How Should Intelligence Be Abstracted in AI Research ...
AAAI Technical Report FS-13-02

A Compiler for CPPNs:
Transforming Phenotypic Descriptions Into Genotypic Representations

Sebastian Risi
Center for Computer Games Research
IT University of Copenhagen
Copenhagen, Denmark 2300
sebr@itu.dk

Abstract

Biologically-inspired Al methods like evolutionary algo-
rithms have shown great promise in creating complex struc-
tures yet these structures still pale in comparison to their natu-
ral counterparts. The recently introduced generative encoding
compositional pattern producing networks (CPPNs), which is
based on the principles of how natural organisms develop,
narrowed this gap by showing that it is possible to artifi-
cially evolve life-like patterns with regularities at a high-level
of abstraction. As these generative and developmental sys-
tems (GDS) are asked to evolve increasingly complex struc-
tures, the question of how to start evolution from a promis-
ing part of the search space becomes more and more impor-
tant. To address this challenge, we introduce the concept of
a CPPN-Compiler, which allows the user to directly com-
pile a high-level description of the desired starting structure
into the CPPN itself. In this paper, as proof of concept, the
CPPN-Compiler is able to generate CPPN-encoded represen-
tations from vector-based images that can serve as the start-
ing point for further evolution. Importantly, the offspring of
these compiled CPPNs show meaningful variations because
they directly embody important domain-specific regularities
like symmetry or repetition. Thus the results presented in this
paper open up a new research direction in GDS, in which spe-
cialized CPPN-Compilers for different domains could help to
overcome the black box of evolutionary optimization.

Introduction

An interesting question in evolutionary algorithms (EAs) is
what prevents us from evolving artifacts that rival the func-
tional and structural complexity seen in natural organisms.
One well-known problem facing EAs is the problem of de-
ception, which means that a mutation increases fitness but
actually leads further away from the final objective. Addi-
tionally, the objective functions in evolutionary computation
do not necessarily reward the intermediate stepping stones
that lead to the objective and the more ambitious the objec-
tive, the harder it is to identify a priori these stepping stones
(Lehman and Stanley 2011; Woolley and Stanley 2011).
While recent methods like novelty search (Lehman and
Stanley 2011) have shown great promise in avoiding decep-
tion in a variety of different domains, they alone might fail
if the tasks become prohibitively complex or the space of

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

95

(c) offspring

(a) Vector Graphic

5 3
4 2 CPPN-
Q .
3 o Representation
s Q
o 2
£ 8
® o
25 Annotated

Regularities

(e.g. Symmetricarms
and legs)

Figure 1: CPPN-Compiler. The compiler takes a high-level
description as input (e.g. a vector image annotated with im-
portant regularities like symmetry) and compiles it into a
CPPN (a). After compilation, the spatial patterns produced
by the resulting CPPN show a clear resemblance to the orig-
inal graphic (b). Because the compiled CPPN now directly
embodies the annotated domain regularities (e.g. bilateral
symmetric arms), the produced offspring show meaningful
variations that nevertheless share common features (c).

possible behaviors is to vast (Lehman and Stanley 2010).
Therefore this paper explores a potentially complemen-
tary approach towards reaching more ambitious objectives,
in which the experimenter can impart important domain
knowledge directly into the initial genotypic representation.
Seeding evolution with a bias towards certain types of struc-
tures means escaping the black box of evolutionary opti-
mization to provide a kind of general domain knowledge.

While previous studies showed the promise of this ap-
proach, they require the manual construction of an appro-
priate evolutionary seed (Verbancsics and Stanley 2011;
D’ Ambrosio et al. 2010; Risi and Stanley 2012) or an exter-
nal scaffold that evolution can elaborate on (Hoover, Szerlip,
and Stanley 2011; Clune, Chen, and Lipson 2013).

In contrast, the approach in this paper takes first steps
towards automatically creating an appropriate seed solely
from a high-level domain-dependent description. Once such
a seed is compiled, it does not depend on external inputs
and directly embodies important domain-specific regulari-
ties. The promise of the new approach is that it could ulti-
mately allow the creation of complex structures that start to
resemble those in nature.

