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Abstract

In this paper we consider planning problems in relational
Markov processes where objects may “appear” or “disap-
pear”, perhaps depending on previous actions or properties
of other objects. For instance, problems which require to ex-
plicitly generate or discover objects fall into this category. In
our formulation this requires to explicitly represent the un-
certainty over the number of objects (dimensions or factors)
in a dynamic Bayesian networks (DBN). Many formalisms
(also existing ones) are conceivable to formulate such prob-
lems. We aim at a formulation that facilitates inference and
planning. Based on a specific formulation we investigate two
inference methods—rejection sampling and reversible-jump
MCMC—to compute a posterior over the process conditioned
on the first and last time slice (start and goal state). We will
discuss properties, efficiency, and appropriateness of each
one.

Introduction
In many interesting real world robotics problems the robot is
faced with uncertainty over whether an object exists or not.
In the following we give some motivating example tasks,
where the interesting aspect is that they require explicit rea-
soning about the uncertainty over existence and properties
of objects:
– We need to hit a nail into a wall. We do not know which

objects there might exist in the room, hidden in draw-
ers or behind doors or other objects, and whether they
are hammer-like (stone, metal bar, huge screw driver,
. . . ). We would have to explicitly reason about what is
the probability that a hidden object exists in this-or-that
drawer, what is the probability that it is hammer-like, and
eventually which actions are suitable to reduce these un-
certainties to solve the problem.

– We want to find as many objects as possible and pile
them. For this we need to consider probabilities of find-
ing objects when opening drawers, whether they might
be “pilable”, and which actions will lead to the discovery
of suitable objects.

– We need to carry a box that is closed. If the box contains
a too heavy object we might fail. We will have to reason
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about which objects might be contained in the box, what
their weight is and which actions will reduce uncertainty
and avoid failure.

Why is this hard, interesting, and non-trivial? First of all,
the dimensionality of the state space depends on the number
of objects. Therefore the agent has uncertainty about the di-
mensionality of the state space. Relational or factored MDPs
can be thought of as Dynamic Bayes Networks (DBN). In
the relational case, each property or relation of objects is
being represented by a random variable in each time slice
(Lang and Toussaint 2009). If we have uncertainty over ex-
istence of objects, we actually have uncertainty over which
random variables exist in the DBN. Doing inference in such
a DBN is an interesting matter. There are some formal-
ism covering uncertainty over state dimension or number
of objects. Infinite models such as infinite HMM (iHMM)
(Beal, Ghahramani, and Rasmussen 2001), infinite factored
HMM (ifHMM)(Gael, Teh, and Ghahramani 2008), infinite
POMDP (Doshi-Velez 2009), and infinite DBN (Doshi et al.
2011) use Dirichlet Processes (DP) (Teh et al. 2004) and
Indian Buffet Processes (IBP) (Griffiths and Ghahramani
2011) to define a prior over the cardinality of latent vari-
ables. Is this the same as having uncertainty over the ex-
istence of (latent) variables? In principle it is related when
collapsing all variables to one big variable the uncertainty is
simply over its cardinality. The previous work uses an IBP
prior over uncertainty of cardinality of latent variables, but
not number of objects or random variables and their rela-
tion. Moreover, the possibility of an object’s appearance at
one time slice depends only on objects and actions in the
previous time slice (Markov property) not the whole time
slices like in IBP, and they are not exchangeble like the
assumption of IBP. This clearly yields a huge difference.
BLOG (Bayesian Logic) (Milch et al. 2005), its nonpara-
metric extension (Carbonetto et al. 2005) and formalisms
like that dig deep into logic to describe probability distribu-
tions over worlds where the number of objects is unknown.
Similarliy, the Church language (Goodman et al. 2008), a
Lisp-like functional programming language, describes gen-
erative models as stochastic functions (e.g. a Bayes net with
arbitrary symbolic nodes and arrows). But we do not see the
possibility that this could ever be efficient for inference in
planning. We would hope to find something simpler; a more
direct extension of Markovian models.
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Therefore, we think that the problem of reasoning with
uncertainties over existence of objects is a fundamental type
of uncertainty in real worlds that is not really nicely rep-
resented in practical models nowadays. And that is a huge
potential for research. In this paper, we propose a formula-
tion such that inference can be done efficiently. We introduce
the target distribution which is over the unknown quantity of
objects which is considered as a random variable. This re-
sults in a trans-dimensional target distribution. Then, we can
carry out Bayesian inference for the problem of the unknown
quantity of objects using reversible-jump MCMC. For ex-
periment, we evaluate this proposed method on basic model
problems. These model problems do not yet include action
random variables – in this preliminary work we wanted to
consider minimalistic scenarios that capture the core chal-
lenge of inference in processes where object may appear
or disappear depending on random variables in the previ-
ous time slice. In these scenarios we condition the first and
final time slice (start and goal state), as is standard in plan-
ning as inference approaches. The results show that we are
successful to compute correct posteriors also over the (dis-)
appearance of objects. We compare rejection sampling with
a reversible-jump MCMC method that we designed specifi-
cally to address the problem of uncertainty over existence of
objects.

