
How to Abstract Intelligence?
(If Verification Is in Order)

Shashank Pathak1 and Luca Pulina2 and Giorgio Metta1 and Armando Tacchella3

1Istituto Italiano di Tecnologia (IIT) — Via Morego 30, Genova
2POLCOMING, Università degli Studi di Sassari — Viale Mancini 5, Sassari

3DIBRIS, Università degli Studi di Genova — Viale F. Causa 13, Genova

Abstract

In this paper, we focus on learning intelligent agents
through model-free reinforcement learning. Rather than
arguing that reinforcement learning is the right abstrac-
tion for attaining intelligent behavior, we consider the
issue of finding useful abstractions to represent the
agent and the environment when verification is in or-
der. Indeed, verifying that the agent’s behavior complies
to some stated safety property — an ”Asimovian” per-
spective — only adds to the challenge that abstracting
intelligence represents per se. In the paper, we show an
example application about verification of abstractions
in model-free learning, and we argue about potential
(more) useful abstractions in the same context.

Introduction
Reinforcement Learning is an adaptive learning paradigm
where agent interacts with the environment, both through
accomplishing a set of actions and through observing the
current state of the environment — see (Sutton and Barto
1998). The agent follows some policy, i.e., a mapping from
states to actions, and receives feedback signal in terms of re-
wards. Interesting policies, i.e., those showing robustness for
practical applications, are generally stochastic, which means
that the probability of unsafe actions can not be diminished
beyond a point. Here, and throughout the rest of the paper,
by “unsafe action” we mean an action which leads directly
to an undesirable state, and by “unsafe state” a state which
is itself undesirable. Though the rewarding strategy could
be tuned to account for visiting unsafe states by assigning
negative rewards, or learning itself could be modified using,
e.g., risk-sensitive paradigms like in (Geibel and Wysotzki
2005), these strategies might turn out to be insufficient to
bound the probability of unsafe actions, partly due to the
asymptotic nature of learning, and partly due to their implicit
effects on overall learning. Hence, reinforcement learning
could benefit from verification of learned policies through
formal techniques such as probabilistic model checking —
see, e.g., (Kwiatkowska, Norman, and Parker 2007).

The choice of a verification technique has an impact on
the abstraction used for learning. This is because the model

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

adaptively built by reinforcement learning should be ex-
pressed in the logic language chosen to verify safety proper-
ties. A priori, we cannot assume that representations that will
work for learning will also be good for verification, which
brings us to the central question of our contribution:

What is the right abstraction to represent the agent and
the environment, if agents are to be demonstrably safe?

We consider this question in the framework of Markovian
Decision Processes (MDPs), which is widely considered as
the underlying model of reinforcement learning. An MDP is
defined a 4-tuple 〈S,A, R, T 〉 where S is the set of all pos-
sible states sensed by the agent, and A is the set of all its
possible actions. The function R : S ×A → R denotes util-
ity of a state-action pair while T : S ×A → S is the transi-
tion function. Notice that, if learning is model-free, then we
are assuming that R and T are not known to the agent. In
addition to this, MDPs enjoy the Markovian Property which
implies

P (Xt+1 = s|Xt = st, Xt−1 = st−1, . . . X0 = s0)

= P (Xt+1 = s|Xt = st)
(1)

where P (φ) stands for probability of φ being true,
s0, s1, . . . st ∈ S are states of the system, and
X0, X1, . . . Xt, Xt+1 are random-variables, interpreted as
the value of the random “state” variable X at the discrete
time instants 0, 1, . . . , t, t + 1. In other words, memory of
the past history is not required to estimate the probability of
the next state. A policy π is any mapping from state-space to
action-space i.e. π : S �→ A.