The possibility of evolving life-like patterns with reg-
ularities at a high-level of abstraction is created by the
indirect encoding called compositional pattern producing
networks (CPPNs; (Stanley 2007)). CPPNs have shown
promise in a variety of different domains including the evo-
lution of two-dimensional images (Secretan et al. 2011),
three-dimensional forms (Clune and Lipson 2011), musical
compositions (Hoover, Szerlip, and Stanley 2011; Hoover et
al. 2012), robot morphologies (Risi, Cellucci, and Lipson
2013; Cheney et al. 2013; Auerbach and Bongard 2011),
and the connectivity patterns of artificial brains (Stanley,
D’ Ambrosio, and Gauci 2009; Clune et al. 2009; Gauci and
Stanley 2008; 2010). The idea behind CPPNs, which are an
abstraction of natural development, is that patterns in nature
can be described at a high level as compositions of functions,
wherein each function in the composition represents a stage
in development. Thus the indirect CPPN encoding can com-
pactly encode patterns with regularities such as symmetry,
repetition, and repetition with variation (Secretan et al. 2011;
Stanley 2007).

In this paper, the introduced CPPN-Compiler allows the
construction of the internal CPPN representation based on
a high-level phenotypic description of the desired starting
structure, instead of starting from random CPPN genotypes.
While the system will be extended to more complicated do-
mains in the future, the CPPN-Compiler concept is first ex-
plored through the interactive evolution of two-dimensional
images. In this context, allowing evolution to start from a
particular image (e.g. a butterfly, a car, etc.) and then further
evolving it is an important research goal (Clune, Chen, and
Lipson 2013).

Figure 1 shows an example of how a vector-based image
is converted into a CPPN-representation that is then evolved
further. Different annotations allow the compiler to create a
representation of the target image that captures the underly-
ing domain regularities (e.g. bilateral symmetry), and reuses
information to produce the final phenotype (e.g. both arms
are encoded by the same genes).

The initial proof-of-concept results presented in this pa-
per show that the patterns encoded by the compiled CPPNs
do in fact resemble the patterns of the input images. Also
importantly, because the internal CPPN representations are
generated taking the domain regularities into account, the
compiled representations display meaningful mutations (e.g.
symmetric body parts show a coordinated change in size)
and the ability to gracefully elaborate on the same theme.

Ultimately, the CPPN-Compiler is not restricted to creat-
ing images but can be extended to the wide variety of CPPN-
enabled domains (Secretan et al. 2011; Clune and Lipson
2011; Hoover, Szerlip, and Stanley 2011; Hoover et al. 2012;
Risi, Cellucci, and Lipson 2013; Cheney et al. 2013; Auer-
bach and Bongard 2011; Stanley, D’ Ambrosio, and Gauci
2009), thus in effect opening up a new research direction in
generative and developmental systems (GDS).

Background
This section provides an overview of CPPNs, which are ca-
pable of generating complex spatial patterns in Cartesian
space, and then describes the NEAT method that is used to

96

outpxlttem
N

(applied at /

each poil
X _»value y @
R 7 @
X /

X y bias

(a) Mapping (b) Composition
Figure 2: CPPN Encoding. (a) The function f takes argu-
ments x and y, which are coordinates in a two-dimensional
space. When all the coordinates are drawn with an intensity
corresponding to the output of f, the result is a spatial pat-
tern, which can be viewed as a phenotype whose genotype
is f. (b) The CPPN is a graph that determines which func-
tions are connected. The connections are weighted such that
the output of a function is multiplied by the weight of its
outgoing connection.

evolve them. Additionally, a review of prior work on seeding
CPPNs manually is presented.

Compositional Pattern Producing Networks

The idea behind CPPNss is that patterns in nature can be de-
scribed at a high level as compositions of functions, wherein
each function in the composition represents a stage in de-
velopment. CPPNs are similar to artificial neural networks
(ANNS), but they rely on more than one activation function
(each representing a common regularity).