In the motivating examples above we mentioned the dis-
covery of objects. It is in fact an interesting discussion
whether such discovery should be modelled as the creation
of a new object—as we do here—rather than an object that
always existed. We dig into this discussion in the last sec-
tion. The foremost purpose of this preliminary work is to
incite a discussion among the AI community about which
methods will be most promising to address the problem.

Related Work
The work by Srivastava et. al. (Srivastava, Immerman, and
Zilberstein 2009) uses abstraction for state aggregation to
represent unknown object quantities. However, this is a de-
terministic planner which can not deal with inference and
uncertainty.

The PHD filter (a.k.a. finite random sets) (Mahler 2007)
is a method which allows the on-line estimation of the
multi-object state using a sequence of noisy observation.
It considers the tracked objects at each time slice as a
random set. The multi-target posterior belief density func-
tion is computed using finite set statistics (FISST) (Good-
man, Mahler, and Nguyen 1997). There are a number of
algorithms used to implement FISST such as Sequential
Monte Carlo (Sidenbladh 2003; B.-N, S., and A. 2003),
Gaussian mixture model (B.-N and Ma 2005). The meth-
ods have been used extensively for tracking (Mahler 2000;
2002). These FISST methods have not yet been used to ad-
dress planning. As these methods have specialized to ad-
dress tracking problems with full observations we do not see
a simple extension for planning as inference in our scenar-
ios.

Finally, birth and death processes (Latouche and Ra-
maswami 1987) have been considered in the context of

continuous-time Markov process over the number of indi-
viduals. However, these methods do not consider that in-
dividuals may have properties or relations as in relational
MDPs.

Problem Formulation
Before defining a concrete model more formally, we first
discuss examples. In general we will consider a factored
Markov process on nt random variables (RVs) st,i, for i =
1, · · · , nt in time slice tth. Each st,i is discrete. We will
need to define transition probabilities p(nt, st|nt−1, st−1)
that also define the distribution over the number of random
variables in time slice t depending on the state at time t− 1.
In this paper we will usually condition on the number of
RVs and their values at the the start and final time slice and
consider the problem of computing the posterior distribution
over number of RVs and their values in all intermediate time
slices.

Examples
As a starting point for research we considered basic model
problems which are not yet concerned with object manipula-
tion but capture the basic problems involved when reasoning
with uncertainty over number of RVs in Markov processes.
We call these model problems “bacteria” problems, as they
concern a set of objects, the size of which may change de-
pending on whether they split, die, or change their proper-
ties. We assume the following three levels of difficulty of the
bacteria model problem.

Problem 1: A bacteria can split, die, or stay at next time
slice with a given probability: p, d, and (1 − p − d) respec-
tively. In this variant, bacteria have no properties. The state
is fully captured by nt in each time slice.

Problem 2: Bacteria have a single discrete property: color
∈ {1, 2, 3}. A bacteria’s color may change at each time step.
The split and die probabilities depend on the color value:
• Each object splits if color = 3 with probability of p into

two new objects,
• And dies if color = 1 with probability of d.
• The color changes to a uniform other color with probabil-

ity 0.3 and stays unchanged with probability 0.7.
To exemplify Problem 2, in Fig. 1, we generate 6 feasible
graphs using rejection sampling with setting of T = 5, n1 =
5, n5 = 3, the colors of these bacteria are randomly initial-
ized, p = 0.1, d = 0.4.

Problem 3: This problem makes the same assumptions
as problem 2, but in addition objects can have relations. We
consider a binary valued relation pair. The split probabil-
ity depends on the value of this relation: two bacteria can
only split if they are paired. Each time slice now includes
additional O(n2) RVs to represent the value pij of the pair
relation. The pair transition probabilities are

P (ptij = 1|pt−1ij = 0, ci = 3, cj = 3) = δ , (1)

P (ptij = 0|pt−1ij = 0, ci = 3, cj = 3) = 1− δ , (2)

P (ptij = 1|pt−1ij = 1) = 1 . (3)
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Figure 1: Example of problem 2. Colors {1,2,3} = {Black,
Red, Blue}

Split operator above changes to spawn. If pt−1ij = 1, there is
a new node spawn with probability p.