Reinforcement learning solves a Markovian Decision
Problem, i.e., an MDP along with objective function that as-
signs a value v : Π �→ R to each policy π ∈ Π. In prin-
ciple, knowing the value function v one could simply com-
pute the optimal policy π∗ ∈ Π, i.e., the policy such that
v(π∗) ≥ v(π) for all π ∈ Π. However, the value function
is usually not known, and reinforcement learning algorithms
must approximate it. One of widely used methods is to con-
sider quality-value (Q-value) for all state-action pairs

Qπ(s, a) = Eπ(Rt|st = s, at = a)

where Rt = rt+1 + γrt+2 + γ2rt+3 . . . is a γ-discounted
sum of rewards, where 0 ≤ γ ≤ 1. Under suitable conditions
the update rule

Q(st, at)← Q(st, at) + αδ (2)

58

How Should Intelligence Be Abstracted in AI Research ...

AAAI Technical Report FS-13-02

δ = (rt+1 + γQnxt −Q(st, at)) (3)

guarantees learning the optimal policy π∗. When Qnxt =
argmax

a∈A
Q(st+1, .) we have Q-Learning (Watkins and Dayan

1992), while Qnxt = Q(st+1, a
π)|aπ ← π(st+1) yields

SARSA (Rummery and Niranjan 1994). It should be noted
that such algorithms do not require knowledge of R and T ,
i.e., they are model-free in the sense outlined before. Also,
they do not require explicit storage of Rt during learning or
representation of learned MDP afterwards.

Algorithms such as SARSA and Q-Learning have made
possible on-line learning of systems where state-action
space is abstracted in continuous manifolds. The techniques
used to learn in such abstractions turn out to be challenging
for verification. One may trade-off some accuracy introduc-
ing discretizations which make verification of learned poli-
cies a feasible and useful goal. This is exactly the point we
make throughout the first part of the paper. However, as we
discuss further on, discretization may under-represent por-
tions of the state space, and over-represent others. These
two effects can pave the way to precision and efficiency
issues, respectively, and hamper the ability to learn intelli-
gent agents in interesting domains. In these cases, adaptive
continuous-to-discrete abstractions could be a potential so-
lution. In the final part of the paper we present some hints in
the direction of adaptive discretization that could improve on
precision while, at the same time, preserving the possibility
to demonstrate safety of agents in a formal setting.

Discrete-state abstraction
Given a discrete state-action space, the combination of the
original MDP and a policy π computed by learning yields
a discrete-time Markov chain (DTMC) describing all possi-
ble interactions of the agent with the environment. Follow-
ing (Kwiatkowska, Norman, and Parker 2007), given a set
of atomic propositions AP , a DTMC is defined as a tuple
(W,w,P, L) where W is a finite set of states, and w ∈ W
is the initial state; P : W × W → [0, 1] is the transition
probability matrix; and L : W → 2AP is the labeling func-
tion. An element P(w,w′) gives the probability of making a
transition from state w to state w′ with the requirement that∑

w′∈W P(w,w′) = 1 for all states w ∈ W . A terminating

(absorbing) state w is modeled by letting P(w,w) = 1. The
labeling function maps every state to a set of propositions
from AP which are true in that state. Safety assurance is ex-
pressed in terms of Probabilistic Computational Tree Logic
(PCTL) formulas, whose syntax and semantic are described
formally in (Kwiatkowska, Norman, and Parker 2007), to
which we refer the reader for further details.

Let us assume that states and transitions explored dur-
ing LEARN are logged in a table T : S × A → 2S×N,
where S is the state-space and A is the action-space. For
each state s ∈ S and action a ∈ A, we have that T (s, a) =
{(s1;n1), . . . , (sk;nk)} where si ∈ S for all 1 ≤ i ≤ k,
and ni is the number of times state si occurred as next state
in a transition from state s on action a; each cell (s, a) of T
stores only the pairs (s;ni) such that ni > 0, i.e., state si ap-
peared at least once in a transition from an explored state s

on action a. For all actions a ∈ A, if the state s ∈ S was ex-
plored, but had no outgoing transitions, then T (s, a) = ∅; if
a state was not explored, then T (s, a) = ⊥.1 Assuming tran-
sitions can be unsafe, i.e., the action itself is undesirable, we
consider a table F : S × A → {TRUE, FALSE} where, for
each explored state s ∈ S and action a ∈ A, we log whether
the specific action a is found to be unsafe when started from
state s.

