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Abstract

An important goal in artificial intelligence and biol-
ogy is to uncover general principles that underlie in-
telligence. While artificial intelligence algorithms need
not relate to biology, they might provide a synthetic
means to investigate biological intelligence in particu-
lar. Importantly, a more complete understanding of such
biological intelligence would profoundly impact soci-
ety. Thus, to explore biological hypotheses some AI re-
searchers take direct inspiration from biology. However,
nature’s implementations of intelligence may present
only one facet of its deeper principles, complicating the
search for general hypotheses. This complication moti-
vates the approach in this paper, called radical reimple-
mentation, whereby biological insight can result from
purposefully unnatural experiments. The main idea is
that biological hypotheses about intelligence can be in-
vestigated by reimplementing their main principles in-
tentionally to explicitly and maximally diverge from
existing natural examples. If such a reimplementation
successfully exhibits properties similar to those seen in
biology it may better isolate the underlying hypothe-
sis than an example implemented more directly in na-
ture’s spirit. Two examples of applying radical reimple-
mentation are reviewed, yielding potential insights into
biological intelligence despite including purposefully
unnatural underlying mechanisms. In this way, radical
reimplementation provides a principled methodology
for intentionally artificial investigations to nonetheless
achieve biological relevance.

Introduction
Artificial intelligence (AI) researchers seek to develop in-
telligent software and machines. Interestingly, such AI re-
search need not relate to the specific biological implemen-
tation of human intelligence. Thus through more broadly
exploring intelligence, AI research may enable discovering
the general laws underlying intelligence and intelligence-
generating processes. However, understanding biological in-
telligence in particular remains important and could pro-
foundly impact humanity’s self-perception. Furthermore,
any general theory of intelligence should explain both bio-
logical and artificial instances. For these reasons, researchers
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both in biology and AI attempt to decipher the design prin-
ciples underlying human intelligence.

Such efforts are motivated by how studying prior prece-
dent can facilitate deeper understanding. As a result, ob-
servation, analysis, and inference from nature are common
techniques in biological fields such as ethology and cogni-
tive psychology (Bekoff and Allen 1997). In contrast, com-
putational approaches often probe questions of biological
intelligence through synthesis. For example, biologically-
inspired AI abstractly emulates biological processes such as
information processing in neural networks or natural evolu-
tion. The idea is that such biologically-inspired algorithms
may help isolate the key elements of biological intelligence
and its origins. That is, through simulations with varied fea-
tures, it may be possible to separate the essential features
of biological processes from those that are only incidental.
However, a danger inherent in any biologically-inspired ap-
proach is that inferring generalities from a limited or biased
distribution can often be deceptive.

For example, a digital multi-gigahertz computer is not
found among the forms crafted by natural evolution, though
such computation may have enhanced biological intelli-
gence. Yet its absence is not surprising: Biological evolu-
tion is not an engineer, but a tinkerer constrained to mak-
ing incremental tweaks to previous designs instead of holis-
tic revisions (Jacob and others 1977). As a result, the at-
tractors for biological design differ from those of more di-
rected design methodologies such as human engineering.
Additionally, historical contingency may lead natural evolu-
tion to converge to particular solutions to particular biologi-
cal problems, leaving other plausible possibilities unrealized
(Blount, Borland, and Lenski 2008). In total, the effect of
these constraints (i.e. being restricted to tinkering and his-
torical contingency) biases natural evolution’s solutions to a
systematically reduced subset of all that are possible.

Importantly, because of this systematic bias in how na-
ture generates solutions to biologically-relevant problems,
features that are only incidental to a deeper phenomenon
may be amplified to become ubiquitous. The result is that in-
ferences based on observing only biological examples may
be misleading (Sterelny 1997). This is particularly true in
fields like biologically-inspired AI where it is often assumed
that particular mechanisms such as biological development
or natural selection are essential rather than only particular
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realizations of a deeper principle.
As an analogy, consider trying to infer the principles of

flight (instead of intelligence) from natural examples. If a
man isolated on an island observed only birds, he might
conclude that flappable wings with feathers are essential to
flight. However, after seeing a bat flying, that same man
could conclude that because bats do not have feathers, feath-
ers must not be essential after all. Yet it might still seem to
him that flappable wings are; in other words, ornithopters
are a powerful attractor when extrapolating flight from natu-
ral examples. If the man on the island, having already seen a
bird and a bat, then observed a helicopter, he could correctly
conclude that the action of flapping – and even wings in the
traditional sense – are unnecessary for flight.

