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Abstract

In this article supervised learning problems are solved
using soft rule ensembles. First, we review the impor-
tance sampling learning ensembles (ISLE) approach
that is useful for generating hard rules. Soft rules are
obtained with logistic regression using the correspond-
ing hard rules and training data. Soft rule ensembles
work well when both the response and the input vari-
ables are continuous because soft rules provide smooth
transitions around the boundaries of hard rules. Finally,
various examples and simulation results are provided to
illustrate and evaluate the performance of soft rule en-
sembles.

Introduction
A relatively new approach to modeling data, namely the en-
semble learning ((Ho, Hull, and Srihari 1990), (Hansen and
Salamon 1990), (Kleinberg 1990)) challenges the monist
views by providing solutions to complex problems simul-
taneously from a number of models. By focusing on reg-
ularities and stable common behavior, ensemble modeling
approaches provide solutions that as a whole outperform
the single models. Some influential early works in ensemble
learning were by Breiman with Bagging (bootstrap aggre-
gating) ((Breiman 1996)), and Freund and Shapire with Ad-
aBoost ((Freund and Schapire 1996)). All of these methods
involve random sampling the ’space of models’ to produce
an ensemble of models ((Seni and Elder 2010)).

Although not necessary, ensemble models are usually
constructed from regression / classification trees or binary
rules extracted from them which are discontinuous and
piecewise constant. In order to approximate a smooth re-
sponse variable, a large number of trees or rules with many
splits are needed. This causes data fragmentation for high
dimensional problems where the data is already sparse. The
soft rule ensembles that are proposed in this paper attacks
this problem by replacing the hard rules with smooth func-
tions.

In the rest of this section, we review the ensemble model
generation and post-processing approach due to Popescu &
Friedman ((Friedman and Popescu 2003)). Their approach
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attempts to unify ensemble learning methods. In the Section
2, we explain how to convert hard rules to soft rules using
bias corrected logistic regression. In Section 3, we compare
the soft and hard rule ensembles with the aid of examples
and simulations. The paper concludes with our comments
and discussions.

Suppose we are asked to predict the continuous outcome
variable y from p vector of input variables x. We restrict the
prediction models to the model family F = {f(x; θ) : θ ∈
Θ}. The models considered by the ISLE framework have an
additive expansion of the form:

F (x) = w0 +
M∑
j=1

wjf(x, θj) (1)

where {f(x, θj)}Mj=1 are base learners selected from F .
Popescu & Friedman’s ISLE approach ((Friedman and
Popescu 2003)) uses a heuristic two-step approach to ar-
rive at F (x). The first step involves sampling the space
of possible models to obtain {θ̂j}Mj=1. The models in the
model family F are sampled using perturbation sampling;
by varying case weights, data values, variable subsets, or
partitions of the input space ((Seni and Elder 2010)). The
second step combines the predictions from these models by
choosing weights {wj}Mj=0 in (1). Let L(., .) is a loss func-
tion, Sj(η) is a subset of the indices {1, 2, . . . , n} chosen by
a sampling scheme η, 0 ≤ ν ≤ 1 is a memory parameter.
The pseudo code to produce M models {f(x, θ̂j)}Mj=1 un-
der ISLE framework is given below:
Algorithm 0.1: ISLE(M, v, η)

F0(x) = 0.
for j=1 to M

do


(ĉj , θ̂j)
= argmin

(c,θ)

∑
i∈Sj(η)

L(yi, Fj−1(xi) + cf(xi, θ))

Tj(x) = f(x, θ̂j)
Fj(x) = Fj−1(x) + νĉjTj(x)

return ({Tj(x)}Mj=1andFM (x).)

The classic ensemble methods of Bagging, Random For-
est, AdaBoost, and Gradient Boosting are special cases of
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the generic ensemble generation procedure ((Seni and Elder
2010)). The weights {wj}Mj=0 can be selected in a number
of ways, for Bagging and Random Forests these weights are
set to predetermined values, i.e. w0 = 0 and wj = 1

M for
j = 1, 2, . . . ,M. Boosting calculates these weights in stage
wise fashion at each step by having positive memory µ, es-
timating cj and takes FM (x) as the final prediction model.

