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Abstract
Mobile robots deployed in complex real-world domains typ-
ically find it difficult to process all sensor inputs or operate
without substantial domain knowledge. At the same time,
humans may not have the time and expertise to provide elab-
orate and accurate knowledge or feedback. The architecture
described in this paper combines declarative programming
and probabilistic sequential decision-making to address these
challenges. Specifically, Answer Set Programming (ASP),
a declarative programming paradigm, is combined with hi-
erarchical partially observable Markov decision processes
(POMDPs), enabling robots to: (a) represent and reason with
incomplete domain knowledge, revising existing knowledge
using information extracted from sensor inputs; (b) proba-
bilistically model the uncertainty in sensor input processing
and navigation; and (c) use domain knowledge to revise prob-
abilistic beliefs, exploiting positive and negative observations
to identify situations in which the assigned task can no longer
be pursued. All algorithms are evaluated in simulation and on
mobile robots locating target objects in indoor domains.

1 Introduction
Mobile robots are increasingly being deployed to collab-
orate with humans in domains such as search and res-
cue, and reconnaissance. These domains characterized by
non-determinism and unforeseen changes frequently make
it difficult for robots to process all sensor inputs or oper-
ate without substantial domain knowledge. At the same
time, humans are unlikely to have the time and expertise to
provide accurate domain knowledge or elaborate feedback.
Widespread deployment of robots in complex real-world do-
mains thus poses fundamental knowledge representation and
reasoning (KRR) challenges—robots need to: (a) represent,
revise and reason with incomplete knowledge; (b) automat-
ically adapt sensing and navigation to the task at hand; and
(c) learn from unreliable, high-level human feedback.

Although there is a rich body of research in KRR, the
research community is fragmented. For instance, declara-
tive programming paradigms provide commonsense reason-
ing capabilities, but do not support probabilistic modeling of
uncertainty, which is critical in many robot application do-
mains. In parallel, algorithms based on probabilistic graph-
ical models are being designed to quantitatively model the
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uncertainty in sensing and acting on robots, but it is difficult
to use these algorithms for commonsense reasoning. Fur-
thermore, algorithms for combining logical and probabilis-
tic reasoning do not provide the desired expressiveness for
commonsense reasoning capabilities such as non-monotonic
reasoning and default reasoning. Our prior work described
an architecture that combined the knowledge representa-
tion and inference capabilities of Answer Set Programming
(ASP), a declarative programming paradigm, with the prob-
abilistic decision-making capabilities of partially observ-
able Markov decision processes (POMDPs) (Zhang, Srid-
haran, and Bao 2012). This paper extends the architecture
by making the following contributions:
• Richer representation of incomplete domain knowledge,

incrementally revising the knowledge base (KB) using in-
formation extracted from sensor inputs.

• Principled generation of prior beliefs from the KB, merg-
ing these beliefs with POMDP beliefs to adapt sensor in-
put processing and navigation to the task at hand.

• Modeling and learning from positive and negative obser-
vations, identifying situations in which the current task
should no longer be pursued.

All algorithms are evaluated in simulation and on physical
robots visually localizing target objects in indoor domains.

2 Related Work
Algorithms based on probabilistic graphical models such as
POMDPs have been used to model the uncertainty in real-
world sensing and navigation, enabling the use of robots in
offices and hospitals (Göbelbecker, Gretton, and Dearden
2011; Pineau et al. 2003). For computational efficiency, re-
searchers have developed algorithms that decompose com-
plex problems into a hierarchy of (tractable) simpler prob-
lems (Pineau et al. 2003; Zhang, Sridharan, and Washing-
ton 2013). However, it is still challenging to use probabilis-
tic graphical models in large, complex state-action spaces,
and these algorithms do not readily support representation
of, and reasoning with, commonsense knowledge.

