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Abstract

Natural and artificial vision systems differ consider-
ably in their underlying hardware and their method of
information processing. Nevertheless, biological con-
cepts are relevant, adaptable and useful in solving
hard computer vision problems. This paper presents a
biologically-inspired active vision framework that emu-
lates early visual processing at the neuronal level to ac-
complish a range of visual tasks. Its emergent behavior
is found to be qualitatively similar to humans in certain
contexts, and performance is shown to be comparable to
computer vision algorithms on a saliency detection task.
A neurocognitive model of visual perception based on
this framework is motivated.

Introduction
The neurophysiology of visual perception paints a very fas-
cinating yet mysterious picture of information processing
in biological systems. The computer vision community has
come to adapt this growing body of knowledge in different
algorithms and architectures, at varying levels of abstraction,
to address challenges in visual processing.

Some high-level generalizations have led to popular the-
ories such as Marr’s 21

2 -D primal sketch (Marr 1982),
scale-space theory (Lindeberg 1994), Treisman’s feature-
integration theory (Treisman and Gelade 1980) and Ull-
man’s visual routines (Ullman 1984). But low-level simu-
lation of biological vision systems remains inherently com-
plex due to the sheer number of parallel processing units
(neurons) involved, and their organic functioning (Arm-
strong and van Hemert 2009).

Researchers trying to implement biomimetic intelligence
in practical systems are thus faced with a trade-off – simplify
the nature of each individual computational unit, resulting in
connectionist models such as artificial neural networks, or
severely limit the number of units while maintaining a faith-
ful replication of biological function, making them unusable
except for applications with very low sensory complexity.

Modeling of higher-level visual functions and the inter-
action between corresponding areas of the brain make up a
much more popular subject of study (Kosslyn et al. 1990;
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Vidyasagar 1999; Itti and Koch 2001; Wilson 2003). Cog-
nitive architectures tend to use abstract models of early vi-
sual processing based on data derived from largely external
observations (Byrne 2001; Lohse 1991). While such models
are sufficient for their intended purpose of estimating human
performance and timings in controlled settings, they do not
reflect the underlying complexity involved in carrying out an
arbitrary visual task.

The framework presented in this research models biolog-
ical function at the neuronal level, and in the hierarchical
organization of layers of neurons consistent with neurophys-
iological evidence. It provides mechanisms for orchestrating
populations of neurons to perform low-level visual tasks,
such as saliency detection and saccade generation, making
it suitable for integration as an early-vision module within a
larger cognitive system. The framework can be extended to
provide higher-order visual functions such as object detec-
tion and tracking; one example of this, a scene reconstruc-
tion task, has been demonstrated.

Foundations
Neuronal architecture Neurons in this framework com-
municate according to neurophysiological facts about mem-
brane potential accumulation, firing and decay, making them
fundamentally different from ones found in a traditional ar-
tificial neural network. Layers of neurons are organized hier-
archically, the base layer being that of photoreceptors, with
a foveal distribution. Other retinal neurons are modeled ac-
cording to their functions, feeding up information to higher-
level neurons with progressively larger receptive fields. Neu-
rons also have inhibitory functions to prevent degeneration
and implement attentive selection.

Active vision and attention For agents with active com-
ponents, or which operate in dynamic environments, tradi-
tional passive approaches to vision can be inadequate (Aloi-
monos, Weiss, and Bandyopadhyay 1988). Visual attention
is one of the mechanisms used by the framework to embody
active vision. In humans and most other animals, attention is
a necessity because of the foveal nature of our eyes. The illu-
sion that we can see the world as a uniform high-acuity pic-
ture is maintained by frequent shifts of attention – saccades
– once every few seconds (or less), and a yet unresolved
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process of transsaccadic integration (Deubel, Schneider, and
Bridgeman 2002).

Frameless processing An important characteristic of
most computer vision systems, due to their inherent discrete
nature, is that they treat dynamic visual input as a sequence
of frames. This is also a result of the fact that most real-time
or video processing algorithms are extensions of static im-
age processing versions. As a result, computationally inten-
sive procedures often suffer from synchronization problems
when run at real-time. On the other hand, biological neu-
rons function in a true parallel fashion, without any notion
of globally synchronized frames. We take a cue from nature,
and computer graphics (Watson and Luebke 2005), by em-
ploying an adaptive frameless sampling technique to update
neurons pseudo-parallely using a priority measure defined
by their own level of activity. This also lets the system per-
formance degrade gracefully when less resources are avail-
able.