Using BLOG framework (Milch et al. 2005), the gener-
ative process of Problem 3 can be described in first-order
logic in Table 1.

However, BLOG is not efficient for doing inference plan-
ning in sequential decision problems. In Table 2, we use a
NID framework of Pasula et. al. (Pasula, Zettlemoyer, and
Kaelbling 2007) to represent stochastic world dynamics hav-
ing uncertainty over existence of objects.

Formulation
The examples above describe basic model processes. We not
formalize the problem of inference more concretely. We as-
sume we are given the transition model Θ and evidences at
the first and last time slice {1, T}. For instance, the transi-
tion model Θ in the above problems is given by {p, d, δ}
(probability of spliting, dying, and pairing). The task is to
infer the posterior over number of RVs and their values at
time slice {2, · · · , T−1}. More specifically, we encode each
time slice t with information It = {nt,Lt,Vt}, where nt is
the number of nodes, Lt = {l1, · · · , lnt

} is the set of links
for each node (each link li is a set of the nodes at next time
slice connected to node i), and Vt = {v1, · · · , vnt} is the
set of the nodes’ values. We denote a dynamic graph as G =
{N,L,V} which has a set of node N = {n1, · · · , nT },
L = {L1, · · · ,LT−1}, and V = {V1, · · · ,VT−1}. The
general problem is to estimate p(G|Θ, I1, IT ). Note that in
the model problems above, the link structure really becomes
part of the random variables: which random variable is cou-
pled to which in the previous time slice depends on which
random operators have occured during the transition. There-

type Bacteria; type Color
#{Bacteria}:
∼ NumBacteria()

#{Color}:
∼ NumColor()

Color(b):
∼ UniformColor()

Paired(b1, b2, t):
then ∼ PairedTransition(δ)

State(b, t):
If IsColor(b, 1) ∧ DieDistribution(d)

then = null
Else ∼ ColorTransition(b)

State(b1, b2, t):
If Paired(b1, b2, t)

then = InitNewBacteria(b, t+ 1)
Else = null

Table 1: BLOG model for the bacteria evolution problem.

fore we included L in the formulation.
We are interested in the distribution or the expected

number of nodes and their values at each time slice:
p(nt,Vt|Θ, I1, IT ), or E(nt|Θ, I1, IT ). This is given at any
time slice t as
p(nt,Vt|Θ, I1, IT ) =

∑
N−t

∑
V−t

∑
L

p(N,L,V|Θ, I1, IT )

(4)
and
p(nt|Θ, I1, IT ) =

∑
N−t

∑
V

∑
L

p(N,L,V|Θ, I1, IT ) (5)

and

E(nt|Θ, I1, IT ) =
∞∑

nt=0

ntp(nt|Θ, I1, IT )

=
∞∑

nt=0

nt
∑
N−t

∑
V

∑
L

p(N,V,L|Θ, I1, IT )

(6)
where the probability p(N,L,V|Θ, I1, IT ) =
p(G|Θ, I1, IT ) is the joint probability which can be
computed tractably. However, computing the above quantity
over possible values of nt (its value’s domain is unbounded),
Lt (depending on nt), and Vt (also depending on nt) is
intractable. In order to evaluate this quantity we propose
to use sampling approaches. If we can sample M graphs
{Gi}Mi=1 from the distribution p(G|Θ, I1, IT ) then (4) can
be estimated as

p(nt,Vt|Θ, I1, IT ) =
1

M

M∑
i=1

1(nt,Vt)(Gi) (7)

where 1(nt,Vt)(Gi) is an indicator function to verify if the
number of nodes and their values of graph Gi are nt and
Vt, respectively. The target distribution p(G|Θ, I1, IT ) can
be evaluated easily as a product of factors p(It|Pa(It))

p(G|Θ, I1, IT ) =
T∏

t=2

nt∏
i=1

p(Iit |Pa(Iit)) (8)
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(Die operator)

Evolve(X) :
{
IsBacteria(X)

}
Color(X, 1)

→
{
d : Set(X,null)
1− d : no change

(stay still operator)

Evolve(X) :
{
IsBacteria(X)

}
Color(X, 2) ∨ Color(X, 3)
→
{

1 : no change

(Color transition)

Evolve(X) :
{
IsColor(X)

}
→

 0.8 : SetColor(X,Color(X))
0.1 : SetColor(X, other color 1)
0.1 : SetColor(X, other color 2)

(Establish paired relation)