Friedman & Popescu ((Friedman and Popescu 2003)) rec-
ommend learning the weights {wj}Mj=0 using LASSO ((Tib-

shirani 1996)). Let T = (Tj(xi))
n
i=1

M

m=1
be the n × M

matrix of predictions for the n observations by the M mod-
els in an ensemble. The weights (w0,w = {wm}Mm=1) are
obtained from

ŵ = argmin
w

(y−w01n−Tw)′(y−w01n−Tw)+λ
M∑
j=1

|wm|.

(2)
λ > 0 is the shrinkage operator, larger values of λ de-
creases the number of models included in the final predic-
tion model. The final ensemble model is given by F (x) =

ŵ0 +
∑M
m=1 ŵmTm(x).

The base learners, f(x, θ), in the ISLE framework can
be of any kind however usually regression or decision trees
are used. Each decision tree in the ensemble partitions the
input space using the product of indicator functions of ’sim-
ple’ regions based on several input variables. A tree with
K terminal nodes define a K partition of the input space
where the membership to a specific node, say node k, can
be accomplished by applying the conjunctive rule rk(x) =∏p
l=1 I(xl ∈ slk), where I(.) is the indicator function. The

regions slk are intervals for continuous variables and subsets
of the levels for categorical variables. Therefore, a ’simple’
rule corresponds to a region that is the intersection of half
spaces defined by hyperplanes that are orthogonal to the axis
of the predictor variables.

A regression tree with K terminal nodes can be written as

T (x) =

K∑
k=1

βkrk(x). (3)

Trees with many terminal nodes usually produce more com-
plex rules and tree depth is an important meta-parameter
which we can control by maximum tree depth and cost prun-
ing.

Given a set of decision trees, rules can be extracted from
each of these trees to define a collection of conjunctive rules
(Figure ). A conjunctive rule r(x) =

∏p
l=1 I(xl ∈ sl) can

also be expressed as a logic rule (also called Boolean ex-
pressions and logic statement) involving only the ∧ (’and’)
operator. In general, a logic statement is constructed using
the operators ∧ (’and’), ∨ (’or’) and c (’not’) and brackets.
An example logic rule is l(x) = [I(x1 ∈ s1) ∨ Ic(x2 ∈
s2)] ∧ I(x3 ∈ s3). Logic Regression ((Kooperberg and
Ruczinski 2005)) is an adaptive regression methodology that
constructs logic rules from binary input variables. ’Simple’
conjunctive rules that are learned by the the ISLE approach
can be used as input variables to logic regression to com-
bine these rules into logic rules. However, the representation

of a logic rule in general is not unique and it can be shown
that logic rules can be expressed in disjunctive normal form
where we only use ∨ combinations of ∧ (but not necessarily
’simple’) terms.

Figure 1: A simple regression tree which can be represented
as y = 20I(x < 0)I(z < 1) + 15I(x < 0)I(z ≥ 1) +
10I(x ≥ 0). Each leaf node defines a rule which can be
expressed as a product of indicator functions of half spaces.
Each rule specifies a ’simple’ rectangular region in the input
space.

Let R = (rk(xi))
n
i=1

L

l=1 be the n × L matrix of rules
for the n observations by the L rules in the ensemble. The
rulefit algorithm of Friedman & Popescu (Friedman and
Popescu 2008) uses the weights (w0,w = {wl}Ll=1) that
are estimated from

ŵ = argmin
w

(y−w01n−Rw)′(y−w01n−Rw)+λ

L∑
l=1

|wl|

(4)
in the final prediction model F (x) = ŵ0 +

∑L
l=1 ŵlrl(x).

Rule ensembles are shown to produce improved accuracy
over traditional ensemble methods like random forests, bag-
ging, boosting and ISLE ((Friedman and Popescu 2003),
(Friedman and Popescu 2008) and (Seni and Elder 2010)).

