followed by a brief discussion of 

AI’s failure to produce AGI or machine consciousness.  
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The second section of the paper charts the development of 

AI methodologies that led up to ALife in its current 

form(s).  After these preliminaries, an idealized (but com-

putationally intractable) ALife paradigm is laid out, fol-

lowed by a discussion of modifications to make this para-

digm more feasible while preserving aspects that support 

the open-ended evolution of complexity (Standish, 2003).  

AGI, Strong AI, and Consciousness 

The field of AGI has, to a degree, subsumed the notion of 

strong AI (Legg and Hutter 2007).  But AGI is not exactly 

synonymous with strong AI.  A system possessing strong 

AI would have consciousness, not just mindless intelli-

gence (Searle 1980).  AGI research is ultimately aimed at 

building systems that surpass human intellectual abilities, 

but AGI researchers might not necessarily make claims as 

to whether such systems would have consciousness. 

 The terms consciousness and phenomenal states are used 

in this paper to refer to first-person experiential states. See 

Reggia (2013), Wheeler (2008), Dreyfus (2007), Loar 

(1990) for discussions of these and related terms in the 

context of AI.  

 In a general sense, consciousness might be thought of as 

the first-person internal experience of mind. The previous 

statement points to what consciousness is, but is not a true 

definition in the scientific sense.  The experience of con-

scious mind is a first-person phenomenon and may not 

have a third-person objective manifestation that is accessi-

ble to scientific verification (Loar 1990, Arrabales, 

Ledezma, and Sanchis 2010). 

Why don’t we have strong AI? 

There is no clear consensus among AI practitioners and 

observers as to exactly why past endeavors in all their var-

ious forms have not spawned AGI, much less machine 

consciousness. This failure may in part be due to funda-

mental flaws in methodology or it may due to the fact that 

few of AI’s paradigms have ever been tested at full scale.   

 Several authors contend that the reasons for failure are 

related to the lack of working definitions or adequate un-

derstandings of phenomenal states, agency and conscious-
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ness (Dreyfus 2007, Menant 2012, Shani 2013, Reggia 

2013).  Efforts to develop a theory of phenomenal states 

are on-going, but there remains a lack of anything ap-

proaching a consensus (Arrabales, Ledezma, and Sanchis 

2010, Koch and Tsuchiya 2011).  Reggia (2013) states “no 

approach to artificial consciousness has presented a com-

pelling demonstration of instantiated consciousness in a 

machine, or even clear evidence that instantiated machine 

consciousness will eventually be possible.” In this vein 

Menant (2012) similarly concludes that we don’t under-

stand basic aspects of consciousness and this limits our 

ability to investigate strong AI.  

 Another school of thought addressing why AGI has not 

come to pass is that AI practitioners simply have not put in 

a sufficiently coordinated concerted effort. The contention 

is that a very large and explicitly coordinated Manhattan 

Project-like effort is needed to create AGI (Brunette, 

Flemmer, and Flemmer 2009).  IBM’s projects Deep Blue 

(Hsu 2002) and Watson (Ferrucci et al. 2010) lend some 

credence to this view. Watson in particular required some-

thing of a mini-Manhattan Project: three years and 20 core 

developers and scientists working in a closely coordinated 

group. These systems are impressive, but there is no con-

sensus that either might scale up to make the general prob-

lem-solvers envisioned by AGI. 

The Evolution of AI and ALife 

In order to provide context, and to relate ALife research to 

AGI and machine consciousness, this section briefly sum-

marizes important developments in AI, AGI and ALife.  

Symbolic AI 

As chronicled by Buchanan (2005), Newell (1982), Reggia 

(2013) and others, in the 1950’s and 1960’s, much of AI 

was focused on symbolic structured information systems, 

as well as various axiomatic and semi-formal methods of 

logical reductionism championed by Newell, Simon, 

McCarthy, Minsky, Shannon and others. In this paper the 

term symbolic AI is used to refer to this overall paradigm 

(Dreyfus 2007).  These methods suffered from various 

semantic and representational problems that were much 

more profound than initially realized.  Perhaps the most 

debilitating of these became known as the symbol ground-

ing problem (Newell and Simon 1972, Harnad 1990).  The 

symbol grounding problem asks how meaning can be asso-

ciated with symbols in a computational system such as a 

digital computer.  To a large degree this problem was nev-

er satisfactorily resolved, and led to several important theo-

retical and philosophical critiques of symbolic AI (Dreyfus 

2007, Searle 1980, Steels and Brooks 1995, Wheeler 

2008).  Although all of these critiques struggled to some 

degree with the lack of a scientifically tractable definition 

of consciousness, it is generally (though not universally) 