Perceptual grounding Cognitive models with symbolic
reasoning have long suffered the problem of keeping sym-
bols associated with appropriate percepts (Harnad 1990). A
number of ways have been suggested to deal with this, in-
cluding visual indexes (Pylyshyn 2001), a dual coding the-
ory that integrates metric and symbolic information (Paivio
1990), and a theory of activity involving deictic representa-
tions (Agre and Chapman 1987). This framework provides
an implicit perceptual grounding solution by exposing top-
level object neurons that abstract out visual indexing and
provide a consistent interface to higher-level architectures.

Active vision framework
The design of our artificial vision framework begins with
a simplified yet biologically plausible model of a neuron.
Synaptic connections are modeled to the extent that they af-
fect the functioning of neurons. A hierarchically connected
structure is generated, starting with a base layer of retinal
receptors, to model the early visual processing pathway. Fi-
nally, top-level neurons are designed to provide a functional
interface to application-specific cognitive modules.

Neuron model
Within our framework we define a neuron to be a computa-
tional unit with a small constant-sized storage, including a
floating-point variable to store its membrane potential. Each
neuron has one axon, and multiple dendrites. A dendrite
can only connect with one axon and acts as an input line,
whereas an axon can connect with multiple dendrites from
different neurons and acts as the output line. Each synapse
is modeled as a passive unit that serves as a connection be-
tween an axon (from the presynaptic neuron) and a dendrite
(from the postsynaptic neuron). A synapse also has a sin-
gle internal value quantifying the strength or weight of the
connection.

We characterize the information flow across synapses as
a simplified mechanism. When the membrane potential of a
neuron crosses a certain threshold, it self-depolarizes rapidly

and fires an action potential. This action potential travels
through its axon to all synapses. For each activated synapse,
the postsynaptic neuron’s membrane potential is increased
by an amount determined by the strength of the synapse.
This transmitted potential is known as excitatory postsynap-
tic potential (EPSP).

A photoreceptor is a specialized neuron with no dendrites.
It is excited by the intensity of light falling it, here obtained
by sampling the value of image pixels in its receptive field.
A trace of the membrane potentials of two modeled neurons
connected by a single synapse is presented in Figure 1 to il-
lustrate the information flow. The presynaptic neuron (top)
is a photoreceptor that is exposed to a constant stimulus be-
tween t = 2 and 12 secs. Each action potential it generates
(denoted by a spike in the trace) increases the membrane po-
tential of the postsynaptic neuron by a small amount, which
in turn fires when it crosses a threshold. Note that both neu-
rons try to return back to an equilibrium value known as the
resting potential.

Dashed horizontal lines in the plot mark, from top to bot-
tom, (i) typical action potential peak, (ii) action potential
threshold, (iii) resting potential, and (iv) typical action po-
tential trough.

Figure 1: Neuron membrane potential traces

Inhibition and synaptic gating
Inhibition is one important characteristic that enables neu-
rons to perform a wide range of processing operations, in-
cluding the control over attentional focus and modulating
the spread of excitatory activations (Aron and others 2007).
In addition to excitatory synapses mentioned above, neu-
rons are known to form inhibitory synapses such that the
firing of one neuron suppresses another – known as an in-
hibitory postsynaptic potential (IPSP). Inhibition has also
been observed at synapses by a process called synaptic gat-
ing where a third “gatekeeper” neuron is connected to the
synapse and blocks information flow when it is excited. Al-
though the low-level process of inhibition is fairly well un-
derstood, neurophysiologists have not yet arrived at a con-
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sensus on the type and mechanism of inhibition at different
stages in visual processing.

The inhibition landscape is further complicated by spe-
cialized interneurons that form a network dedicated to chan-
nelizing information flow by inhibiting large collections of
neurons. Taking note of these biological facts, our frame-
work implements inhibition in the following way: At the in-
dividual neuron level, we use gatekeeper neurons at each
synapse to control information flow; at the architectural
level, we organize these gatekeeper neurons into a connected
hierarchy to control groups of neurons by spreading in-
hibitory spikes. An example of synaptic gating is illustrated
in Figure 2. The same setup is maintained as in Figure 1,
with an additional gatekeeper neuron inhibiting the neuro-
transmission between t = 5 and 8 secs.

Figure 2: Synaptic gating

Hierarchical organization and attentional control
As mentioned before, the interconnected structure of neu-
rons in this framework is hierarchical in nature. Visual in-
formation is processed in a bottom-up fashion going from
photoreceptors through progressively higher level neurons.
Top-level neurons are specialized to fixate on salient re-
gions, generate saccades and implement attentional control
by sending back inhibitory signals through gatekeeper neu-
rons.