Soft Rules from Hard Rules
Soft rules which take values in [0, 1] are obtained by replac-
ing each hard rule r(x) with a logistic function of the form

s(x) =
1

1 + exp(−g(x; θ))
.

The value of a soft rule s(x) can be viewed as the probability
that that rule is fired for x.

In (Da Rosa, Veiga, and Medeiros 2008) hard rules are re-
placed with products of univariate logistic functions to build
the models called tree-structured smooth transition regres-
sion models that generalize the regression tree models. A
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similar model called soft decision trees are introduced in
(Irsoy, Yildiz, and Alpaydin 2012). These authors use logis-
tic functions to calculate gating probabilities at each node
in an hierarchical structure where the children of each node
are selected with a certain probability, the terminal nodes
of the incrementally learned trees are represented as a prod-
uct of logistic functions. In (Dvořák and Savickỳ 2007) tree
splits are softened using simulated annealing. Fuzzy deci-
sion trees were presented by (Olaru and Wehenkel 2003).
Perhaps, these models can be used to generate soft rules.
However, in this paper, we use a simpler approach where we
utilize logistic functions only at the terminal nodes of the
trees built by the CART algorithm (Breiman et al. 1984).

Each rule defines a ’simple’ rectangular region in the input
space and therefore, in this paper, g(x; θ) includes additive
terms of order two without any interaction terms in the vari-
ables which were used explicitly in the construction of the
rule r(x). The model is built using best subsets regression,
selecting the best subset of terms for which the AIC is min-
imized. The coefficients θ of the function g(x; θ) are to be
estimated from the examples of x and r(x) in the training
data.

A common problem with logistic regression is the prob-
lem of (perfect) separation ((Heinze and Schemper 2002))
which occurs when the response variable can be (perfectly)
separated by one or a linear combination of a few explana-
tory variables. When this is the case, the likelihood func-
tion becomes monotone and non finite estimates of coeffi-
cients are produced. In order to deal with the problem of
separation, Firth’s bias corrected likelihood approach ((Firth
1993)) has been recommended ((Heinze and Schemper
2002)). The bias corrected likelihood approach to logistic re-
gression are guaranteed to produce finite estimates and stan-
dard errors.

Maximum likelihood estimators of the coefficients θ are
obtained as the solution to the score equation

dlogL(θ)/dθ = U(θ) = 0

where L(θ) is the likelihood function. Firth’s bias corrected
likelihood uses a modified likelihood function

L∗(θ) = L(θ)|I(θ)|1/2

where I(θ) is the Jeffreys ((Jeffreys 1946)) invariant prior,
the Fisher information matrix which is given by

I(θ) = −E[
∂2lnL(θ)

∂θ∂θ′
].

Using the modified likelihood function the score func-
tion for the logistic model is given by U∗(θ) =
(U∗(θ1), U∗(θ2), . . . , U∗(θk))′ where

U∗(θj) =
n∑
i=1

{r(xi)−g(xi; θ)+hi(
1

2
−g(xi; θ))}

∂g(xi; θ)

∂θj

for j = 1, 2, . . . , k and k is the number of coefficients in
g(x; θ). Here, hi for i = 1, 2, . . . , n are the ith diagonal
elements of the hat matrix

H = W 1/2X(X ′WX)−1X ′W 1/2

and W = diag{g(xi; θ)(1 − g(xi; θ)).} Bias corrected es-
timates can be obtained in an iterative fashion using

θt+1 = θt + I∗−1(θt)U∗(θt)

where

I∗(θ) = −E[
∂2lnL∗(θ)

∂θ∂θ′
].

Our programs utilize the ’brglm’ package in R ((Kosmidis
2008)) that fits binomial-response generalized linear models
using the bias-reduction.

In Figure 2, we present simple hard rules and the corre-
sponding soft rules estimated from the training data. It is
clear that the soft rules provide a smooth approximation to
the hard rules.
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Figure 2: ’Simple’ hard rules and the corresponding soft
rules estimated from the training data. It is clear that the soft
rules provide a smooth approximation to the hard rules. The
approximation gets better as the number of examples in the
training data set increases.