This example illustrates the value of divergent implemen-
tations for isolating and validating basic principles. Through
its vast deviation from prior natural examples, the helicopter
helps to illuminate that the general principles of flight run
deeper than wings and feathers. Importantly, inferring the
deeper principles of aerodynamics, which is easier given the
helicopter, helps to unify understanding of both artificial and
biological instances of flight. At the same time, the heli-
copter validates aerodynamics by demonstrating what engi-
neering with such knowledge enables: agile powered flight
for human transportation. In other words, the value in ab-
stracting a phenomenon a particular way can in part be esti-
mated by the divergent implementations it enables, i.e. what
it makes possible, and the degree to which it elegantly uni-
fies all examples of a phenomenon.

These insights motivate a principled approach to inves-
tigating biological principles such as intelligence through
biologically-inspired AI that can be called radical reimple-
mentation. The main idea in radical reimplementation is to
craft an abstract hypothesis about the crux of a given biolog-
ical principle, and then to test this hypothesis by reimple-
menting the abstraction in a way that is maximally different
from how it exists in nature, yet that still exhibits biologi-
cal similarity in its effects. Just as a helicopter’s significant
divergence from a bird yields valuable perspective on the
nature of flight, a successful radical reimplementation of bi-
ological intelligence may also more clearly expose the core
of the underlying phenomenon than would considering ad-
ditional biological examples.

Thus AI, which seeks to explore the abstract possibili-
ties for intelligence in all forms, can enable exploring rad-
ical reimplementations of biological intelligence. Note that
AI researchers otherwise seeking to be relevant to biol-
ogy face the significant challenge of demonstrating that
their models relate convincingly to biological truth (Sterelny
1997). This challenge is especially relevant to researchers
in biologically-inspired AI where a direct connection to bi-
ology is often expected or necessary. As a result, such re-
searchers often must argue that the abstractions made by
their models are principled, i.e. that the biological details
filtered out through abstraction into a compact algorithm are
non-essential.

Thus one way to view radical reimplementation is as a
principled alternative to the tradition within biologically-
inspired AI of minimizing deviations from nature. While

the differences in models derived from nature must usually
be well-motivated, explicitly maximizing divergence can be
equally as principled as minimizing and justifying it.

In this way, the advantage of the radical reimplementation
approach is that it escapes the underlying restrictiveness of
attempting to mimic nature directly. There is no attempt to
claim that a model is intrinsically biologically plausible or
even that it directly relates to biology; instead the idea is to
provide radically novel examples of intelligence. In short,
the approach challenges researchers to maximize the diver-
gence from the workings of terrestrial biology while instan-
tiating qualitatively similar output. When successful, such
reimplementations indirectly provide evidence for the un-
derlying principles guiding their creation.

In this paper the radical reimplementation approach is il-
lustrated by reviewing two examples of existing research in
the spirit of radical reimplementation that aim to shed light
on the principles underlying biological intelligence and its
origins.

Novelty Search: Questioning Optimization
Natural evolution is a profoundly creative process respon-
sible for crafting the diverse animal intelligences found on
Earth. While much is understood about natural evolution,
one question still debated is the relative importance of evo-
lutionary forces to evolution’s creativity (Orzack and Sober
1994; Pigliucci and Kaplan 2000). In particular, this section
focuses on investigating the importance of optimizing bio-
logical fitness relative to non-adaptive evolutionary forces
like genetic drift or exaptation. The overall idea is that evolu-
tion’s creativity is what facilitated the evolution of complex
intelligence and thus better understanding such creativity
may lead to algorithms able to realize similar intelligence.
Furthermore, this biological question itself may be of inter-
est to AI researchers given the ubiquity of optimization in
AI and machine learning. That is, if optimization is not the
key driver of evolution’s creativity it may also point to po-
tential advantages for driving AI search processes by other
mechanisms.

The motivation for exploring this question through radi-
cal reimplementation is that natural evolution as a whole is
subject to the N = 1 problem: There is only one example
of life evolving through natural evolution that we are aware
of, which complicates inferring statistically-valid principles
about evolution in all its possible instantiations (Sterelny
1997). Thus experimental methods facilitating indirect in-
vestigation, like radical reimplementation, may be impor-
tant tools for isolating the effect and importance of particular
evolutionary forces.