Research in declarative programming paradigms such as
ASP has provided appealing capabilities for non-monotonic
logical reasoning and default reasoning (Baral 2003; Gel-
fond 2008). Although these algorithms have been used in
robotics (Chen et al. 2010; Erdem, Aker, and Patoglu 2012),
they do not support probabilistic modeling of the consider-
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able uncertainty in real-world sensing and navigation. Prin-
cipled algorithms have been developed to combine logi-
cal and probabilistic reasoning, e.g., probabilistic first-order
logic (Halpern 2003), Markov logic networks (Richard-
son and Domingos 2006), and a probabilistic extension to
ASP (Baral, Gelfond, and Rushton 2009). Robotics re-
searchers have also developed algorithms that use common-
sense knowledge and semantic maps (Hanheide et al. 2011),
or support logical and probabilistic reasoning to control a
robot’s behavior (Göbelbecker, Gretton, and Dearden 2011).
However, these algorithms are limited in their ability to sup-
port the desired KRR capabilities. Algorithms based on first-
order logic do not provide the desired expressiveness for ca-
pabilities such as default reasoning, e.g., it is not always
necessary, or even possible to express all forms of uncer-
tainty and degrees of belief quantitatively. Other algorithms
based on logic programming do not support all desired ca-
pabilities such as: causal reasoning; incremental addition of
probabilistic information; reasoning with large probabilistic
components; or dynamic addition of random variables with
different ranges. As a step towards addressing these chal-
lenges, our prior work demonstrated the integration of ASP
with POMDPs on mobile robots (Zhang, Sridharan, and Bao
2012), but did not fully support incremental knowledge re-
vision and Bayesian belief merging. The architecture de-
scribed in this paper addresses these limitations.

3 Proposed Architecture
Figure 1 shows our control architecture. The ASP knowl-
edge base (KB) represents domain knowledge (Section 3.1),
while POMDPs probabilistically model a subset of state
space relevant to the task at hand (Section 3.2). Logical in-
ference in ASP is used to: (a) compute and model prior be-
liefs relevant to the task at hand as a Dirichlet distribution;
and (b) identify eventualities not considered by the POMDP
formulation based on learned Beta distributions. The Dirich-
let distribution supports Bayesian merging with POMDP be-
liefs (Section 3.3), while Beta distributions help robots use
both positive and negative observations, terminating tasks
early if they can no longer be accomplished (Section 3.4).

The robot uses a learned policy to map the merged be-
liefs to action choices. Action execution causes the robot
to move and process images to obtain observations. Obser-
vations are also obtained from passive sensors (e.g., range
finders) and from high-level human feedback. Observations
made with high certainty are (proportionately) more likely
to update the KB, while other observations update POMDP
beliefs. Human feedback is solicited based on availability
and need (computed using entropy of POMDP beliefs). This
architecture is illustrated below in the context of robots lo-
calizing (i.e., computing the locations of) objects in indoor
domains, but the integration of knowledge representation,
non-monotonic logical inference and probabilistic decision-
making is applicable to many domains.

3.1 Logical reasoning with ASP
Answer Set Programming is a declarative programming
paradigm that can represent recursive definitions, causal re-

Figure 1: Overview of proposed control architecture.

Figure 2: Pictorial representation of a hierarchy of objects.

lations, and other constructs that occur frequently in non-
mathematical domains, and are difficult to express in clas-
sical logic (Baral 2003; Gelfond 2008). ASP’s signature is
a tuple of sets: Σ = 〈O,F ,P,V 〉 that define names of ob-
jects, functions, predicates and variables available for use.
The signature is augmented by sorts (i.e., types) such as:
room/1, object/1, class/1, and step/1 (for temporal
reasoning). An ASP program is a collection of statements
describing objects and relations between them. An answer
set is a set of ground literals that represent beliefs of an agent
associated with the program. ASP support default reason-
ing, i.e., conclusions can be drawn due to lack of evidence to
the contrary, by introducing new connectives: default nega-
tion (negation by failure) and epistemic disjunction, e.g., un-
like “¬ a” (classical negation) that implies “a is believed
to be false”, “not a” only implies “a is not believed to be
true”; and unlike “p ∨ ¬p” in propositional logic, “p or
¬p” is not a tautology.

For indoor target localization, the robot learns a domain
map and semantic labels for rooms (e.g., “kitchen”, “of-
fice”). The hierarchy of objects is learned incrementally
from sensor inputs, online repositories and human feedback.
Figure 2 illustrates a hierarchy of object classes, which is
revised using observations—leaf nodes (specific object in-
stances) can be added or removed and classes (leaf nodes’
parents are primary classes) can be merged.

The robot models and reasons about aspects of the do-
main that do not change (statics) and can change (fluents),
using predicates defined in terms of the sorts of their argu-
ments: (1) is(object, class) describes class member-
ship of a specific object, e.g., is(printer1, printer);
(2) subclass(class, class) denotes class hierarchy;
(3) in(object, room) describes the room location of an
object; (4) exists(class, room), implies that an object
of a class exists in a room; and (5) holds(fluent, step)
implies a fluent is true at a particular timestep. Predicates are
applied recursively when appropriate. The KB also includes
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(currently hand-coded) reasoning and inertial rules such as:

(1) holds(exists(C,R),I) ← holds(in(O,R),I), is(O,C).

(2) holds(exists(C1,R),I) ← holds(exists(C2,R),I),

subclass(C2,C1).