The indirect CPPN encoding can compactly encode pat-
terns with regularities such as symmetry, repetition, and rep-
etition with variation (Secretan et al. 2011; Stanley 2007).
For example, simply by including a Gaussian function,
which is symmetric, the output pattern can become sym-
metric. A periodic function such as sine creates segmen-
tation through repetition. Most importantly, repetition with
variation (e.g. such as the fingers of the human hand) is
easily discovered by combining regular coordinate frames
(e.g. sine and Gaussian) with irregular ones (e.g. the asym-
metric x-axis). For example, a function that takes as in-
put the sum of a symmetric function and an asymmet-
ric function outputs a pattern with imperfect symmetry.
In this way, CPPNs produce regular patterns with subtle
variations. The potential for CPPNs to represent patterns
with motifs reminiscent of patterns in natural organisms has
been demonstrated in several studies (Secretan et al. 2011;
Stanley 2007).

Specifically, CPPNs produce a phenotype that is a func-
tion of n dimensions, where n is the number of dimensions
in physical space. For each coordinate in that space, its level
of expression is an output of the function that encodes the
phenotype. Figure 2 shows how a two-dimensional pheno-
type can be generated by a function of two parameters that
is represented by a network of composed functions.

Because CPPNs are a superset of traditional ANNs, which
can approximate any function (Cybenko 1989), CPPNs are

also universal function approximators. Thus a CPPN can en-
code any pattern within its n-dimensional space.

In this paper, the initial CPPNs (which encode images)
are compiled from a high-level phenotypic description, and
then further evolved by NEAT, which is explained next.

Neuroevolution of Augmenting Topologies (NEAT)

NEAT typically starts with a population of simple neural net-
works and then adds complexity over generations by adding
new nodes and connections through mutations. By evolv-
ing networks in this way, the topology of the network does
not need to be known a priori; NEAT searches through in-
creasingly complex networks to find a suitable level of com-
plexity. For a complete overview of NEAT see Stanley and
Miikkulainen (2002).

NEAT is chosen in this paper because it is proven effective
for evolving ANNs and CPPNs (CPPN-NEAT) in a diversity
of domains (Secretan et al. 2011; Hoover et al. 2012; Stanley
and Miikkulainen 2002; Risi et al. 2012).

Manual CPPN Seeding and Functional Scaffolding

Because CPPN-NEAT evolves patterns as functions of ge-
ometry, general domain knowledge can be inserted into the
evolutionary search algorithm. Seeding the initial CPPNs
with a bias towards certain types of structures has shown
promise in a variety of different domains, which are re-
viewed next.

One of the first examples of starting evolution with a man-
ually constructed seed CPPN can be found in D’ Ambrosio
et al. (2010), in which the authors evolved multiagent teams
encoded by CPPNs. In this setup CPPNs included some ad-
ditional structure to start evolution with knowledge of mir-
rored team symmetry (i.e. the CPPN knows which side of
the team is which and can opt to reflect one side across the
midline), which helped to increase the overall performance
of the teams.

In another promising demonstration, Verbancsics and
Stanley (2011) showed that important general topographic
principles for organizing connectivity can be seeded into the
initial evolutionary population. Seeding CPPNs with a bias
towards local connectivity, in which locality is expressed
through a Gaussian function, allowed modular structures to
arise naturally.

Risi and Stanley (2012) then demonstrated that it is not
only possible to seed CPPNs with a bias towards local
connectivity, but also to start the evolutionary search with
a bias towards certain neural topographies (e.g. a locally-
connected two-hidden-layer substrate). This advance was
enabled by a method called ES-HyperNEAT (Risi and Stan-
ley 2012), in which the CPPN can encode the connectivity,
placement and density of the neurons in an artificial evolving
neural network.

While these approaches highlight the intriguing potential
of biasing the search towards certain types of structures, they
required the manual and time-consuming construction of an
appropriate seed. The approach presented in this paper tries
to automate this process by directly constructing an appro-
priate start seed from a high-level description.