In particular, evolution can be abstracted in different ways
and reimplemented to stress a particular abstraction in a
manner explicitly unlike nature. For example, a coarse way
of abstracting evolution (in a selection-centric interpreta-
tion) is to view evolution as an optimizer, driving relentlessly
towards higher fitness. An alternate non-adaptive abstraction
is instead to conceive natural evolution as a process driven
to continually create novelty without any direct pressure to-
wards adaptation. Of course, both of these abstractions focus
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on only one aspect of natural evolution, but radical reimple-
mentation allows for exploring the impact of those aspects
in isolation.

Interestingly, the abstraction of evolution as an opti-
mizer is prevalent in evolutionary computation (EC; Holland
1975). In most evolutionary algorithms (EAs), biological fit-
ness is abstracted as a fitness function. Individuals from a
population of computational genomes are selected for their
ability to maximize the fitness function and are mated al-
gorithmically to form the next generation. Because the fit-
ness function is central in such an abstraction, these mod-
els can be seen as selection-centric radical reimplementa-
tions of natural evolution. In other words, traditional EAs
abstract natural evolution’s key driving force as optimization
and reimplement such optimization much differently from
natural selection.

However, although they have proven successful in many
cases, such objective-driven EAs have never generated ar-
tifacts exhibiting complexity on the level of biological or-
ganisms. Furthermore, the high-level properties of such EAs
often contrast starkly with those of natural evolution. For ex-
ample, EAs are nearly always convergent, while a character-
istic feature of natural evolution is its open-ended march to-
wards greater diversity. These problems put into question the
central abstraction of evolution as an optimizer (Lehman and
Stanley 2011a), which abstracts to some degree the adapta-
tionist view of natural evolution.

However, such a negative result of radical reimplementa-
tion is not as informative as a positive result. It could be that
a particular radical reimplementation is misguided, and that
another more well-designed implementation of the guiding
abstraction would yield better results. On the other hand, a
positive result for a radical reimplementation more assuredly
provides evidence for its underlying abstraction, because it
is improbable that reimplementing an incorrect abstraction
would yield desirable results. For example, demonstrating in
reality a new form of flight provides evidence for the princi-
ples the engineer applied; and because a new form of flight is
so difficult to achieve, it would be unlikely that relying on a
fundamentally incorrect abstraction would prove productive
merely by chance.

A more positive example of a radical reimplementa-
tion of natural evolution is based on an abstraction other
than optimization: evolution as a generator of novelty. This
optimization-free abstraction is plausible because a signa-
ture of evolution is its tendency to diverge and fill reachable
niches. Such an abstraction can be radically reimplemented
as an algorithm that searches only for novelty. This idea mo-
tivates novelty search, an EA that focuses on novelty instead
of natural selection (Lehman and Stanley 2011a).

Novelty search is a non-adaptive EA driven only to di-
verge, continually finding forms different from what has
been encountered by the search in the past. While in na-
ture the accumulation of novelty is mainly passive, novelty
search explicitly seeks it. In this way, novelty search allows
investigating the properties of a search without the pressure
for organisms to adapt to their environment.

In particular, novelty search replaces the fitness function
that characterizes the optimization-based EA abstraction of

(a) Optimization-based search (b) Novelty search

Figure 1: Contrast between optimization-based search and
novelty search. (a) Traditional EAs guided by a fitness func-
tion tend to converge towards a prescripted objective. (b)
Novelty search is instead driven to diverge from previously
encountered artifacts.

natural evolution with a novelty metric, which is a user-
defined measure of distance between evolved artifacts in a
particular domain. In this way, novelty search can be driven
to find only what is different from what it has previously
encountered in a user-defined space of artifacts. Figure 1 il-
lustrates the main difference between novelty search and a
traditional objective-based EA. While novelty might at first
seem an uninformative gradient of information to follow, of-
ten performing something novel requires exploiting regular-
ities in a domain. For example, for a robot to behave in a
novel way may require learning about how to avoid walls or
navigate a corridor. In this way, a search for novelty can lead
to functional and interesting results.

Because novelty search realizes a search without an over-
arching goal (just as natural evolution is not driven over-
all towards any one specific type of organism), it can act as
a tool for understanding the potential of non-adaptive pro-
cesses. In effect, novelty search allows isolating the poten-
tial of a raw search for novelty entirely separated from any
optimization pressure, which would be a challenging exper-
iment to perform with real organisms.