Evolve(X) :
{
IsPair(X)

}
X = IsPairOf(b1, b2), Color(b1, 3),

Color(b2, 3), Paired(X) = 0

→
{
δ : SetPaired(X, 1)
1− δ : SetPaired(X, 0)

(Establish paired relation)

Evolve(X) :
{
IsPair(X)

}
X = IsPairOf(b1, b2),

¬Color(b1, 3) ∨ ¬Color(b2, 3), Paired(X) = 0

→
{

1.0 : SetPaired(X, 0)

(Establish paired relation)

Evolve(X) :
{
IsPair(X)

}
X = IsPairOf(b1, b2), Paired(X) = 1

→
{

1.0 : SetPaired(X, 1)

(paired transition)

Evolve(X) :
{
IsPair(X)

}
X = IsPairOf(b1, b2), Paired(X) = 1

→
{
p : InitNewBacteria(b3)
1− p : no change

Table 2: NID model for the bacteria evolution problem.

Proposed Approach
In this section, we propose two solutions to sample G from
its target distribution: rejection sampling, and reversible-
jump MCMC. The first one is straightforward, then served
as a base-line solution.

Rejection Sampling
We start with information I1 at the first time slice, then use
the generative model Θ to evole until the terminal time slice
T . If the information at T matches with IT , the sample is
accepted, otherwise rejected. Next sampling round repeats.

Reversible-Jump MCMC
Rejection sampling is notorious for its inefficiency in ac-
ceptance rate. This problem is even more severe when T
is a long horizon, each node can take a lot of possible val-
ues and relations, then the acceptance rate is closer to zero.
In this section, we propose an alternative Bayesian method.
This method introduces a trans-dimensional target distribu-
tion and proposes to use one trans-dimensional MCMC al-
gorithm which is Reversible-Jump MCMC.

Reversible-Jump MCMC (RJMCMC) was proposed by
Green in 1995 (Green 1995) which is an extension to
the Metropolis-Hasting algorithm (Hastings 1970). Us-
ing RJMCMC, we can directly compute the posterior
p(N,L,V|Θ, I1, IT ) via reversible jumps through spaces
of graphs having the different number of nodes, links, and
values. We initialize the RJMCMC algorithm with an arbi-
trary graph G0 = {N0,L0,V0}. For each iteration k, we
choose a move type m from a set of reversible moves M.
We use three types of move: birth (a new node at a time slice
is born), death (a node at a time slice is dead), and update
(links at a time slice are updated). Each move is applied on a
randomly selected time slice t. Assume that a new proposal
graph G∗ is generated from this move. It is accepted accord-
ing to an acceptance probability which is computed slightly
similar to the classical Metropolis-Hastings algorithm’s. A
generic RJMCMC for the growing DBN problem is as in
Algorithm 1.

Algorithm 1 Reversible-jump MCMC.
Require: Initialize (N0,L0,V0).

for k = 0→ kmax do
Sample u ∼ U(0, 1).
if u < bk then

Do birth move.
Accept the move with probability in Eq.10.

else if u < bk + dk then
Do death move.
Accept the move with probability in Eq.11.

else
Do update move.

end if
end for

We use two reversible moves (birth and death) and up-
date moves. For each time slice, we assume the number of
node nt has a prior p(nt) according to a truncated-Poission
distribution. Similar to the setting in (Green 1995), we set

bk = cmax ·min{1, p(nt + 1)/p(nt)}
dk = cmax ·min{1, p(nt − 1)/p(nt)}

(9)

where the constant cmax is set such that bk + dk ≤ 0.9, for
all k = 0, · · · , kmax.

With a probability of bk, we propose a birth move at a ran-
domly selected time slice at which there is a new node nti∗
added according to the probability qbirth(nti∗ |Θ, It−1, It).
For the example in previous section, we enumerate all pos-
sibilities that there are parents who can have more children,
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then choose randomly one possibility. It has a reversible dis-
tribution qdeath(nti|Θ, It−1, It) that enumerates all possible
nodes which has no children can be removed. The newly cre-
ated node’s parent (links) and values are initialized accord-
ing to p(nti∗ |Pa(nti∗), It−1, It) and p(vti∗ |Pa(nti∗)). This
new graph is accepted with a probability Abirth(G∗, Gk) =
min{1, αbirth}, where

αbirth =
p(G∗|Θ, I1, IT )

p(Gi|Θ, I1, IT )
· dk+1

bk
·
qdeath(nti|Θ, I∗t−1, I∗t )

qbirth(nti∗ |Θ, It−1, It)
(10)