Policy (safety) verification
We combine tables T and F with the Q-table returned by
LEARN to obtain a DTMCM = (W,w,P, L). The set AP
of atomic propositions has just one element bad which de-
notes unwanted states. The construction ofM is the follow-
ing:

1. The set of states W is initialized to explored states logged
in T , i.e., all the states s ∈ S such that for all actions
a ∈ A we have T (s, a) �= ⊥, plus three additional states
w0, wok, wbad �∈ S. The initial state w is w0. For all
v, w ∈W , we initialize P(v, w) = 0, and L(w) = {}.

2. Let I ⊆ S be the set of source states in T , i.e., s ∈ I
exactly when (s, n) �∈ T (s′, a) for all s′ ∈ S, n ∈ N and
a ∈ A. We make w0 the unique initial state by requiring
P(w0, w) =

1
|I| for all w ∈ I ,. meaning that w0 has non-

deterministic transition to every source state.

3. Given two states v, w ∈ W such that v, w �∈
{w0, wok, wbad}, the probability of transition is defined
as

P(v, w) =
∑
a∈A

πQ(v, a) · pT (v, a, w) (4)

where πQ is the stochastic policy extracted from Q, and
pT (v, â, w) is the probability of observing w as a suc-
cessor of v given that action â was taken. Assuming
T (v, â) = {(w1;n1), . . . , wk;nk)} we have

pT (v, â, w) =

⎧⎪⎨
⎪⎩

nw∑k
i=1 ni

if (w;nw) = (wj ;nj)

for some1 ≤ j ≤ k

0 otherwise

(5)

We define K ⊆ S to be the set of sink states in T , i.e.,
s ∈ K exactly when T (s, a) = ∅ for all a ∈ A. If the notion
of unsafety is attached to transitions, then the construction
ofM is completed as follows:

4. The state wok is an abstraction of all sink states that
can be reached by at least one safe transition, and
P(wok, wok) = 1. For each state v, let safe(v) ⊆ K
be the set of sink states that can be reached from v via
a safe transition, i.e., all states w ∈ K such that there
exist a ∈ A with (w;nw) ∈ T (v, a) and F (v, a) =
FALSE; for all states v such that safe(v) �= ∅, we set

1Table T can handle (i) deterministic actions, i.e., a is such
that ∀s ∈ S.|T (s, a)| = 1; (ii) non-deterministic actions, i.e.,a is
such that for all s ∈ S, both |T (s, a)| = k and ni = 1/k for all
1 ≤ i ≤ k; and (iii) probabilistic actions, i.e., arbitrary values of
ni.

59

P(v, wok) =
∑

w∈safe(v) P(v, w) and then P(v, w) = 0

for all w ∈ safe(v).

5. The state wbad is an abstraction for all states – including
non-sink ones – that can be reached by at least one un-
safe transition. Therefore we set P(wbad, wbad) = 1 and
L(wbad) = {bad}. For each state v, unsafe(v) ⊆ K is
the set of sink states that can be reached from v via an un-
safe transition, i.e., all states w ∈ K such that there exist
a ∈ A with (w;nw) ∈ T (v, a) and F (v, a) = TRUE; for
all states v such that unsafe(v) �= ∅, we set P(v, wbad) =∑

w∈unsafe(v) P(v, w) and then P(v, w) = 0 for all

w ∈ unsafe(v).

Here, we end up removing orphan states, i.e,, states w ∈
W with w �= w0 such that P(v, w) = 0 for all v ∈ W
with v �= w. For all such states w, we also remove outgoing
connections by setting P(w, v) = 0 for every v ∈ W . The
process is repeated until no orphan state and related transi-
tions are left.