In this way, novelty search can both test the abstraction
of evolution as a search for novelty and potentially provide
evidence and insight for the importance of fitness optimiza-
tion in evolution. To review such evidence, in EC there have
been a series of experiments that compare novelty search
with a more traditional objective-driven algorithm (Lehman
and Stanley 2011b; 2011a; 2010; Risi, Hughes, and Stanley
2010). The basic idea is to investigate which type of search
can better evolve an artificial neural network that can con-
trol a robot to perform a target task (e.g. navigating a maze
or walking bipedally). That is, an artificial neural network
is connected to a simulated robot, receiving sensory infor-
mation and outputting motor commands; fitness is measured
based on how well the robot controlled by the neural net-
work performs, whereas novelty is measured by how differ-
ent the robot’s behavior is from previous robots. While the
expectation might be that optimizing directly for the target
task would be more successful, in practice novelty search
has often performed better (Lehman and Stanley 2011b;
2011a; 2010; Risi, Hughes, and Stanley 2010; Krcah 2010;
Mouret 2009), more effectively evolving controllers for
maze-navigating robots (Lehman and Stanley 2011b; 2011a;
2010; Mouret 2009), artificial ants (Lehman and Stanley
2010; 2011b), bipedal robots (Lehman and Stanley 2011a),
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and robots that learn from experience (Risi, Hughes, and
Stanley 2010). Thus while bipedal walking may normally
be viewed as an adaptation, the explanation for its discov-
ery by novelty search (Lehman and Stanley 2011a) cannot
be adaptationist because novelty search does not explicitly
favor walking over anything else.

The reason that novelty search nevertheless does well is
that a search driven to optimize fitness may converge on a
fitness peak from which there is no path to the highest-fitness
goal behavior. In other words, the stepping stones to the tar-
get behavior may not increase fitness themselves. While this
phenomenon is known in biology, it is informative to see
how pervasive it is even in a wide range of simple problems,
and how it can be overcome by searching only for novelty.

The generality of results from novelty search (Lehman
and Stanley 2011b; 2011a; 2010; Risi, Hughes, and Stanley
2010; Mouret 2009; Krcah 2010) is provocative and hints
at the importance of non-adaptive forces to the creativity of
natural evolution. It also provides a concrete example of how
non-adaptive forces can produce artifacts with the superfi-
cial appearance of adaptation. While natural selection may
be a powerful honing force, it may not be well-suited for cre-
ativity. In this way novelty search offers a controversial per-
spective on the key mechanism behind evolutionary search
in nature: Perhaps evolution at heart is more of a novelty ac-
cumulator than an optimizer, even if on surface their mecha-
nisms are divergent. Interestingly, such results may also hint
at the potential of AI search algorithms driven by gradients
other than optimization towards an a priori objective.

HyperNEAT: Neural Connectivity as a
Function of Geometry

Development is a prominent feature of biological organ-
isms that enables the large-scale nervous systems underlying
complex biological animal intelligence. Thus an important
biological question is what features of biological develop-
ment enable compactly representing highly complex, func-
tional, and evolvable neural networks? For example, the vast
complexity of the adult human nervous system is organized
over time through biological development and is efficiently
encoded by many fewer genes than there are neurons in the
final structure (Stix 2006). Furthermore, such neural devel-
opment has been much modulated by natural evolution to
enable the wide diversity of complex animal lifestyles on
Earth. Identifying the most general laws underlying neural
development may facilitate human engineering of similarly
complex artificial neural networks (ANNs), which would
have profound implications for society.

However, when contemplating development, the danger is
that superficial aspects of the process might seemingly pro-
vide plausible answers to philosophical questions about the
deepest principles governing it. On its surface, development
generally begins with a single cell that then repeatedly splits
and differentiates into the multicellular adult form, e.g. a hu-
man adult develops over time from its zygote origins, with
the nervous system forming as a coupled subcomponent of
the overall developing organism. Notably, during develop-
ment each cell exploits local signals from its neighbors to

determine its identity and further differentiate (Raff 1996).
From this traditional perspective, the most intuitive infer-
ence is that temporal unfolding and local interaction may be
the key principles that explain the expressive power of devel-
opmental processes. Yet it is interesting to consider whether
development in the traditional biological sense (and neural
development in particular) might be only a particular imple-
mentation detail that masks a deeper principle.