accepted that high level symbolic representational systems 

would likely not be conscious.  Even so, it is possible that 

systems with at least some aspects of symbolic AI may 

eventually gain an appreciable level of general problem-

solving ability. The last decade has seen some glimmer of 

this in IBM’s major projects Deep Blue (Hsu 2002) and 

Watson (Ferrucci et al. 2010), as well as programs that can 

perform at human levels on IQ tests (Sanghi and Dowe 

2003).   

 An important ideological consequence of symbolic AI’s 

difficulties and subsequent/concurrent critique was the rise 

of the view that conscious intelligence (at least in humans 

and some animals) is closely tied to an ongoing immediate 

interactive relationship to the environment (Steels and 

Brooks 1995, Dreyfus 2007, Wheeler 2008). The view was 

that conscious intelligent agents must be embodied, con-

textualized, or otherwise situated in an environment, in 

addition to being possessed of a tight coupling between 

sensors, actuators and control.  This ideology received the 

moniker embodied AI (Steels and Brooks 1995). 

Embodied AI 

Although embodied AI highlighted the importance of con-

sidering a situated intelligent agent’s close relationship to 

its environment, the control aspect of initial systems devel-

oped in the late 1980’s was in some ways the weak link. 

Typically, these used hierarchical control architectures that 

were fairly rigid and hand-tuned. Although agents were 

environmentally situated, they had very little ability to 

learn or adapt (Steels and Brooks 1995).  The more intrin-

sic aspects of control, such as fine-grained context-

appropriate behavior, were not fully addressed by many 

early embodied AI projects. Brunette, Flemmer, and 

Flemmer (2009) and Anderson (2003) present reviews of 

embodied AI. 

 Some researchers, including Froese and Ziemke (2009) 

and others, have suggested that something fundamental is 

missing from our understanding of how consciousness (or 

any level of awareness) might arise in situated agents. 

Brooks in particular, after a decade of embodied AI work, 

wrote, “I am suggesting that perhaps at this point we simp-

ly do not get it, and that there is some fundamental change 

necessary in our thinking...” (Brooks 1997).  This high-

lights a more pervasive problem in AI that has become 

known as the frame problem (Dennett 2006, Dreyfus 2007, 

Wheeler 2008).  The frame problem essentially asks, “How 

does an intelligent agent understand its current context to 

the degree that it can produce appropriate action?”  In 

short, how does an agent know, moment by moment, what 

to do and when to do it?  In some ways this inability of 

early embodied AI to address the frame problem influ-
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enced the onset of ALife as a significant subfield of auton-

omous systems research. 

ALife 

This subsection focuses on ALife methods in a general 

way. This serves as a foundation for following discussions 

of how ALife might be advanced toward open-ended evo-

lution of complexity (Standish 2003), and how this might 

support the ultimate (and perhaps distant) goal of produc-

ing AGI and machine consciousness.  More detailed sur-

veys of ALife in its various forms are reported in numerous 

works including Bedau et al. (2000), Kim and Cho (2006), 

Nolfi and Floreano (2000), Nelson, Barlow, and Doitsidis 

(2009), and Dittrich, Ziegler, and Banzhaf (2001). 

 Computational ALife (as opposed to wet ALife or syn-

thetic biology) can be divided into three categories: 1) situ-

ated-agent systems, 2) self-replicating evolving program 

systems, and 3) artificial chemistries (AChem). 

 In the first category, agents (either simulated or real) are 

evolved in a physical environment or semi-physical simu-

lation. The agents are evolved using various forms of 

population-based evolutionary algorithms. The majority of 

such platforms use some sort of explicit fitness function to 

drive the evolutionary process.  These fitness functions 

often measure aspects of specific task completion such as 

distance traveled, objects located, or acquisition of simu-

lated energy, food or materials (Nelson, Barlow, and 

Doitsidis 2009).  