97

Instead of seeding the CPPN with a particular hidden node
structure, it is also possible to instead input a scaffold into
the CPPN, that evolution can then elaborate on. This related
approach was first introduced by Hoover, Szerlip, and Stan-
ley (2011), who showed that CPPNs can produce musical
accompaniments to existing songs by exploiting regularities
in the musical scaffold. Recently Clune, Chen, and Lipson
(2013) adopted a similar approach that allows the further
evolution of a given three-dimensional shape, by extending
the CPPN with an additional input that describes the dis-
tance to the surface of the object. The image scaffold in
Clune’s work enabled morphing the input objects in inter-
esting ways even though the initial CPPNs are flat (i.e. they
do not contain any hidden nodes) and do not directly em-
body regularities in their genotypes. In other words, the phe-
notypic regularities are initially a result of the regularities in
the input scaffold and not of the internal CPPN structure.

In the future, it will be interesting to compare or even
combine the scaffolding approach with the method intro-
duced in this paper; they both try to solve similar problems,
but in significantly different ways.

Approach: CPPN-Compiler

CPPN-NEAT typically starts with a randomly initialized
population, in which the CPPNs have no hidden nodes and
their inputs are directly connected with randomized weights
to the outputs of the network. The NEAT algorithm then
adds complexity over generations by adding new nodes and
connections through mutations.

Instead of starting with random CPPNss, the presented ap-
proach allows the user to compile a high-level description of
the desired starting structure into the CPPN itself (Figure 1).
This advance is enabled by the CPPN’s ability to efficiently
encode regularities and should allow evolution to start from
a promising part of the search space.

In this paper, the CPPN-Compiler concept is first explored
through the interactive evolution of two-dimensional im-
ages. As highlighted by Stanley (2007), interactive evolu-
tion allows an easier first exploration of implicit encoding
capabilities (e.g. elaboration and preservation of regularity)
than a target-based evolution approach. In this context, al-
lowing the user to start from a particular image and then
further evolving it is an important research goal.

While Clune, Chen, and Lipson (2013) showed that phe-
notypic regularity can be input into the CPPN via an ex-
ternal scaffold, currently there exists no automated way
of compiling images together with their regularities (e.g.
symmetric wings on a butterfly) into the CPPN itself. The
promise of such an approach is that the compiled CPPNs
should share important properties with CPPN representa-
tions evolved from scratch, such as complexification in a
way similar to natural organisms (Stanley 2007).

The basic idea of the CPPN-Compiler is that complex
patterns with regularities can be represented by a few basic
building blocks (Figure 1). Ellipses were chosen as the basic
building block for the image to CPPN-Compiler in this paper
because they lend themselves naturally to a CPPN represen-
tation and can be combined to resemble a variety of different

'd 2\ 4
CPPN Output Source Image

CPPN Output

Gaussian G1

Identity
Identity

N

-
Source Image CPPN Output

Source Image

Tanh

-

Gaussian G1

Identity
Identity

~
~< =
o
g
%]

(a) Elliptical Shape

(b) Bilateral Symmetry

(c) Repetition

Figure 3: Compiler Primitives. The basic compiler building block is the ellipse, which can be represented by two overlapping
Gaussian nodes (a). The compiler currently supports bilateral symmetry (shown in red), through the inclusion of an absolute
function (b), and repetition (shown in yellow) encoded by a sine function (c). Positive CPPN output values are shown in white,

while negative values are shown in red.

patterns. Each ellipse in the original graphic is compiled into
the internal CPPN representation based on one of three pos-
sible annotations: single entity, bilateral symmetric, or part
of a repeating pattern. The idea behind these annotations is
that they allow the compiler to create a representation of the
target image that captures the underlying domain regulari-
ties and reuses information to produce the final phenotype.

For example, in Figure 1 the two arms of the simpli-
fied body plan are annotated as being symmetric, which
means the algorithm should not encode them separately in
the CPPN; instead the compiler will build a CPPN that
reuses information through inclusion of a symmetric func-
tion (explained below). Importantly, these annotations also
allow coordinated and meaningful mutations on the gener-
ated structures (e.g. one mutation can increase the length
of both arms simultaneously), therefore enabling an effec-
tive and intuitive exploration of the search space. The details
of the CPPN-Compiler algorithm' are explained below and
also depicted in Figures 3 and 4.