Problematically, investigating this possibility through bio-
logical inference is challenging because life has largely con-
verged to a single overarching means of development and
cellular replication. Thus inferring principles about devel-
opment’s necessity or purpose from biology, like when con-
sidering natural evolution, is also subject to the N = 1 prob-
lem. However, an intriguing possibility is that this problem
can be circumvented by radically reimplementing develop-
ment such that it holistically differs from biological devel-
opment on Earth. While much work has explored alternative
developmental schemes (Stanley and Miikkulainen 2003),
nearly all of these schemes operate fundamentally in the
spirit of natural development, i.e. one cell-like entity gives
rise to many more through an iterative process of splitting
and differentiation, or at least growth (Stanley and Miikku-
lainen 2003). Such approaches are thought-provoking and
can illuminate some features of development, but because
of their similarity to terrestrial biology they may not well
isolate the deeper principles behind neural development.

For this reason it may be more informative to investi-
gate models through the radical reimplementation approach.
Thus, if an interesting hypothesis can be derived for the root
mechanism of development, it can be empirically investi-
gated by reimplementing it in a way purposefully divergent
from biological development.

One such high-level hypothesis for the root mechanism
of development is that it is a means for expressing an or-
ganism as a function of geometry. In other words, the fully-
developed form of an organism can be understood as the
product of an abstract function that maps from points in
three-dimensional space to the type of cell (if any) that
should occupy each point in the space. The main motivation
for this more broad abstraction is that the most important
aspect of development is the patterns that it generates, and
that development over time is only one way among many to
realize such patterns.

While this perspective departs from the more common
(and intuitive) view of development as a temporal unfold-
ing process that relies upon local interaction, there are rea-
sons to pursue such an abstraction. For example, that such a
functional relationship is possible at all is supported by the
universal approximation theorem (Cybenko 1989), which
establishes that a series of enough nested functions can
approximate any pattern. However, though they thus can
clearly approximate phenotypic form, whether nested func-
tions of geometry are a productive way to view developmen-
tal patterns is a separate question. Interestingly, it has been
demonstrated that many heavily conserved genes active in
development work to establish chemical gradients that act
as nested coordinate frames that provide context to a par-
ticular cell about its role within the organism (Raff 1996).
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This observation supports the idea that establishing nested
patterns are an important function of development.

Because nested coordinate frames appear to be an impor-
tant feature of development, an interesting hypothesis is that
the formation of such nested frames may be the main ab-
stract mechanism of development in biology. In other words,
development in nature may be only one way among many
to approximate an abstract mapping from geometry to form
through a series of nested functions, and such mapping may
be what enables the compact representation and significant
evolvability of organisms in nature, including the complex
brains of animals. While this hypothesis might appear ten-
uous in the context of biology alone, it is possible to sup-
port it through empirical investigation, i.e. through a radical
reimplementation of the hypothesized abstraction of devel-
opment as a mapping from geometry to form.

One way to reimplement this abstraction that differs sig-
nificantly from development in nature is explicitly to repre-
sent development as a function of geometry. This approach
is embodied by compositional pattern producing networks
(CPPNs; Stanley 2007). The CPPN is a variant of a tradi-
tional artificial neural network that composes a set of func-
tions together in potentially complex nested ways to produce
a pattern when queried over some input geometry (e.g. a
two-dimensional coordinate frame). In this way, CPPNs can
represent complex patterns from nested coordinate frames in
a form much divergent from biological development.

Relevant to the biological hypothesis explored in this sec-
tion, an approach facilitated by this alternate conception of
development, called HyperNEAT, can been seen as a radi-
cal reimplementation of neural development. In particular,
HyperNEAT evolves complex ANNs that are represented
by CPPNs. The main idea is that given an arbitrarily large
neural network embedded in a geometry (i.e. each node
is given a coordinate in space), a CPPN can represent the
strengths of connections between two nodes as a function
of the nodes’ coordinates. For example, if the nodes were
embedded in a two-dimensional geometry, then a CPPN
with four-dimensional input could encode the connectivity
among the nodes as a function of their positions. In this way,
the final complex ANN is created without local interaction
or iterative temporal unfolding. Thus the motivation is that
the underlying hypothesis about neural development’s root
mechanism is supported if over many domains HyperNEAT
facilitates computational evolution of functional ANNs with
biologically-similar regularities.