 In the 1990’s and through the first few years of the new 

millennium this class of research received a large amount 

of attention both in simulated situated agent and in embod-

ied evolutionary robotics work. Such work, although still 

being pursued, has declined in the past few years, largely 

due to a growing realization that explicit fitness evaluation 

and open-ended evolution are largely incompatible (Leh-

man and Stanley 2008).  

 Self-replicating evolving program systems form a sec-

ond class of ALife research, and include platforms such as 

Tierra (Ray 1991) and Avida (Adami and Brown 1994). 

Self-replicating program systems generally define popula-

tions of code snippets that are placed in memory in a spe-

cialized virtual machine and are run in parallel, governed 

by a dedicated operating system associated with the virtual 

machine. The agents are self-contained code sections resid-

ing in core memory, and don’t necessarily represent any-

thing beyond their own pattern in the machine. In this 

sense, self-replicating programs might be considered to be 

not just simulations, but real instances of evolving systems 

(Ray 1991). 

 State-of-the-art self-replicating program systems support 

populations of tens of thousands of individuals and can 

propagate these at rates on the order of an effective genera-

tion per second (Shao and Ray 2010). These systems are 

used widely to investigate empirical questions about the 

nature of proto-life, as well as evolutionary population 

dynamics and theory (Fortuna et al. 2013). 

 Tierra (and Avida in some configurations) does not in-

clude an explicit fitness function per se, but the OS does 

play a supervisory role that does not reduce completely to 

fundamental rules governing program behavior (Dittrich, 

Ziegler, and Banzhaf 2001). 

 AChem systems have commonalities with self-

replicating program platforms, but are formulated in terms 

more closely analogous to molecular interactions in the 

natural world. See Dittrich, Ziegler, and Banzhaf (2001) 

for a review. In their most general form, AChem systems 

define sets of objects and rules that govern the low-level 

interaction of these objects.  Resulting structures arise from 

these low-level interactions. These systems generally have 

no explicit objective function that enforces cyclic replica-

tion. Like self-replicating program systems, AChem sys-

tems have also received much attention in the last decade 

and are used extensively as theoretical tools.                    

Natural and Artificial Evolution 

This section delineates fundamental properties of nature or 

natural law believed to enable or support the abiogenesis 

and further development of self-replicators capable of 

open-ended complexification.  This set of properties is 

used as a guide or set of design criteria in the final sections 

of this paper.  

 Natural evolution, and the universe in general, generates 

exploration and open-ended search of the configuration 

space defined by physical law.  Nature uses no explicit 

selection criteria per se, and all effective evolutionary pres-

sures are consistent with the fundamental laws that govern 

our universe (i.e., fitness is a fully endogenous property). 

Selection, as such, although appearing from our distal, ob-

servers’ point of view to be driving the improvement of life 

in its corporeal form, is from another very low-level point 

of view simply a subtle form of random walk through the 

configuration space defined by physical law. The natural 

processes that led to life on Earth had no design strategies 

beyond stochastic search, at least initially, and so far as we 

know, no external agent actively monitors and alters the 

course of evolution. In terms of physical law, there is no 

distinction between living and non-living material: all is 

constructed according to one consistent set of fundamental 

laws (Lange 1996).  

 To summarize then: nature employs no explicit fitness 

function, has no supervisory agent, and all aspects of the 

environment (and any agents it might contain) are specified 

using one set of physical laws. 
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Endogenous Artificial Life 

This section begins with the definition of an idealized hy-

pothetical ALife environment in which situated intelligent 

agents might (or might not) develop.  Then by degrees, this 

will be made less ideal, but more computationally tracta-

ble.  Through this process, our overall goal is to preserve 

the putative properties of nature that allow for open-ended 

complexification.   