Compiling Elliptical Shapes: Each ellipse in the source
image is defined by its position (lz, ly) scaled into the range
[—1,1] and rotation r between 0° and 180° degrees. The
main motivation for choosing ellipses as the basic building
block for representing images is the insight that they can
easily be represented by the overlap of two Gaussian func-
tions G; and G5 (Figure 3a) that receive input from z and
vy, respectively. The weights w; and ws from the bias node
to Gaussian nodes (G; and G5 are set based on the loca-
tion (lz,ly) of the ellipse. They are determined as follows:
wy = —lz and wy = —ly. For example, the further left the
ellipse is located, the more positive the weight w; should
become, moving the center of the CPPN-produced Gaussian
pattern GG1 further to the left as well.

' A Python implementation of the CPPN-Compiler will soon be
made available at http://www.cs.ucf.edu/ risi/

98

The width and height of each ellipse is encoded through
the strength of the connections from x and y to the Gaus-
sian nodes GG; and G, respectively. Ellipses with a specific
rotation r can also be compiled into the CPPN. If » # 0.0,
additional connections are added from x to G2 and from y to
(1 (denoted as dotted lines in Figure 3a). The previously de-
termined weight of the connection from x to Gy is scaled by

1183% and the weight of the connection from y to G scaled

by 1555+ The connections to G5 are scaled accordingly but

147)
180.07"

Finally, the output of the two Gaussian nodes and a neg-
ative connection from the bias feed into a strictly positive
function f thatis 0.0 for f(x) < 0.0 and tanh(x) otherwise.
That way resulting negative values are filtered out, allowing
the CPPN to produce a smooth positive pattern (shown in
white) for each ellipse that contrasts with the black pattern
surrounding it.

Bilateral Symmetry: An important regularity in natural
systems from faces to animals is symmetry. A bilateral sym-
metric ellipse is encoded inside the CPPN by feeding the
absolute value of z into the Gaussian node (G; instead of
x directly (Figure 3b). Therefore, the same information is
reused to encode the annotated ellipse and its bilateral sym-
metric counterpart.

Repeating Pattern: Another essential regularity seen in
biological systems is repetition. Repetition can naturally be
compiled into a CPPN by first applying a periodic sine func-
tion to the CPPN inputs before feeding them to the Gaussian
nodes. This function than in turn produces a repetition of
parts without the need to duplicate the information for each
part separately in the CPPN. The frequency of the repetition
is determined by an additional frequency annotation that de-
termines the strength of the connection between the sine and
the Gaussian node. Figure 3¢ shows an example of repetition
along the y-axis that produces a segmentation-like pattern.

in reverse (i.e. from x by 155 and from y by

Linking Multiple Patterns: The CPPN-Compiler also
supports linking multiple independently encoded patterns
into modules, as seen in Figure 4. The motivation behind
linking patterns in this way is to facilitate coordinated muta-
tions among phenotypic parts that are not encoded by the
same genotypic information. For instance in humans, red
haired people are far more likely to also have freckles then
people with black hair because of a phenomena called link-
age disequilibrium (Reich et al. 2001), which means there is
a nonrandom association of the alleles encoding these traits.

Linkage is encoded in the CPPN genotype by grouping
all the linked objects together in one module. Each of these
modules replicates the x, y and bias inputs, which are con-
nected to the original CPPN inputs. By encapsulating ob-
jects in this way, a single mutation on the connections from
the input nodes can affect all encapsulated patterns simulta-
neously. For example, changing the weight of the single con-
nection C (highlighted in Figure 4) would scale the width of
the two encapsulated ellipses.

The next section describes the interactive evolution ex-
periments in this paper, which are designed to explore the
capabilities of the presented CPPN-Compiler.