Top-level neurons also interface with application-specific
modules, providing both desired information (such as loca-
tion and scale of the currently attended region) as well as
methods to change attentional focus (e.g. to a specified spa-
tial region, visual property etc.). The overall network is gen-
erated by providing foveal distribution and connectivity pa-
rameters. One such network is shown in Figure 3, although
the networks used for our applications were more dense.

Each layer of the hierarchy is generated by sampling neu-
ron positions from a bivariate normal distribution (µ, σ)
where µ is the foveal center and σ controls the degree
of spread. Adjacent layers are connected by simulating
dendritic growth from higher layers to lower layers with
bounded length. Photoreceptors in the bottom layer are as-
sociated with input image pixel positions based on their lo-
cation in the layer. Pixel intensity and color sensitivity drive
their membrane potential.

Figure 3: A sparse 5-layer hierarchical network depicting
neuronal connectivity

Computational challenges and solutions
Simulating a neuronal network capable of general visual
processing is prohibitively expensive due to the massively
parallel nature of computation involved. Fortunately, effects
of neuronal activity can be integrated over short durations
to closely approximate real-world behavior. The framework
accumulates incoming potentials for each neuron as excita-
tory and inhibitory impulses are received. When a neuron is
next updated, it first simulates time-based exponential decay
of current potential and then factors in the potential values
accumulated since the last update.

It then checks this stored potential value, in case it
has crossed the action potential threshold. To model an
action potential, a flag is set to perform additional self-
depolarization on each update till a maximum is reached, af-
ter which potential falls abruptly and then slowly stabilizes.
This crudely yet effectively estimates the process of ion ex-
change across a neuron’s cell membrane. Note that updates
occur in a bottom-up fashion, but the results are integrated
over time. If the time period is sufficiently short, this sim-
ulation mimics the behavior of biological neurons up to a
degree of abstraction and a margin of approximation that is
appropriate for our purposes.

To further minimize the need to compute and update
membrane potential values, we exploit the fact that neurons
receiving less incoming potentials are likely to need infre-
quent updates, since our primary concern is to identify when
a neuron crosses the action potential threshold. The frame-
work maintains an update probability for each neuron that
is correlated with its level of activity. A neuron is selected
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to be updated by a random sampling based on this proba-
bility. A side-effect of this scheme is that visual input with a
lot of temporal change causes an increased need for updates,
sometimes overwhelming the framework.

One important difference remains between biological sys-
tems and our framework – the time scale of operations is an
order of a magnitude longer, for example, while the time
course of an action potential in biological neurons is typ-
ically under 5 ms (including the rising, falling and recov-
ery phases), computationally it is only possible to achieve a
duration of about 50–100 ms depending on the population
of active neurons. For reference, we ran all our tests on an
Intel R© CoreTM i5 3.4 GHz quad-core computer with 8GB
RAM, and the generated networks contained 50,000–60,000
neurons. Nevertheless, the pattern of activation across our
neuronal architecture and overall behavior closely resembles
early visual processing in biological systems.

Applications
Studying change blindness
The biological plausibility of the framework makes it a use-
ful tool for understanding human visual behavior and ex-
plaining certain peculiar phenomena. Change blindness (Si-
mons and Levin 1997; Simons and Rensink 2005) is one
such aspect of human vision. A change detection system
built using the framework exhibited similar results as hu-
mans, although at a different time scale. More importantly,
by continuously monitoring the activation levels of neurons,
we got better insight into why this phenomenon occurs.

It has been observed that if two identical images with few
deliberately introduced changes are presented immediately
one after the other, then it is easy for humans to identify the
change. However, if the visual array is blanked out (i.e. an
empty image is presented) in between the two test images,
then our ability to detect the change reduces drastically. Re-
peated presentation of such pairs of images with interleaved
blanks is known as the “flicker” paradigm in change blind-
ness research (Rensink, O’Regan, and Clark 1997). There
are other interventions that also elicit change blindness be-
havior (e.g. mudsplats, and even real-world scenarios), but
we have limited our current testing to flicker presentations
only, specifically, with a single localized change (no image-
wide color changes, etc.).

Since the framework already implements the central
mechanisms for active vision, i.e. attention and gaze control,
the additional work required for the change blindness system
is minimal. A higher-level process simply monitors the cur-
rent level of temporal variance in the focused region com-
pared to other regions previously fixated, and also changes
in gaze direction. If the current region maintains high tem-
poral variance, and if the framework does not shift its gaze
for a certain period of time, the agent identifies this as the
location of change. This threshold is a parameter that can
be varied to study its effect on the accuracy of the agent’s
response and the time it takes to detect changes.