LetR = (rl(xi))
n
i=1

L

l=1 be the n×Lmatrix of L rules for
the n observations in the training sample. Letting sl(x; θ̂l)
be the soft rule corresponding to the lth hard rule, define
S = (sl(xi))

n
i=1

L

l=1 as the n × L matrix of L soft rules for
the n observations.

The weights for the soft rules can be estimated from the
LASSO:

ŵ = argmin
w

(y−w01n−Sw)′(y−w01n−Sw)+λ
L∑
l=1

|wl|.

(5)
This leads to the final soft rule ensemble prediction model

F (x) = ŵ0 +
∑L
l=1 ŵlsl(x).

The only additional step for building our soft rules ensem-
bles is the hard to soft rule conversion step. This makes our
algorithm slower than the the rulefit algorithm ((Friedman
and Popescu 2003)), at times, 10 times slower. However, we
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have implemented our soft rules algorithm in the R language
and successfully applied it to several high dimensional prob-
lems. We expect that a faster implementation is possible if
the code is migrated to a faster programming language. In
addition parts or the whole of the soft rule generation pro-
cess can be accomplished by parallel processing.

For completeness and easy reference, we summarize the
steps for soft rule ensemble generation and fitting:

1. Use ISLE algorithm to generate M trees: T(X).
2. Extract hard rules from T(X): R(X).
3. Convert hard rules to soft rules: S(X).
4. Obtain soft rule weights by LASSO.

We should note that no additional meta-parameters are in-
troduced to produce soft rules from hard rules. We set these
meta-parameters along the lines of the recommendations in
previous work ((Friedman and Popescu 2003), (Friedman
and Popescu 2008) and (Seni and Elder 2010)).

There are several fast algorithms that can accomplish the
LASSO post processing for large datasets (large n or p): Re-
cent pathwise coordinate descent ((Friedman et al. 2007))
(implemented in ’glmnet’ with R ((Friedman, Hastie, and
Tibshirani 2009))) algorithm provide the entire path of solu-
tions. We have used the ’glmnet’ in our illustrations in the
next section, the value of the sparsity parameter was set by
minimizing the mean cross-validated error. Due to the well
known selection property of the lasso penalty, only 10%-
20% of the rules are retained in the final model after the
post-processing step.

Illustrations
In this section we are going to compare the soft rule and
hard rule ensembles. The prediction accuracy is taken as the
cross validated correlation or the mean square error (MSE)
calculated for the predicted and true target variable values
for regression examples and cross validated area under the
ROC curve for classification examples.

Unless otherwise stated, the number of trees to be gener-
ated by the ISLE algorithm was set to M = 400, each tree
used 30% of of the individuals and 10% of the input vari-
ables randomly selected from the training set. Larger trees
allow more complex rules to be produced and therefore con-
trolling tree depth controls the maximum rule complexity.
A choice of this parameter can be based on prior knowl-
edge or based on experiments with different values. We have
tried differing three depths for obtaining models with vary-
ing complexity. For most of the examples accuracies were
reported for each tree depth. In example 0.2, models with
differing rule depths were trained and only the models with
best cross validated performances were reported. In addi-
tion, the memory parameter ν of the ISLE ensemble gener-
ation algorithm is set to zero in all the following examples.
Example 0.1. (Boston Housing Data, Regression) In order
to compare the performance of prediction models based on
hard and soft rules we use the famous benchmark ’Boston
Housing’ data set ((Harrison, Rubinfeld, and others 1978)).
This data set includes n=506 observations and p=14 vari-
ables. The response variable is the median house value from

the rest of the 13 variables in the data set. 10 fold cross val-
idated accuracies are displayed in Table 1.

Correlation RMSE
Depth Hard Soft Hard Soft

2 0.91 0.92 3.78 3.60
3 0.93 0.93 3.40 3.42
4 0.94 0.93 3.18 3.29
5 0.93 0.94 3.33 3.18

Table 1: The 10-fold cross validated prediction accuracies as
measured by the correlation of the true and predicted values
are given for the ’Boston housing data’.