Given the construction above, while the concrete meaning
of safety will depend on the way F is computed, from an
abstract point of view we must ensure that the probability of
reaching wbad is low, i.e., check

M, w0 |= P<σ[F bad] (6)

where σ ∈ [0, 1] is a safety assurance probability. Typical
assertions that can be checked in this context include, e.g.,
the probability of a bad state is less than 1%, i.e., checking
thatM, w0 |= P<0.01[F bad] holds. A control policy such
that property (6) cannot be verified for small values of σ is
clearly undesirable, also in the cases where low-level pro-
tection mechanism prevent actual failures to occur.

Policy repair
We define policy repair as a verification-based procedure
that modifies the Q-table to fix the corresponding policy.

Repair is driven by counterexamples that witness the vi-
olation of property (6) for some threshold σ. Since there
are no infinite paths in M, property (6) is violated only
if σ is less than the probability of choosing a path τ =
w0, w1, . . . , wk such that wk = wbad. The probability mass
of a path τ is defined as

Prob(τ) = Πk
j=1P(wj−1, wj) (7)

and extended to a set of paths C = {τ1, . . . , τn} ⊆ Pathw0

as Prob(C) =
∑n

i=1 Prob(τi). If, for all 1 ≤ i ≤ n, we
have τi = wi,0, wi,1, . . . , wi,ki

with wi,0 = w0, wi,ki
=

wbad and Prob(C) > σ, then C is a counterexample of prop-
erty (6). Notice that a counterexample C is unique only if it
contains all paths starting with w0 and ending with wbad,
and for all C′ ⊂ C we have that Prob(C′) < σ. Given
our assumptions, the counterexample C = {τ1, . . . , τn} is
a DAG such that |C| ≤ |Pathw0

|. However, unless learning
is highly ineffective, we expect that |C| � |Pathw0

|, i.e.,
focusing on the counterexample is an effective way to limit
the repair procedure to a handful of “critical” paths. How-
ever, focusing on the counterexample is just the first step in

verification-based repair, and we also need to find an effec-
tive way to alter the policy, i.e., the Q-values, so that prob-
ability masses are shifted in the DTMC and property (6) is
satisfied. Our implementation leverages two key ideas to ac-
complish this. The first one is that transitions between states
which are “far” from wbad should be discouraged less that
those that are “near” wbad. The second idea is that prob-
abilities should “flow away” from paths ending with wbad

towards paths ending with wok. Altering transitions which
are close to wbad helps to keep changes to the policy as lo-
cal as possible, and to avoid wasting useful learning results.
Shifting probabilities towards paths ending with wok avoids
moving probability mass from one unsafe path to another
that would otherwise yield no global improvement.

Given a modelM built out of tables Q, T , F as described
before, a counterexample C = {τ1, . . . , τn} of the safety
property (6) for a given threshold σ, and an iteration parame-
ter θ ∈ N, repair is implemented by the following algorithm:

1. Make a copy Q′ of the (current) Q-table Q.

2. Choose τ ∈ C such that Prob(τ) ≥ Prob(τ ′) for all
τ ′ ∈ C, i.e., τ is the path in C with the largest probability
mass.

3. For each wi ∈ τ (0 ≤ i < k), compute bτ (wi) and let
v = succτ (w); find the action a ∈ A such that (v;nv) ∈
T (w, a) and modify Q′(w, a) as follows

Q′(w, a) =
{

Q′(w, a) · zτ (w) if Q′(w, a) ≥ 0
Q′(w, a) · 1

zτ (w) if Q′(w, a) < 0

4. Let C = C \{τ}; go to step (2), unless C = ∅ or more than
θ paths were considered.

5. Let M′ be the DTMC obtained by T , F and Q′ in the
usual way; check ifM′ fulfills (6); if so, then stop, oth-
erwise a new counterexample C′ is available: let C = C′,
M =M′, Q = Q′ and go to step (1).