Correctness of the agent’s response is judged by checking
if at least one-third of the changed area in the image is within
the bounds highlighted by the agent. This means, if an object

Figure 4: Illustration of the flicker paradigm in change blind-
ness research

moves in the scene from one position to another, the agent
only needs to identify one of the two locations. Time taken
to detect the change is noted, subject to a timeout period.
The agent is tested with both versions of a pair of change
blindness images – with and without the intermediate flicker.

Figure 5 visualizes the internal representation that is built
up over time for the test image pair “Harborside”. It is clear
that in the flicker condition, the perceived structure is not
fully reflective of the actual scene, and does not contain
enough information to allow the system to detect localized
changes. Whereas, a definite structure seems to evolve in the
no flicker case – without large temporal variations to over-
whelm visual processing, the system is able to focus on areas
that are spatially rich. Gradually, a clear enough represen-
tation emerges that enables identification of any localized
temporal change. Figures 5b shows how the system draws a
rectangle around the area it believes the change to be in.

Results indicate a clear difference between the flicker and
no flicker conditions. The rate of identification is signifi-
cantly high for the no flicker case, and the corresponding
time to detect changes is low. In fact, the system was only
able to detect a change correctly in 1 out of the 5 image pairs
tested (“Airplane”) in the flicker case (tests were only run for
a duration of 60 secs. each, beyond which the system essen-
tially never converged). This qualitatively agrees with hu-
man behavior – some people give up trying to find a change
for certain difficult flicker image pairs, or use higher-level
cognitive strategies to methodically scan the entire image
(this has not been modeled in our system). For comparison,
human participants have been observed to take on an aver-
age of 10.9 secs. to notice a change, requiring more than 50
secs. in some cases (Rensink, O’Regan, and Clark 1997).

Table 1 summarizes the time it took the system to detect
changes in the different conditions. 10 runs for each im-
age pair was conducted. The figures reported in the table
are means. Standard deviation was under a second for each
of these cases, hence has not been reported. Only the air-
plane case, in flicker condition, had a significant s.d. of 2.53
seconds. Variation in performance across different images is
due to their respective complexity, significance of the change
introduced, and its location in the image.
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(a) Flicker

(b) No flicker

Figure 5: Visualized output of what the system perceives

Scene structure description

The change blindness agent above is an example application
that can be used for psychological and cognitive modeling
research, by testing how the framework reacts to a given con-
trolled interface/image. On the other hand, we would also
like use the framework on physical agents that interact with
the real world. Identifying the current scene structure de-
scription is one of the basic capabilities that is required for
most such systems. Note that within this application, we are
only interested in finding out the relative locations of differ-
ent salient items in view, and not assigning semantic infor-
mation with them. That is the focus of a separate pathway in
visual processing, and when combined with scene structure
description, results in scene understanding.

Table 1: Change blindness results summary

Test image pair Flicker No flicker
Harborside Failed 9.37s
Corner Failed 11.59s
Airplane 26.46s 14.58s
Couple Failed Failed
Farm Failed 15.89s

Our scene description agent simply identifies regions of
interest in the given visual input and visits them sequentially.
While making each saccade, it tries to perform trassaccadic
integration. The scene description agent achieves this by se-
quentially linking percepts using their relative distances, and
storing snapshots of each percept externally (i.e. outside the
framework). Once the system believes it has studied all rel-
evant parts of the scene, it reports back a description of the
scene in terms of the relative distances recorded. This de-
scription is used to recreate a visual representation of the
scene using stored snapshots. When used in a dynamic scene
or with video as input, the resulting scene description is a
temporally-integrated summary. Timestamps with each per-
cept are maintained so that a progressive scene description
can be generated in this case.

Figure 6 shows one of the complete live scenes that the
system was tested on.

Figure 6: Test scene used for description task

Below is an example of the description presented by
the system (this is only a sampling of one test run). The
columns “pre img” and “post img” identify snapshots that
were stored at that time.
pre_img post_img x_disp y_disp
000 001 15.6471 -86.0589
001 002 29.8825 -67.2356
002 003 29.9599 29.9599
003 004 20.7304 -6.91014
004 005 22.4968 44.9937

The reconstructed scene is shown in Figure 7. The blue
dashed line segments in the image illustrate saccadic ‘eye’
movements of the system. Comparing with Figure 6, we can
see that the reconstruction is not a very precise represen-
tation of the global scene. But the relative placements of
salient objects in the scene were maintained (the painting
and the lamp stand, for instance). This representation, com-
bined with the ability to focus on specific things, gives the
framework enough capability to be useful for active agents.