Similarly, with a probability of dk, we propose a death
move at a randomly selected time slice at which we delete
a node nti ∼ qdeath(nti|Θ, It−1, It) (enumerate all pos-
sible nodes which has no children can be removed). This
new graph is accepted with a probability Adeath(G∗, Gk) =
min{1, αdeath}, where

αdeath =
p(G∗|Θ, I1, IT )

p(Gi|Θ, I1, IT )
· bk+1

dk
·
qbirth(nti∗ |Θ, I∗t−1, I∗t )

qdeath(nti|Θ, It−1, It)
(11)

And with probabilty uk = 1 − bk − dk, we pro-
pose a standard Metropolis-Hastings moves to update
links at a randomly selected time slice. The Markov
chain {Nk,Lk,Nk}kmax

k=0 generated as above is proved
to be irreducible and aperiodic. Then it asymptotically
converges to samples of the true posterior distribution
p(N,L,V|Θ, I1, IT ).

Experiments
We use the model problems previously introduced for com-
parisons of the two proposed solutions. To speed up the
burn-in stage and avoid local optima, we initialize the RJM-
CMC algorithm with a sample from the rejection sampling
algorithm. The error bars for rejection sampling are the stan-
dard deviation of the mean itself from 10000 iterations, for
RJMCMC they are the standard deviation of the mean it-
self averaged from ten 10000-iteration runs (including 5000
iterations for burn-in). Through experiments we expect to
answer two questions: First, are the samples of our RJM-
CMC proposal from the true target distribution? And, is the
RJMCMC proposal reversible?

Problem 1 is tested with setting T = 5, n1 = 4, n5 = 2,
p = 0.3, d = 0.5. The comparison is shown in Fig. 2. The
rejection sampling has an acceptance rate of 1600/10000.

Problem 2 is tested setting T = 5, n1 = 5, n5 = 3,
the colors of these bacteria are randomly initialized, p =
0.1, d = 0.4. The comparisons of the distribution over the
number of nodes and of the distribution over the number of
values is shown in Fig. 3. The rejection sampling has an ac-
ceptance rate of 83/10000.

Problem 3 is tested setting T = 5, n1 = 2, n2 = 4, p =
0.5, d = 0.2, δ = 0.5. The comparisons of the distribution
over the number of nodes and of the distribution over the
number of values is shown in Fig. 4. The rejection sampling
has an acceptance rate of 108/10000.

For all three problems the mean estimators for the number
of objects match within the standard deviations between re-
jection sampling and RJMCMC. Also, for Problem 2 and 3
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Figure 2: Problem 1: Number of Bacteria vs Time
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Figure 3: Problem 2: Number of bacteria vs time and color
value histogram (left: rejection sampling, right: RJMCMC).

the color value histograms match—confirming that the sam-
ples of our RJMCMC proposal are correcly from the true tar-
get distribution. This ascertains that the RJMCMC proposal
successfully jumps through spaces of feasible graphs, there-
fore it is reversible. The color value histograms for Problem
2 and 3 interestingly reflect the intrinsics of the transition
probabilities. E.g. in Problem 3, the absence of color 3 at
t = 1 leads to the need to generate many 3’s at t = 2 to
ensure the necessary growth to reach the final state.

Discussion
We have studied the problem of inference in processes where
objects can be created or destroyed, implying the need to
reason directly about the uncertainties over existence of ob-
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Figure 4: Problem 3: Number of bacteria vs time and color
value histogram (left: rejection sampling, right: RJMCMC).

jects. In this preliminary work we proposed a basic formula-
tion of a trans-dimensional distribution over such processes
and tested rejection sampling as well as a specific reversible-
jump MCMC method to compute the desired posteriors. The
results on basic model problems show that RJMCMC is
promising and successful in computing the correct posteri-
ors.

Our original motivation for this work was to address
robotic scenarios that involve the (active) discovery of ob-
jects by explicitly reasoning about the chances of discov-
ery. Literally taken, discovery and creation are very different
things: a discovered object has “always” existed. Translated
to a DBN framework, modelling discovery would, taken lit-
erally, require to have RVs for all objects that might exist
for all times. As these might potentially be infinitely many
this naturally leads to ifHMM or IBP type models. How-
ever, is this really necessary? With this work we want to
propose that modelling discovery as the creation of a new
object (which has no history in the DBN) might lead to sim-
pler and more feasible models. Future work should elaborate
on the formal differences or equivalences. Most important,
our hope is that future application of such approaches in real
robotic scenarios will evaluate the practiability of these al-
ternatives (including alternative inference methods) and lead
to efficient planning methods for active discovery problems.
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