Experiment

The experiments in this paper are performed in a modified
version of SharpNEAT-based Genetic Art (SNGA) platform
by Holger Ferstl, which makes it possible to explore how
evolution establishes and varies regularities. In this setup the
experimenter picks the parent(s) of the next generation by
clicking on them, which means that the selection process
is entirely guided by the human experimenter. Each new
generation is then created by mutating the parent genera-
tion through the NEAT algorithm (Stanley and Miikkulainen
2002; 2004).

The CPPN-Compiler is tested on three very simplified
vector graphic representations of a face, a human body, and
an insect (Figure 5,top). These images are chosen to test the
CPPN-Compiler on increasingly difficult regularities. The
face is designed to be easy to represent with one symmet-
ric eye region (marked in red). The human body is slightly
more complicated with two symmetric regions (legs, arms).
Finally, the insect combines both bilateral symmetry (wings)
and repetition along the y-axis (body segmentation shown
in yellow). Together these images will test the ability of
the CPPN-Compiler to (1) reproduce the input patterns by
a CPPN, and (2) display meaningful mutations and the abil-
ity to gracefully elaborate on the compiled representations.

Experimental Parameters

Because CPPN-NEAT differs from original NEAT only in
its set of activation functions, it uses the same parame-
ters (Stanley and Miikkulainen 2002). Offspring had a 0.90
probability of link weight mutation, 0.45 chance of link
addition, and 0.5 chance of node addition. The available
CPPN activation functions were sigmoid, Gaussian, abso-
lute value, cosine, and sine, all with equal probability of be-
ing added. Parameter settings are based on prior reported
settings for NEAT (Stanley and Miikkulainen 2002; 2004;

99

6 CPPN Output Source Ima ;ew

Encapsulated
Objects

Figure 4: Linking Multiple Patterns. The CPPN-Compiler
supports linking multiple independently encoded patterns
into one module. Each of these modules replicates the x, y
and bias inputs, which are connected to the original CPPN
inputs. By encapsulating objects in this way, a single mu-
tation on the connections from the original input nodes can
affect each object simultaneously (e.g. changing the weight
of the single connection C' can scale the width of the two
encapsulated ellipses).

Stanley 2007). They were found to be robust to moderate
variation through preliminary experimentation.

Results

Figure 5 shows the three test images (face, human body, in-
sect) that are compiled into the CPPN representations and
then further evolved. The patterns produced by the com-
piled CPPNs show a clear resemblance to the original vector
graphics (Figure 5,top).

In general the regularities compiled into the CPPN allow
the user to successfully elaborate on the same theme (Fig-
ure 5,bottom). For example, a variety of insect patterns with
differently shaped wings and body segmentations, human
bodies with different proportions, and variations on face-like
patterns are evolved.

Because NEAT adds complexity by adding new nodes
and connections through mutations, the images can become
more complex over generations. Elaboration through com-
plexification can be observed in the appearance of imper-
fect symmetry (the eyes in Figure 5a) or the appearance of
glasses. Additionally, while some mutations produce minor
changes in the resulting phenotypes (Figure 5b,top), other
mutations produce a greater variety of different body plans
(Figure 5b,bottom) that nevertheless share common features.

The first two descendants in Figure 5a show an example
of linkage. Changing the weight of a single connection that
connects the encapsulated objects to the CPPN input de-
termines the width of the body. In effect, it is like a gene
that affects the body proportions. In this way, the compiled-
CPPNs create meaningful mutations of the source images.

Symmetri

(a) Face

metric

(b) Human Body

metric

peating
tern

(c) Segmented Insect

Figure 5: Compiled CPPN Patterns and Evolved Descendants. The patterns produced by the compiled CPPNs show a clear
resemblance to the input graphics (top). The offspring of the compiled CPPNs exhibit graceful mutations with variations and

elaborations on the same theme.

The main result is that it now seems feasible to jump-start
evolution from an interesting part of the CPPN-encoded pat-
tern space. This advance is important because the common
practice of starting with random genotypes has likely limited
EAs in solving highly ambitious problems in the past.