 Mirroring nature, at least in a reductionist way, a hypo-

thetical (admittedly profoundly computationally intracta-

ble) ALife research environment that would be suitable to 

explore the origins of life and situated intelligence on a 

grand scale might be employed as follows: experimenters 

formulate a set of elemental structures and interaction rules 

(analogous to fundamental physical law), and then allow 

this set of elements and rules to iterate over time in a com-

putational space-like region. After the system is allowed to 

run for a sufficient amount of internal time, experimenters 

observe what has developed, modify their sets of rules, and 

run the system again. Any self-replicators arising in such a 

system would have fully endogenous environmentally con-

sistent representation and (depending upon the set of rules 

being iterated) be potentially self-complexifying.  But of 

course, actually simulating a sufficiently large space-like 

region at a quantum-like level is out of the question.  Lloyd 

(2002) estimates that the upper limit on the computational 

capacity of a liter of physical matter is on the order of 1050 

operations/second. Simulating this amount of material at 

the quantum level might require a comparable amount of 

computational power.  Also see Grand (2012) for a recent 

discussion of the feasibility of simulating bulk material. 

 How could the fundamental properties of such a system 

be retained while bringing it into the range of levels of 

computing power that might at some point be available? 

The previous section proposed that a system capable of 

supporting open-ended development of complexity should 

meet the following criteria gleaned from nature: 1) the sys-

tem should be free of any exogenous, explicit fitness crite-

ria; 2) there should be no supervisory agent that treats puta-

tively living parts of the environment differently than 

nonliving parts; and 3) agents should be represented fully 

consistently within the defining elemental rules that speci-

fy the overall environment.  The goal here is to retain these 

general properties, while reducing the overall computing 

requirements to the bare minimum.  Recent theoretical and 

research efforts have begun to address questions related to 

these properties, and  some of these works are cited in the 

following discussion.  In this way something of an overall 

trajectory along which ALife is already proceeding is 

sketched. 

 To a degree, the first and second of these properties can 

be achieved by omission.    

 AChem-like systems might potentially be tuned to fulfill 

all of these criteria (Faulconbridge et al. 2012). However, 

the computing power required to support a simulation ca-

pable of evolving agents from this basic level is likely to 

remain out of reach indefinitely.  Addressing this while 

maintaining our desired criteria will require a considerable 

amount of finessing on two fronts.  Firstly, the way in 

which the defining elemental rules are implemented must 

be dramatically altered from the basic AChem-inspired 

form in order to approach computational tractability.  Sec-

ondly, it is probably necessary to seed environments with 

proto-life agents (Hickinbotham et al. 2010, Damer et al. 

2010).  It is likely that choosing a set of elemental defining 

rules that will readily give rise to lifelike agents is a much 

more difficult task than creating seed agents that can exist 

in a given environment. 

 There are several modifications that might allow for a 

considerable speed-up in the simulation of a set of rules 

defining a “physics” (Grand 2012). One example of these 

would be to compress many aspects of the environment. 

Still, even with the most optimistic curtailment of physical 

laws, it is likely that this alone would not bring us within a 

reasonable experimental time frame. Grand (2012) esti-

mates that even with a set of very generous fixes, it would 

take in excess of 1000 years for a single in-

stance/simulation of a set of laws to reach the abiogenesis 

stage (if it were to occur), and possibly a very large num-

ber of attempts to refine our set of laws. 

 It will be necessary to consider additional fixes that go 

beyond streamlining the defining elemental rules/laws of 

our system.  One potential fix is to include many aggregat-

ed physical properties into macro-scale objects. Rules that 

simulate macro-scale objects as semi-elemental forms 

might be considered quasi-magical in relation to the ele-

mental rules and have the potential to distort the environ-

ment outside the bounds of consistency detailed above, and 

must be implemented with care.  One possibility regarding 

how to make quasi-magical rules consistent with a set of 

elemental rules is to require quasi-magical rules to stay 

within the energy confines of the simulation.  Potentially, 

measures of complexity in ALife as studied in Lehman and 

Stanley (2008) could be used to modulate the degree of 

computational granularity in conjunction with levels of 

abstraction (Nellis and Stepney 2010).  

 Even with these modifications it will be necessary to 

seed the environments with proto-agents. With supporting 

modifications to the defining elemental rules governing 

interactions, it may be possible to design bodies for the 

seed agents, although this is currently beyond the state of 

the art (Ducharme, Egli, and Legault 2012).  Recently, 

using Stringmol, an AChem system with some aspects of 

self-replicating programs, Hickinbotham et al. (2010) 

seeded the environment with a hand-designed molecule 

that is capable of copying any other molecule it binds to.  
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This then led to the evolution of a great variety of complex 

co-replicating molecules.   