For problems with only categorical or discrete input vari-
ables, we do not expect to see the same improvements. The
following example only uses discrete SNP markers (biallelic
markers values coded as -1,0 and 1) as input variables and
hard rules and soft rules give approximately the same accu-
racies.
Example 0.2. (Plant Breeding Data, Regression) In our sec-
ond example we analyze plant breeding data and compare
the predictive performance of hard rules with soft rules. In
both cases, the objective is to predict a quantitative trait
(observed performance) using molecular markers data pro-
viding information about the genotypes of the plants. Pre-
dictions of phenotypes using numerous molecular markers
at the same time is called genomic selection and has re-
ceived lately a lot of attention in the plant and animal breed-
ing communities. Rule ensembles used with genetic marker
data implicitly captures epistasis (interaction between mark-
ers) in a highly dimensional context while retaining inter-
pretability of the model.

The first data set (Bay x Sha) contains measurements
on flowering time under short day length (FLOSD), dry
matter under non limiting (DM10) or limiting conditions
(DM3) from 422 recombinant inbred lines from a biparental
population of Arabidopsis thaliana plants from 2 ecotypes,
Bay-0 (Bay) and Shadara (Sha) genotyped with 69 SSRs.
Data available from the Study of the Natural Variation of
A. thaliana website ((Heslot et al. 2012), (Lorenzana and
Bernardo 2009)).

The second data set (Wheat CIMMYT) is composed of
599 spring wheat inbred lines evaluated for yield in 4 differ-
ent target environments (YLD1-YLD4). 1279 DArT markers
were available for the 599 lines in the study ((Crossa et al.
2010)). The results are displayed in Table 2.

When the task is classification, no significant improve-
ment is achieved by preferring soft rules over hard rules. To
compare soft and hard rule ensembles in the context of clas-
sification, we use the Arcene and Madelon datasets down-
loaded from UCI Machine Learning Repository.
Example 0.3. (Arcene data, Classification) The task in
arcene data is to classify patterns as normal or cancer based
on mass-spectrometric data. There were 7000 initial input
variables, 3000 probe input variables were added to in-
crease the difficulty of the problem. There were 200 indi-
viduals in the data set. Areas under the ROC curves for soft
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Table 2: Accuracies of hard and soft rule ensembles are
compared by the cross validated Pearson’s correlation co-
efficients between the estimated and true values. For each
data set we have trained models based on rules of depth 1 to
3, the results from the model with best cross validated accu-
racies is reported. The results show no significant difference
between hard or soft rules.

CIMMYT Bay-Sha
Accuracy RMSE Accuracy RMSE

Depth Hard Soft Hard Soft Depth Hard Soft Hard Soft
2 YLD1 0.50 0.51 0.87 0.86 2 FLOSD 0.86 0.86 4.66 4.64

YLD2 0.41 0.41 0.92 0.92 DM10 0.67 0.67 2.17 2.18
YLD3 0.36 0.36 0.96 0.96 DM3 0.37 0.37 1.18 1.18
YLD4 0.42 0.42 0.92 0.92 3 FLOSD 0.86 0.85 4.75 4.77

3 YLD1 0.52 0.52 0.86 0.86 DM10 0.62 0.62 2.30 2.30
YLD2 0.42 0.43 0.92 0.91 DM3 0.33 0.33 1.22 1.22
YLD3 0.40 0.40 0.93 0.93
YLD4 0.40 0.41 0.94 0.93

and hard rule ensemble models based on rules with depths
2 to 4 are compared in Table 3 (left).

Example 0.4. (Madelon data, Classification) Madelon is
contains data points grouped in 32 clusters placed on the
vertices of a five dimensional hypercube and randomly la-
beled +1 or -1. There were 500 continuous input variables,
480 of these were probes. There were 2600 labeled exam-
ples. Areas under the ROC curves for rules with depths 2 to
4 are compared in Table 3 (right).