Case study: reach-avoid with iCub
This case study is about the humanoid iCub (Metta et al.
2010) learning to reach for an object (target) placed on a
table, without damaging other objects (obstacles) in the pro-
cess. The iCub moves its right-arm along with the torso to
reach for the object, and has 19 degrees-of-freedom (DoF)
to do so. Due to this high redundancy, learning directly in
joint-space is not feasible. Inspired by modeling of human-
reaching (Berthier 1996), the actions are planned in a lower
dimensional Cartesian space, where each action itself is a
smooth minimum jerk trajectory. Though such trajectory it-
self could be learned during motor-babbling (as in infants),
we assumed such control trajectory was available. Indeed,
choosing a trajectory based on some sound minimum prin-
ciples (Engelbrecht 2001), could be seen as an abstraction
of high dimensional joint-space kinematics to a lower space
of low-degree polynomial in joint-angle where, in case of
unconstrained minimum-jerk trajectory, this polynomial has
degree 5. To further reduce complexity of state-space, we
assume higher level actions to be planned and executed in
a Cartesian space with orientation, i.e., (x, y, z) and (v̂, α)
where x, y, z are Cartesian coordinates and v̂ is unit vector

60

Figure 1: left shows advent of learning - in terms of aver-
aged rewards - against real-time (in minutes) spent by iCub
arm in the trials. Repair did not deteriorate the policy and in
fact decreased its variance. right shows probability of unsafe
states, where safety is significantly improved after repair.

in direction of rotation and α is magnitude of the rotation.
Details of the Cartesian controller implemented in iCub can
be found in (Pattacini et al. 2010). Hence each state is a vec-
tor (x, y, z, o) ∈ S, where the component (x, y, z) repre-
sents the Cartesian coordinates of iCub’s hand in a system
having origin in its torso, and o represents the orientation
of the hand. Each action changes state vector in a point-
to-point motion. This is similar to reaching movements in
infants, where overall trajectory is composed of many sub-
movement with similar looking velocity profiles — see stud-
ies by von Hofsten, e.g., (von Hofsten 1991). Using iCub
Cartesian controller, we defined the reach-avoid task as
learning to reaching for a ball kept on table while avoiding
a cup that might interfere with it. Effectiveness of a policy
learned with the SARSA method is measured in terms of
averaged rewards for all successful reaches while safety was
defined as probability of not hitting the cup. When execution
of policy resulted in this safety value below a threshold, pol-
icy was sought to repair. To view robustness of repair, noise
was introduced to initial-position of the arm, which resulted
in different policies and its repair.2.

As shown in Figure 1, verification-based repair does not
deteriorate overall policy learned by iCub for reaching an
object. On contrary, safety of policy is increased quite signif-
icantly after repair as shown in Table 1. This will be true as
long as primary goal of reaching is not severely constrained
by supplementary goal of remaining safe. Robustness of the
repair can be gauzed by studying its effect considering un-
certainty in the initial position of the hand. In our experi-
ments, we modeled such uncertainty using additive Gaus-
sian noise with zero mean and standard deviation σ. The re-
sults are reported in Table 1 and a pictorial view is given
in Figure 2. In both cases, we can observe that as σ is in-
creased, the learned policy gets inferior. However, repair ac-
tually helps in moderating such policies. In fact, the same
safety threshold can be assured in all such cases, and in some
of them also with added benefit of slightly better — more ef-
fective — policies. This is similar to control-theoretic intu-
itions of safety being of assistance in certain adaptive control
system (Gillula and Tomlin 2012).

2Details of the experiment can be found at http://www.mind-
lab.it/∼shashank/IROS2013

Noise Initial Learning Repair
Eff. Safety Eff. Safety Eff. Safety

Absent 0.5770 0.0043 2.0127 0.0081 2.0025 6.10·10−05

Low 0.6068 0.0040 1.0980 0.0675 1.0990 3.93·10−06

Medium 0.2359 0.0048 0.9996 0.0135 0.9910 5.07·10−12

High 0.2570 0.0107 0.5626 0.0366 0.5914 4.053·10−06

Table 1: Effectiveness and safety levels in learning to reach
objects. “Noise” is how much the initial position of the hand
varies because of noise. “Initial”, “Learning” and “Repair”
denote that the measurements is done before learning, after
learning and after repair, respectively. Effectiveness (“Eff.”)
is the average reward obtained, and “Safety” is the value of
the threshold σ.