 Seed agents require rudimentary sensor-control-motor 

loops constructed using only the defining elemental rules 

of the environments.  This is likely to be extremely diffi-

cult within a system with simple AChem-like rules.  Dual-

ism, in which agent minds are represented externally to the 

environment, would violate consistent agent-environment 

representation.  One way to address this might be to in-

clude fundamental elements/particles in the environment 

that are essentially functional computational units that can 

be coupled together into connectionist structures. Recently, 

something close to endogenous encoding of a rudimentary 

control function has been achieved in a few works. For 

example, Joachimczak et al. (2012) demonstrated the evo-

lution of locomotion ability in populations of multicellular 

agents with genomes that specified morphology and con-

trol at the cellular level. Global or whole-agent control 

arose as an emergent property. 

 In summary, a computational ALife environment might 

be achieved by implementing: 1) streamlined AChem-like 

rules governing interaction of elements in the environment, 

augmented by 2) a set of rules for aggregated macro-scale 

objects, variable granularity based on complexity, and fun-

damental elements that can readily be formed into connec-

tionist information processing and sensing constructs; and 

3) initial seed populations of hand-designed self-

reproducing proto-agents.   

Discussion and Closing Remarks 

The general methodology outlined in the previous section 

represents something akin to a long-term research endeav-

or that is already underway within the ALife research 

community (Shao and Ray 2010, Hickinbotham et al. 

2010, Nellis and Stepney 2010, Joachimczak et al. 2012, 

Faulconbridge et al. 2012, Lehman and Stanley 2008) and 

others. 

 If agents in ALife environments are able to continually 

detect and smoothly respond to their environment (or envi-

ronmental context), and if this ability is in fact one possible 

basis for primitive consciousness, then ALife may indeed 

side-step (without necessarily understanding) some of the 

difficulties encountered when explicitly build-

ing/programming machines with intelligence.  

 This paper has suggested that combining features from 

different areas of ALife research may produce a system 

that generates both open-ended development and continued 

complexification. Work over the last two decades has 

demonstrated that some level of automatic adaptation of 

agents to environments in situated-agent systems is indeed 

possible. Evolved agents are capable of performing situat-

ed behaviors of some complexity. Self-evolving program 

systems have demonstrated some elements of open-ended 

evolution, although the agents evolved are too simple to be 

considered complex life.  AChem systems do address con-

cerns of exogenous fitness and of inconsistent representa-

tion of evolving agents.  Here though, seeding seems nec-

essary to jumpstart the rise of complex agents, and the de-

sign of such seed agents is currently beyond the state of the 

art. 

 Philosophically speaking, there are likely to be funda-

mental problems in determining whether resulting agents 

have phenomenal consciousness even if they appear out-

wardly to have features we associate with consciousness. 

Observations of such features in agents arising from ALife 

simulations, though still not providing conclusive proof of 

artificial phenomenal states, might bear more weight than 

they would in super-intelligent human-designed AGIs. 

This is because such AGIs might have been explicitly or 

implicitly programmed to simulate affect, while agents 

created in a self-contained evolutionary simulation would 

have evolved such behavior independently.   

Acknowledgments 

The author would like to thank Brenae L. Bailey and Julia 

B. Nelson for many related discussions and assistance in 

preparing this manuscript. 

References 

Adami, C., and Brown, C. T. 1994. Evolutionary Learning in the 
Artificial Life System “Avida”. In Brooks, R. A. and Maes, P., 
eds. Proceedings of Artificial Life IV, 377–381. MIT Press. 

Anderson, M. L. 2003. Embodied Cognition: A Field Guide. Arti-
ficial Intelligence 149(1): 91-130. 

Arrabales, R.; Ledezma, A.; and Sanchis, A. 2010. ConsScale: A 
Pragmatic Scale for Measuring the Level of Consciousness in 
Artificial Agents. Journal of Consciousness Studies 17(3-4): 131-
164.  