Arcene Madelon
Depth Hard Soft Depth Hard Soft

2 0.82 0.82 2 0.83 0.87
3 0.87 0.82 3 0.86 0.88
4 0.79 0.80 4 0.90 0.92

Table 3: 10- fold cross validated areas under the ROC curves
for soft and hard rule ensemble models based on rules with
depths 2 to 4 for the Arsene (left) and Madelon (right) data
sets. We do not observe any significant difference between
soft and hard rules.

When both response and input variables are continuous,
soft rules perform better than hard rules. In the last two ex-
amples, we compare our models via mean squared errors.
Example 0.5. (Simulated Data, Regression) This regres-
sion problem is described in Friedman ((Friedman 1991))
and Breiman ((Breiman 1996)). Elements of the input vector
x = (x1, x2, . . . , x10) are generated from uniform(0, 1)
distribution independently, only 5 out of these 10 are actu-
ally used to calculate the target variable y as

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e

where e ∼ N(0, 1). 1000 independent realizations of (x, y)
constitute the training data. Mean squared errors for models
are calculated on a test sample of the same size. The box-
plots in left Figure 3 summarize the prediction accuracies
for soft and hard rules over 30 replications of the experi-
ment.

Example 0.6. (Simulated Data, Regression) Another prob-
lem described in Friedman ((Friedman 1991)) and Breiman
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Figure 3: The boxplots summarize the prediction accuracies
for soft and hard rules over 30 replications of the experi-
ments described in Examples 3.5 and 3.6. In terms of mean
squared errors the soft rule ensembles perform better than
the corresponding hard rule ensembles for all values of tree
depth. The hard rule ensemble models are denoted by ’str’
and soft rule ensemble models are denoted by ’soft’. The
numbers next to these acronyms is the depth of the corre-
sponding hard rules.

((Breiman 1996)). Inputs are 4 independent variables uni-
formly distributed over the ranges 0 ≤ x1 ≤ 100, 40π ≤
x2 ≤ 560π, 0 ≤ x3 ≤ 1, 1 ≤ x4 ≤ 11. The outputs
are created according to the formula y = (x21 + (x2x3 −
(1/(x2x4))2)0.5 + e where e is N(0, sd = 125). 1000 inde-
pendent realizations of (x, y) constitute the training data.
Mean squared errors for models are calculated on a test
sample of the same size. The boxplots in right Figure 3 sum-
marize the prediction accuracies for soft and hard rules.

Discussions
As our examples in the previous section suggest, the best
case for soft rules is when both input and output variables
are continuous. For data sets with mixed input variables it
might be better to use two sets of rules (hard rules for cate-
gorical variables and soft rules for numerical variables) and
combine in a supervised learning model with group lasso
model ((Yuan and Lin 2005)) or perhaps these rules can be
combined in a multiple kernel model ((Bach, Lanckriet, and
Jordan 2004), (Gönen and Alpaydın 2011)).

The hard rules or the soft rules can be used as input vari-
ables in any supervised or unsupervised learning problem.
In (Akdemir 2011), several promising hard rule ensemble
methods were proposed for supervised, semi-supervised and
unsupervised learning. For instance, the model weights can
be obtained using partial least squares regression. A similar-
ity matrix obtained from hard rules can be used as a learned
kernel matrix in Gaussian process regression. It is straight-
forward to use these and similar methods with soft rules.

Several model interpretation tools have been developed
to use with rule ensembles and the ISLE models. These in-
clude local and global rule, variable and interaction impor-
tance measures and partial dependence functions ((Friedman
and Popescu 2008)). We can use the same tools to interpret
the soft rule ensemble model. For example, the absolute val-
ues of the standardized coefficients can be used to evaluate
the importance of rules. A measure of importance for each
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input variable can be obtained as the sum the importances of
rules that involve that variable. The interaction importance
measures and the partial dependence functions described in
(Friedman and Popescu 2008) are general measures and they
also naturally apply to our soft rule ensembles.

The ensemble approaches are also a remedy for memory
problems faced in analyzing big data sets. By adjusting the
sampling scheme in the ISLE algorithm we were able to an-
alyze large data sets which have thousands of variables and
tens of thousands of individuals by only loading fractions of
the data into the memory at a time.
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