Discussion and Future Work

The more ambitious the objective, the more likely it is that
search can be deceived by suboptimal solutions (Lehman
and Stanley 2011; Woolley and Stanley 2011). Thus it be-
comes increasingly important to be able to start evolution
from a promising part of the search space, from which the
final objective might be easier to reach. While previous stud-
ies showed the promise of seeding evolution with a bias to-
wards certain types of structures (Verbancsics and Stanley
2011; D’ Ambrosio et al. 2010; Risi and Stanley 2012), they
required the manual construction of an appropriate CPPN
seed, which is a time consuming and potentially error prone
task. This study presented first results towards automating
the construction of an appropriate seed that directly em-
bodies important domain-specific regularities like symmetry
and repetition.

While the domain in this paper is simple, it nevertheless
showed that it is possible to start evolution from an inter-
esting part of the CPPN-encoded pattern space through the
automated compilation of annotated vector graphics. Im-
portantly, the offspring of the compiled genomes still dis-
play the same key properties (e.g. elaborations on the same
theme, complexification, symmetric and asymmetric alter-
ations, etc.) found in CPPN representations evolved from
scratch (Stanley 2007), thus corroborating the choice in
compiler primitives.

Also interestingly, some regularities like bilateral sym-
metry seem to have a high level of preservation, which is
also a well observed phenomena in natural organisms. Even

100

though mutations on the compiled CPPNs sometimes pro-
duce offspring that lose symmetry, most offspring preserve
the bilateral symmetry while still allowing the elaboration
of the limb design itself. Analyzing the exact reason for this
preservation and supporting quantitative results will be an
important future research direction.

Thus now that we know it is possible to automate the
process of seeding evolution with a bias towards certain
structures, a further important task is to apply this ap-
proach to more complicated domains. For example, CPPNs
also enable a method called Hypercube-based NeuroEvo-
lution of Augmenting Topologies (HyperNEAT; (Stanley,
D’Ambrosio, and Gauci 2009; Gauci and Stanley 2008;
2010)) to evolve large-scale ANN controllers. Based on
the insight that a recent HyperNEAT extension called ES-
HyperNEAT (Risi and Stanley 2012) can be seeded with
a bias towards certain neural topologies, the presented ap-
proach opens up the intriguing possibility of a neural CPPN-
Compiler. Such a compiler could automatically construct
CPPNs that produce structural organization we see in nat-
ural brains (e.g. the organization of the cortical columns),
potentially allowing higher cognitive tasks to be solved.

Conclusion

This paper presented a novel approach that can automat-
ically generate CPPN-encoded representations from high-
level phenotypic descriptions. As proof of concept, the
CPPN-Compiler is able to generate genotypic representa-
tions of vector-based images that are then evolved further.
Importantly, the offspring of these compiled CPPNs show
meaningful variations because they directly embody impor-
tant domain-specific regularities like symmetry and repeti-
tion. In the future this approach could be extended to a va-
riety of other domains; especially a neural CPPN-Compiler
that could allow higher cognitive functions to evolve is now

an intriguing possibility. The harder the domain the more
important it will be to enable the user to automatically jump-
start evolution from a promising starting point and to bias the
search towards certain types of structures.

Acknowledgments

This work was supported by the Postdoc-Program of the
German Academic Exchange Service (DAAD).

References

Auerbach, J. E., and Bongard, J. C. 2011. Evolving complete
robots with cppn-neat: the utility of recurrent connections.
In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, 1475-1482. ACM.

Cheney, N.; MacCurdy, R.; Clune, J.; and Lipson, H. 2013.
Unshackling evolution: Evolving soft robots with multiple
materials and a powerful generative encoding. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence.

Clune, J., and Lipson, H. 2011. Evolving 3d objects with a
generative encoding inspired by developmental biology. In
Proceedings of the European Conference on Artificial Life
(Alife-2011), volume 5, 2—12. New York, NY, USA: ACM.

Clune, J.; Beckmann, B. E.; Ofria, C.; and Pennock, R. T.
2009. Evolving coordinated quadruped gaits with the Hy-
perNEAT generative encoding. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC-2009) Spe-
cial Section on Evolutionary Robotics. NJ, USA: IEEE
Press.