One possible extension to this agent will be the ability to
look back at a previously focused region. The challenge here
will be to design a higher-level process that can keep track
of different perceptual as well as proprioceptive sensory in-
formation to correctly integrate visual percepts over longer
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Figure 7: Reconstructed scene showing saccades

periods of time. This is beyond the scope of the framework,
and is intended to be implemented in a higher-level agent.

Saliency detection
In both the above applications, the primary output of the
framework is the location and scale of interesting regions,
i.e. with localized spatial and/or temporal variance. One way
of interpreting this is the concept of saliency. Itti, Koch et
al. (Itti, Koch, and Niebur 1998) use saliency as a term to
refer to the uniqueness of an area of visual input along one
or more feature dimensions. Their computational method is
inspired by evidence from neurobiology that indicates the
presence of feature-specific neurons in different areas in the
brain, but it only focuses on the analysis of static images.

We extended this work by implementing saliency detec-
tion in our framework using specifically modeled neurons
that generate motor impulses for performing saccades and
fixating on regions based on their saliency. Each image was
presented to the application, and the saliency value, mea-
sured as the ratio of activity of neurons within the currently
attended region to overall saliency in the image, was used
to pick out the most interesting region. The performance of
this application was evaluated on a published dataset (Liu et
al. 2011) 1, and has been found to be comparable with some
of the leading solutions. Figure 8 shows the salience map
obtained by rendering neuron activity for two input images
from the dataset.

Table 2 lists the results of running our saliency detec-
tion application on the above mentioned dataset that con-
tains 5000 images labeled by nine users each to obtain mean
ground truth salient object regions. The dataset is subdi-
vided into ten input sets. Precision and recall figures com-
pare the image areas covered by generated salience maps
against areas marked by users. F-measure has been obtained
with α = 0.5, giving a balanced interpretation of precision
and recall. BDE (Boundary Displacement Error) is a mea-
sure of how far (in total pixels) was the rectangular boundary
found by our application from ground truth.

Mean precision and BDE results of our application are
better than two popular saliency detection algorithms (Itti,
Koch, and Niebur 1998; Ma and Zhang 2003) compared

1Dataset ‘B’ from this source: http://research.microsoft.com/
en-us/um/people/jiansun/SalientObject/salient object.htm

(a) Road sign (input) (b) Road sign (salience)

(c) Flower (input) (d) Flower (salience)

Figure 8: Salience maps generated from neuron activity

in (Liu et al. 2011) on the same dataset. When rendering a
salience map from neuronal activity, we only consider values
above a certain level, and this thresholding step is somewhat
arbitrary. It is necessary in order to obtain results in a form
that is comparable to the ground truth data, but unintuitive
from a neuronal point of view. The resulting salience maps
thus sometimes have holes or incomplete sections in them,
leading to low recall rates, even though the detected external
boundaries are relatively accurate (as shown by low BDE).

Table 2: Salience detection results summary

Input set Precision Recall F-measure BDE
0 0.760 0.544 0.641 33.351
1 0.736 0.547 0.630 33.052
2 0.763 0.546 0.647 32.827
3 0.775 0.523 0.644 33.377
4 0.784 0.527 0.653 31.986
5 0.794 0.536 0.661 31.322
6 0.796 0.542 0.666 31.085
7 0.755 0.545 0.646 30.313
8 0.682 0.625 0.634 28.572
9 0.742 0.594 0.656 28.944
Mean 0.759 0.553 0.648 31.515

Conclusions and future work
As illustrated in this paper, the field of computer vision can
learn a lot from biological vision systems. With increasing
progress in our understanding of neurophysiological func-
tions, we are slowly becoming capable of emulating nat-
ural processes with great precision and efficiency. Visual
processing tasks that are hard computational problems to-
day may turn out to be much easier to solve when consid-
ered within a fundamentally different neuronal architecture.
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Having demonstrated some applications in saliency detec-
tion and related areas, this research has a long way to go in
addressing other vision problems within a unifying frame-
work, including object recognition, tracking, visual memory
representation and transsaccadic integration.

To formalize the concepts embodied within this frame-
work, we plan to formulate a neurocognitive theory of visual
perception. It will enable us to reason about the behavior of
the system as a whole, and provide provable results regard-
ing its operational characteristics. This is the primary direc-
tion of future work, along with implementation of other ap-
plications. With some effort, the framework can also be used
to extend a cognitive architecture such as ACT-R (Anderson
et al. 2004; Anderson, Matessa, and Lebiere 1997) to pro-
vide neurologically-grounded estimates of execution times
for visual tasks. For this purpose, the ACT-R P/M module
is being investigated for possible modification. In this way,
the framework can serve its dual purpose of reflecting on
biological vision as well as providing a platform for active
vision.
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