Bedau, M. A.; McCaskill, J. S.; Packard, N. H.; Rasmussen, S.; 
Adami, C.; Green, D. G.; Ikegami, T.; Kaneko, K.; and Ray, T. S. 
2000. Open Problems in Artificial Life. Artificial Life 6(4): 363-
376. 

Brooks, R. A. 1997. From Earwigs to Humans. Robotics and 
Autonomous Systems 20(2): 291-304.   

Brunette, E. S.; Flemmer, R. C.; and Flemmer, C. L. 2009. A 
Review of Artificial Intelligence. In Proceedings of the Fourth 
International Conference on Autonomous Robots and Agents, 
385-392.  

Buchanan, B. G. 2005. A (Very) Brief History of Artificial Intel-
ligence. AI Magazine 26(4): 53-60. 

Damer, B.; Newman, P.; Gordon, R.; Barbalet, T.; Deamer, D.W.; 
and Norkus, R. 2010. The EvoGrid: A Framework for Distributed 
Artificial Chemistry Cameo Simulations Supporting Computa-
tional Origins of Life Endeavors. In Proceedings of the 12th  
International Conference on the Synthesis and Simulation of Liv-
ing Systems,  Odense, Denmark. 

56



Dennett, D. C. 2006. Cognitive Wheels: The Frame Problem of 
AI. In Bermudez, J. L., ed. Philosophy of Psychology: Contempo-
rary Readings, 433-454. New York: Routledge. 

Dittrich, P.; Ziegler, J.; and Banzhaf, W. 2001. Artificial Chemis-
tries – A Review. Artificial Life, 7(3): 225–275. 

Dreyfus, H. L. 2007. Why Heideggerian AI Failed and How Fix-
ing It Would Require Making It More Heideggerian. Philosophi-
cal Psychology 20(2): 247-268. 

Ducharme, V.; Egli, R.; and Legault, C. Y. 2012. Energy-Based 
Artificial Chemistry Simulator. In Artificial Life 13: Proceedings 
of the Thirteenth International Conference on the Synthesis and 
Simulation of Living Systems. East Lansing, MI. 

Faulconbridge, A.; Stepney, S.; Miller, J. F.; and Caves L. 2010. 
RBN-World: The Hunt for a Rich AChem.  In Proceedings of the 
12th  International Conference on the Synthesis and Simulation of 
Living Systems,  Odense, Denmark. 

Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek, D.; 
Kalyanpur, A. A.; et al. 2010. Building Watson: An Overview of 
the DeepQA Project. AI Magazine 31(3): 59-79. 

Fortuna, M. A.; Zaman, L.; Wagner, A. P.; and Ofria, C. 2013. 
Evolving Digital Ecological Networks. PLOS Computational 
Biology 9(3): e1002928. 

Froese, T., and Ziemke, T. 2009. Enactive Artificial Intelligence: 
Investigating the Systemic Organization of Life and Mind. Artifi-
cial Intelligence 173(3): 466-500. 

Grand, S. 2012. Playing God: The Historical Motivations of Arti-
ficial Life. In Origin(s) of Design in Nature, 733-748. Springer 
Netherlands.  

Harnad, S. 1990. The Symbol Grounding Problem. Physica D, 
42: 335–346. 

Hickinbotham, S.; Clark, E.; Stepney, S.; Clarke, T.; Nellis, A.; 
Pay, M.; and Young, P. 2010. Diversity from a Monoculture: 
Effects of Mutation-On-Copy in a String-Based Artificial Chem-
istry. In Proceedings of the 12th  International Conference on the 
Synthesis and Simulation of Living Systems. Odense, Denmark. 

Hsu, F.-H. 2002. Behind Deep Blue: Building the Computer That 
Defeated the World Chess Champion. Princeton, NJ.: Princeton 
University Press.  

Joachimczak, M.; Kowaliw, T.; Doursat, R.; and Wrobel, B. 
2012. Brainless Bodies: Controlling the Development and Behav-
ior of Multicellular Animats by Gene Regulation and Diffusive 
Signals. In Artificial Life 13: Proceedings of the Thirteenth  In-
ternational Conference on the Synthesis and Simulation of Living 
Systems. East Lansing, MI. 

Koch, C., and Tsuchiya, N. 2011. A Test for Consciousness. Sci-
entific American 304(6): 44-47. 