Interestingly, HyperNEAT has proved successful over
many domains, including many-joint robot arm control
(Woolley and Stanley 2010), real-world Khepera robot con-
trol (Lehman et al. 2013), quadruped locomotion (Clune
et al. 2011), checkers board evaluation (Gauci and Stanley
2010), and robocup soccer (Verbancsics and Stanley 2010).
Figure 2 shows representative ANNs evolved with Hyper-
NEAT that demonstrate regular connectivities reminiscent of
biology. Thus the conclusion from its diverse applications is
that HyperNEAT appears to be generally well-suited for rep-
resenting complex ANNs with natural regularities.

In this way credence is given to the original hypothe-
sis that inspired the radical reimplementation: Neural devel-

Figure 2: Examples of Evolved HyperNEAT ANNs. A se-
lection of complex artificial neural networks evolved by the
HyperNEAT method (reproduced from Clune et al. 2011).
The ANNs exhibit key biological regularities like symmetry
and modulated repetition.

opment may be more at heart about realizing connectivity
patterns of nested geometrical functions than temporal un-
folding or local interaction. If other mechanisms were also
physically available to evolution, then if it were “run again”
the form of development realized in this second realization
might appear as radical to us as HyperNEAT appear when
compared to biological development. Or perhaps more prac-
tically, engineering approaches can exploit abstractions of
development like CPPNs (similarly to how helicopters ex-
ploit the principles of flight) to enable computationally rep-
resenting and evolving complex ANNs. At a deeper level,
conceiving development as a set of functions of nested co-
ordinate frames may broaden our understanding of the phe-
nomenon and hint at a fundamental mechanism independent
of physics and time.

Discussion
It is often difficult for AI researchers, even those directly in-
spired by biology, to convince biologists of the relevance of
their models. Part of the difficulty is that biology generally
studies intelligence as it is, centered on the concrete. In con-
trast, AI is centered on the abstract and aims to investigate
intelligence in all possible incarnations. As the examples of
radical reimplementation reviewed here illustrate, focusing
on the abstract and divergent possibilities for life can yield
informative and thought-provoking insights. Thus a contri-
bution of this paper is to demonstrate that models that are
deliberately biologically implausible may still have implica-
tions for understanding biological intelligence.

The key point is that it is possible for abstractions, even
those not specifically designed to illustrate biological prin-
ciples, to be biologically relevant. It may be exactly because
novelty search and CPPNs were designed as practical means
to extend the state of the art in EC, and not to speak to bi-
ology, that they are biologically relevant. That is, the prac-
ticality of novelty search and CPPNs in many different con-
texts provides significant evidence for their driving abstrac-
tions, and the divergence of the implementations of these
abstractions from nature isolates the concept being tested.

In this way it is possible to interpret abstractions from
non-biological fields as providing evidence for biological
theories. Traditional EAs or novelty search are not direct
models of natural evolution, nor are CPPNs a direct model
of development. Yet traditional EAs offer an indirect means
of exploring the abstraction of evolution as an optimizer, and
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novelty search provides a means to investigate the power of
searches without pressure to achieve anything in particular.
In a similar way, the success of CPPNs in representing com-
plex phenotypes in a wide range of applications provides
evidence for abstracting development as a product of nested
functions of geometry. Because abstractions are general, it
is not surprising that philosophical insight can bleed from
one field to another. However, the merit of radical reimple-
mentation is that it suggests a principled approach to such
philosophical overlap.

Interestingly, much progress in science results from over-
turning assumptions widely accepted as fact. In this spirit
a new tool to investigate such assumptions about biology
may be important, especially when it is difficult to investi-
gate them in a more direct manner. What principles underly-
ing biological intelligence that are widely assumed essential
are in fact only incidental? What might separating these two
classes teach us about intelligence?

Conclusion
This paper defined the radical reimplementation approach
and illustrated how it can facilitate AI research achieving bi-
ological relevance. By coarsely abstracting a biological phe-
nomenon and reimplementing it in a way maximally diver-
gent from biological example, the validity of the abstraction
can be probed. In this way, abstractions about biology that
are divergently implemented in AI simulations can poten-
tially be relevant to biologists. The strength of this approach
is that there is no need to defend the reimplementation itself
as biologically plausible or accurate; what is being tested is
the abstraction. In conclusion, radical reimplementation is a
new philosophical tool for investigating and isolating funda-
mental biological principles like animal intelligence, thereby
enabling AI researchers to ask provocative questions.
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