Clune, J.; Chen, A.; and Lipson, H. 2013. Upload any
object and evolve it: Injecting complex geometric patterns
into cppns for further evolution. In Proceedings of the IEEE
Congress on Evolutionary Computation.

Cybenko, G. 1989. Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals, and
Systems 2(4):303-314.

D’Ambrosio, D. B.; Lehman, J.; Risi, S.; and Stanley, K. O.
2010. Evolving policy geometry for scalable multiagent
learning. In Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems: vol-
ume 1-Volume 1, 731-738. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Gauci, J., and Stanley, K. O. 2008. A case study on the
critical role of geometric regularity in machine learning. In
Proceedings of the Twenty-Third AAAI Conference on Ar-
tificial Intelligence (AAAI-2008). Menlo Park, CA: AAAI
Press.

Gauci, J., and Stanley, K. O. 2010. Autonomous evolution of
topographic regularities in artificial neural networks. Neural
Comput. 22:1860-1898.

Hoover, A. K.; Szerlip, P. A.; Norton, M. E.; Brindle, T. A.;
Merritt, Z.; and Stanley, K. O. 2012. Generating a com-
plete multipart musical composition from a single mono-
phonic melody with functional scaffolding. In Proceedings

of the International Conference on Computational Creativ-
ity (ICCC-2012). Dublin, Ireland.

101

Hoover, A. K.; Szerlip, P. A.; and Stanley, K. O. 2011. Inter-
actively evolving harmonies through functional scaffolding.
In Proceedings of the Genectic and Evolutionary Computa-
tion Conference (GECCO-2011). New York, NY: The Asso-
ciation for Computing Machinery.

Lehman, J., and Stanley, K. O. 2010. Revising the evo-
lutionary computation abstraction: Minimal criteria novelty

search. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2010). ACM.

Lehman, J., and Stanley, K. O. 2011. Abandoning objec-
tives: Evolution through the search for novelty alone. Evo-
lutionary Computation 19(2):189-223.

Reich, D. E.; Cargill, M.; Bolk, S.; Ireland, J.; Sabeti, P. C.;
Richter, D. J.; Lavery, T.; Kouyoumjian, R.; Farhadian, S. F.;
Ward, R.; et al. 2001. Linkage disequilibrium in the human
genome. Nature 411(6834):199-204.

Risi, S., and Stanley, K. O. 2012. An enhanced hypercube-
based encoding for evolving the placement, density, and
connectivity of neurons. Artificial Life 18(4):331-363.

Risi, S.; Lehman, J.; D’Ambrosio, D. B.; Hall, R.; and Stan-
ley, K. O. 2012. Combining search-based procedural con-
tent generation and social gaming in the petalz video game.
In Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE 2012).

Risi, S.; Cellucci, D.; and Lipson, H. 2013. Ribosomal
robots: Evolved designs inspired by protein folding. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference.

Secretan, J.; Beato, N.; D’Ambrosio, D.; Rodriguez, A.;
Campbell, A.; Folsom-Kovarik, J.; and Stanley, K. 2011.
Picbreeder: A case study in collaborative evolutionary ex-
ploration of design space. Evolutionary Computation
19(3):373-403.

Stanley, K. O., and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
Computation 10:99-127.

Stanley, K. O., and Miikkulainen, R. 2004. Competitive
coevolution through evolutionary complexification. JAIR
21:63-100.

Stanley, K. O.; D’ Ambrosio, D. B.; and Gauci, J. 2009. A
hypercube-based indirect encoding for evolving large-scale
neural networks. Artificial Life 15(2):185-212.

Stanley, K. O. 2007. Compositional pattern producing net-
works: A novel abstraction of development. Genetic Pro-
gramming and Evolvable Machines Special Issue on Devel-
opmental Systems 8(2):131-162.

Verbancsics, P., and Stanley, K. O. 2011. Constraining Con-
nectivity to Encourage Modularity in HyperNEAT. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2011). New York, NY: ACM.

Woolley, B. G., and Stanley, K. O. 2011. On the deleterious
effects of a priori objectives on evolution and representation.
In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, 957-964. ACM.