Continuous-state abstraction: a proposal
Reinforcement learning algorithms are well understood in
discrete state domain, and we have shown that their re-
sult can be verified and improved also in a practical case.
However, as mentioned in the introduction, continuous state
space abstractions proved often to be more effective for ap-
plications. Reinforcement learning for continuous domains
comes in a variety of flavors, such as functional approxi-
mators (Baird 1995), adaptive clustering, neural-networks,
fuzzy sets and many others. Some of these methods provide
nice theoretical guarantees on convergence, while some can
even be coupled with other learning algorithms — like, e.g.,
policy gradient methods using functional approximators. In-
deed, for most of them, it is not straightforward to find a way
to verify the learned policy as we do with discrete abstrac-
tions. In the following, we discuss a possible approach that
should retain some of the advantages of continuous-state ab-
stractions, while enabling formal verification and repair at
the same time.

Borrowing the notations of (Li, Walsh, and Littman
2006), let the tuple M = 〈S,A, P,R, γ〉 denote the ground

MDP while M̂ = 〈Ŝ, Â, P̂ , R̂, γ〉 denote its abstraction.

Furthermore, let φ(s) : S → Ŝ denote an abstraction func-
tion, i.e., ∀s ∈ S, φ(s) ∈ Ŝ. We can say that φ2(s) is
coarser than φ1(s) iff ∀s1, s2 ∈ S, φ1(s1) = φ1(s2) =⇒
φ2(s1) = φ2(s2). Since the primary goal of abstraction in
reinforcement learning is to reduce the dimensionality, we
are interested in coarser abstractions of ground MDP. In the-
ory, one would like to obtain an abstraction which is as pre-
cise as possible. In (Givan, Dean, and Greig 2003), authors
introduce the notion of equivalence and obtain a bisimilar,
but minimized, model of the original MDP for learning pur-
poses. However, this result cannot be used for abstracting
a continuous state-space to a discrete one, and the concept
of bisimulation is itself very strict. One may deviate a bit
away from model equivalence, and have abstractions that
preserve model similarity. Furthermore, an abstraction could
preserve state-action values Qπ , or could preserve optimal
state-action values Q∗ ,or just the optimal action values a∗.
In (Li, Walsh, and Littman 2006) it is shown that the order
for coarser abstraction is φbisim < φQπ < φQ∗ < φQa∗ and
that the optimal policy with respect to the ground MDP is
preserved in all these abstractions except the last one.

In particular, φQ∗ is Q∗-irrelevance abstraction such that
∀a ∈ A, φQ∗(s1) = φQ∗(s2) =⇒ Q∗(s1, a) = Q∗(s2, a).

61

Figure 2: Averaged rewards are plotted against episodes. Noise is defined as uncertainty in initial position of iCub hand.
Probability distribution is N (s0, σ) with s0 as initial position and σ as standard deviation. left is case of low noise σ = .005,
middle is with medium-noise of σ = .01 while right is with high-noise of σ = .02.

1: Given initial U-tree U0 with single leaf L, no decision node
Q, split-test T-split,leaky-bucket insert scheme Insert

2: Obtain (ŝ,ΔQ) from agent’s action
3: State-chunk Si ← Fetch(U0, ŝ)
4: Insert((ŝ,ΔQ),Si)
5: Data Di ← data of this state-chunk
6: for d = 1 → |ŝ| do
7: Sort the data of leaf wrt d Dsorted ← Sort(Di,d)
8: for p = 1 → |Di| do
9: (Pleft, Pright) ← Partition(Dsorted,p)

10: Apply split-test T-split(Pleft, Pright)
11: Store current best metric Msplit , d and p
12: end for
13: end for
14: if Should-split ← Msplit then
15: Qnew, Lleft, Lright ← Lold

16: end if

Figure 3: Pseudo-code for U-Tree

Since both verification and repair depend on the learned pol-
icy, this abstraction turns out to be potentially useful in our
context. Such an abstraction may not preserve the rewards

or overall outgoing probabilities, i.e., for abstract-space Ŝ,
we may have, ∀a ∈ A, φQ∗(s1) = φQ∗(s2) �=⇒ Ra

s1 =
Ra

s2 , �=⇒
∑

s′∈φ−1(Ŝ) P
a
s1s′ =

∑
s′∈φ−1(Ŝ) P

a
s2s′ . This re-

laxation allows us to be dispensed of the knowledge of com-
plete MDP for abstracting, which is quite crucial for prac-
tical applications. Some algorithms that use Q∗ abstraction
for learning are G-algorithm and U-tree based reinforcement
learning (Uther and Veloso 1998).