Kim, K.-J., and Cho, S.-B. 2006. A Comprehensive Overview of 
the Applications of Artificial Life. Artificial Life 12(1): 153-182. 

Lange, M. 1996. Life, “Artificial Life,” and Scientific Explana-
tion. Philosophy of Science 63(2): 225-244. 

Legg, S., and Hutter, M. 2007. A Collection of Definitions of 
Intelligence. Frontiers in Artificial Intelligence and Applications 
157: 17-24. 

Lehman, J., and Stanley, K. O. 2008. Exploiting Open-Endedness 
to Solve Problems through the Search for Novelty. Artificial Life 
11: 329. 

Lloyd, S. 2002. Computational Capacity of the Universe. Physi-
cal Review Letters 88(23): 237901. 

Loar, B. 1990. Phenomenal States. Philosophical Perspectives 4: 
81-108. 

Looks, M., and Goertzel, B. 2006. Mixing Cognitive Science 
Concepts with Computer Science Algorithms and Data Struc-
tures: An Integrative Approach to Strong AI. AAAI Spring Sym-
posium Series. Palo Alto, CA: AAAI Press. 

Menant, C. 2012. Turing Test, Chinese Room Argument, Symbol 
Grounding Problem. Meanings in Artificial Agents. In Proceed-
ings of the AISB/IACAP World Congress. Natural Compu-
ting/Unconventional Computing and Its Philosophical Signifi-
cance, 51-56. Birmingham, UK.: The Society for the Study of 
Artificial Intelligence and Simulation of Behaviour. 

Nelson, A. L.; Barlow, G. J.; and Doitsidis, L. 2009. Fitness 
Functions in Evolutionary Robotics: A Survey and Analysis. 
Robotics and Autonomous Systems 57(4): 345-370. 

Newell, A., and Simon, H. A. 1972. Human Problem Solving. 
Englewood Cliffs, NJ:  Prentice-Hall. 

Newell, A. 1982. The Knowledge Level. Artificial Intelligence 
18(1): 87-127. 

Nellis, A., and Stepney, S. 2010. Automatically Moving Between 
Levels in Artificial Chemistries.  In Proceedings of the 12th  In-
ternational Conference on the Synthesis and Simulation of Living 
Systems,  Odense, Denmark.  

Nolfi, S., and Floreano, D. 2000. Evolutionary Robotics: The 
Biology, Intelligence, and Technology of Self-Organizing Ma-
chines. Cambridge, MA: MIT Press. 

Parisi, D. 1997. Artificial Life and Higher Level Cognition. Brain 
and Cognition 34.1: 160-184. 

Ray, T. S. 1991. An Approach to the Synthesis of Life. Artificial 
Life II 10: 371-408. 

Reggia, J. A. 2013. The Rise of Machine Consciousness: Study-
ing Consciousness with Computational Models. Neural Networks 
44: 112:131.  

Sanghi, P., and Dowe, D. L. 2003. A Computer Program Capable 
of Passing IQ Tests. Proceedings of the Fourth ICCS Internation-
al Conference on Cognitive Science.  

Searle, J. R. 1980. Minds, Brains, and Programs. Behavioral and 
Brain Sciences 3(3): 417-457. 

Shani, I. 2013. Setting the Bar for Cognitive Agency: Or, How 
Minimally Autonomous Can an Autonomous Agent Be? New 
Ideas in Psychology 31(2): 151-165.   

Shao, J., and Ray, T. S. 2010. Maintenance of Species Diversity 
by Predation in the Tierra System. In Twelfth International Con-
ference on the Synthesis and Simulation of Living Systems 
(ALIFE), 533-540. 

Standish, R. K. 2003. Open-ended Artificial Evolution. Interna-
tional Journal of Computational Intelligence and Applications 
3(02), 167-175. 

Steels, L., and Brooks, R. A. eds. 1995. The Artificial Life Route 
to Artificial Intelligence: Building Embodied, Situated Agents. 
Psychology Press.  

Wheeler, M. 2008. Cognition in Context: Phenomenology, Situ-
ated Robotics and the Frame Problem. International Journal of 
Philosophical Studies 16(3): 323-349. 

57