In particular, the U-tree algorithm for reinforcement
learning, hereafter denoted by U-tree, aims at incremental
clustering of a multi-dimensional continuous state-space. In
Figure 3 we present its pseudocode, but more details can be
found in (Uther and Veloso 1998). It is a φQ∗ abstraction and
hence preserves the optimal policy under abstraction. Also
it does not require knowledge of complete MDP whereas it
seeks to find equivalent rewards as well as Q-values. The
algorithm requires statistical testing on a set of observed Q-
values and therefore suffers from non-normal distribution of
samples especially when number of samples is not large. The
method is not exact in this sense.

We implemented U-tree on a well known test benchmark
of cart-pole problem (Barto, Sutton, and Anderson 1983),
where the task is to learn to balance an inverted pendulum
mounted on top of cart, through force on lateral direction of

Figure 4: Decision tree (in radial layout) using K-S test (left)
and MSE (right) as splitting criteria.The root node is in the
center marked with a spiral

the cart. The state-space is { x, ẋ, θ, θ̇ } denoting lateral po-
sition and lateral velocity of the cart, and angular position
and angular velocity of the pole, respectively. Implemen-
tation details are given on the companion website.3 Figure
4 shows the decision trees obtained with U-tree using dif-
ferent splitting tests. The decision hyper-planes enforced by
U-tree are aligned to one the state-dimensions, hence local
orthogonality of causal effects of each dimension is implic-
itly assumed. Partition of state-space depends on local vari-
ation of the value of states. As mentioned before, a discrete-
state representation provides succinct knowledge of the pol-
icy learned, U-tree clubs an infinite set of continuous states
trading with approximation error in values of these states. In
case of cart-pole, states closer to equilibrium point would all
have similar values and hence would be partitioned sparsely.
This is shown in Figure 5.

When learning with U-tree is over, the policy π is defined
over a state space that has been partitioned adaptively during
the learning process — we assume that the action space is
discrete from the beginning. In particular, the elements of
the state space mapped to actions by π are the leaves of the
tree that, starting from a single node representing all possible
states, is grown by U-tree to partition the learning space in
a relevance-based fashion. Now, if we assume that the final
policy π needs to be verified and repaired, we can observe
that the methods proposed for discrete abstractions can still
work as long we consider the leaves of the tree built by U-
tree as states of the DTMC to be verified. We outline this
process in algorithm 6.

In this case, actions are discrete, U-tree provides a deci-

3The companion site is available at www.mind-lab.it/
∼shashank/AAAI FSS13.

62

Figure 5: The plot shows partitions of a pair of state-
variables, normalized in range [-1,1].

1: Given a learned U-tree Ulearned, safety property P , allowed
probability-bound Pbound ∈ R

2: Construct a DTMC, D0 from leaves of U
3: Den ← Encode(D0)
4: Verify(Den,P, Pbound)
5: if Counter-example C �= {φ} then
6: Drep ← Repair(Den, C, Pbound)
7: Urep ← Update(U0, Drep)
8: end if

Figure 6: Pseudo-code for automated repair of U-Tree

sion tree Difor each action i with leaves as Q-values for that
state-space. In general, the decision hyperplane would be
different for different actions, hence while creating DTMC
we consider two continuous states belonging to same dis-
cretized state iff every action aj lies in same leaf of Dj .
Obviously, this further increases the space complexity of
DTMC, especially if the number of actions is large. Also,
the set of next states Si,j when action aj is executed in state
belonging to Di, is calculated through recorded observations
of state transitions. Thus from the perspective of DTMC en-
coding, actions are non-deterministic. Approximation in this
approach, such as next state being only a part of Dj for some
j, does not affect the nature of the policy to be verified. Re-
pair of such DTMC poses different challenge though. Since
the actions of DTMC are not actual actions in the policy,
it is not clear how the policy should be repaired in light
of a counter-example. For example, performing action a in
state Di may yield a safe state Dj and an unsafe state Dk.
Transition probability T (i, k) can only be decreased through
decreasing value of state Di, which would in turn decrease
transition probability T (i, j). This anomaly arises due to the
fact that bifurcation of state-space was safety-agnostic.

Conclusions
Safety poses a credible challenge for reinforcement learning.
Given a discrete state-action domain, model checking tech-
niques can be harnessed out-of-the-box to provide quantita-
tive measures of inherent risk in the policy, and to repair it to

ensure safety. Continuous state-space (or even action-space)
domains result in demonstrable learning tasks on complex
systems, but pose the issue of state-abstraction for verifi-
cation. While there exists a large pool of such abstractions
that have been used in practical reinforcement learning, we
must identify one which is suitable for verification as well.
Pending some further improvements related to repair, U-tree
based learning is a reasonable candidate in this direction.

References
Baird, L. C. 1995. Residual algorithms: Reinforcement learning
with function approximation. In ICML, 30–37.

Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983. Neu-
ronlike adaptive elements that can solve difficult learning control
problems. Systems, Man and Cybernetics, IEEE Transactions on
(5):834–846.

Berthier, N. E. 1996. Learning to reach: A mathematical model.
Developmental psychology 32(5):811.

Engelbrecht, S. E. 2001. Minimum principles in motor control.
Journal of Mathematical Psychology 45(3):497–542.

Geibel, P., and Wysotzki, F. 2005. Risk-Sensitive Reinforcement
Learning Applied to Control under Constraints. J. Artif. Intell. Res.
(JAIR) 24:81–108.

Gillula, J., and Tomlin, C. 2012. Guaranteed Safe Online Learning
via Reachability: tracking a ground target using a quadrotor. In
ICRA, 2723–2730.

Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence notions
and model minimization in markov decision processes. Artificial
Intelligence 147(1):163–223.

Kwiatkowska, M.; Norman, G.; and Parker, D. 2007. Stochastic
model checking. Formal methods for performance evaluation 220–
270.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a unified
theory of state abstraction for mdps. In Proceedings of the Ninth
International Symposium on Artificial Intelligence and Mathemat-
ics, 531–539.

Metta, G.; Natale, L.; Nori, F.; Sandini, G.; Vernon, D.; Fadiga, L.;
von Hofsten, C.; Rosander, K.; Lopes, M.; Santos-Victor, J.; et al.
2010. The iCub Humanoid Robot: An Open-Systems Platform for
Research in Cognitive Development. Neural networks: the official
journal of the International Neural Network Society.

Pattacini, U.; Nori, F.; Natale, L.; Metta, G.; and Sandini, G. 2010.
An experimental evaluation of a novel minimum-jerk cartesian
controller for humanoid robots. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 1668–1674.

Pazis, J., and Parr, R. 2013. Pac optimal exploration in continuous
space markov decision processes.

Rummery, G., and Niranjan, M. 1994. On-line Q-learning using
connectionist systems. University of Cambridge, Department of
Engineering.

Sutton, R., and Barto, A. 1998. Reinforcement Learning – An
Introduction. MIT Press.

Uther, W. R., and Veloso, M. M. 1998. Tree based discretization for
continuous state space reinforcement learning. In Proceedings of
the National Conference on Artificial Intelligence, 769–775. JOHN
WILEY & SONS LTD.

von Hofsten, C. 1991. Structuring of early reaching movements: a
longitudinal study. Journal of motor behavior 23(4):280–292.

Watkins, C., and Dayan, P. 1992. Q-learning. Machine learning
8(3):279–292.

63