(3) ¬holds(in(O,R2),I) ← holds(in(O,R1),I), R1! = R2.

(4) holds(in(O,R1),I+1) ← holds(in(O,R1),I),

not holds(in(O,R2),I+1), R1! = R2.

The first rule implies that if object O of class C is in room R,
an object of class C is inferred to exist in R; the second rule
applies the first rule in the object hierarchy. The third rule
implies that object locations are unique, while the last rule
implies that if object O is in room R1, it will continue to be
there unless it is known to be elsewhere.

Consider the following example of non-monotonic rea-
soning in ASP:

step(1..end).

is(printer1,printer).

holds(in(printer1,lab),1).

Reasoning in ASP produces the following answer set (exist-
ing facts not listed): holds(in(printer1, lab), 2).
holds(exists(printer, lab), 2). Now, consider
adding a statement: holds(in(printer1, office),
2) about printer1’s location in the second time step. Rea-
soning in ASP produces a new answer set (existing facts not
repeated); we observe that the outcome of the previous in-
ference step has been revised:

¬holds(in(printer1,lab),2).
holds(exists(printer,office),2).

Next, consider modeling the default: “books are normally in
the library” with cookbooks being a weak exception:

in(X,library)← book(X), not ab(din(X)). % Default
book(X)← textbook(X). book(X)← cookbook(X).

ab(din(X))← cookbook(X).

textbook(prml). cookbook(spices). % Specific data

where ab(d(X)) implies “X is abnormal w.r.t d”. The result of
inference in this example is: in(prml, library), and no
claims are made about spices, i.e., it is unknown if cook-
book spices exists in the library or not. These capabilities
are rather useful for real-world human-robot collaboration.
Furthermore, if incorrect information is added to the KB,
inconsistencies are identified and corrected by subsequent
sensor inputs or by posing queries.

3.2 Uncertainty modeling with POMDPs
To localize objects, robots have to move and analyze images
of different scenes. The uncertainty in sensor input process-
ing and navigation is modeled using hierarchical POMDPs
in Figure 3. For a given target, the 3D area (e.g., multiple
rooms) is modeled as a discrete 2D occupancy grid, each
grid storing the probability of target existence. The visual
sensing (VS)-POMDP plans an action sequence that maxi-
mizes information gain by analyzing a sequence of scenes.
Executing an action in the VS policy causes the robot to

Figure 3: Hierarchical POMDPs for visual processing.

move and analyze a specific scene. For any scene, the (SP)-
POMDP with one or more levels is created and solved au-
tomatically to apply a sequence of processing algorithms on
a sequence of regions of images of the scene. The SP pol-
icy’s terminal action causes a VS belief update and an action
selection. This formulation uses our prior work that intro-
duced convolutional policies and learned observation func-
tions for automatic belief propagation between levels of the
hierarchy and real-time model creation in each level (Zhang,
Sridharan, and Washington 2013). As a result, robots au-
tomatically, reliably and efficiently adapt visual processing
and navigation to the task at hand.

3.3 Generating Prior Beliefs from Answer Sets
This section describes the generation of prior beliefs from
the ASP KB. For visually localizing objects in a set of
rooms, prior belief of existence of these objects in rooms
is based on: (a) knowledge of the hierarchy of object classes
and specific domain objects; and (b) postulates that capture
object co-occurrence relationships. Some postulates (and
their representation) may need to be revised when using this
approach in other domains.

Postulate 1: Existence (non-existence) of objects of a pri-
mary class (in a room) provides support for the existence
(non-existence) of other objects of this class (in the room).
Computation of level of support is inspired by Fechner’s law
in psychophysics, which states that subjective sensation is
proportional to logarithm of stimulus intensity:

perception = ln(stimulus)+ const

This law is applicable to visual processing, the primary
source of information in this paper. For a target object, sup-
port for its existence in a room is thus given by:

ψn =

{
0 i f an = 0
ln(an)+ξ otherwise

(1)

where an is the number of (known) objects of the primary
class (of the target) in the room, and ξ = 1 corresponds to
const above. Certain domain objects may be exclusive, e.g.,
there is typically one fridge in a kitchen. Such properties
can be modeled by rules in the KB and by including other
postulates (e.g., see below).

Postulate 2: As the number of known subclasses of a class
increases, the influence exerted by the subclasses on each
other decreases proportionately. This computation is per-
formed recursively in the object hierarchy from each pri-
mary class to the lowest common ancestor (LCA) of the pri-
mary class and target object. Equation 1 is modified as:

ψn =


0 i f an = 0
ln(an)+ξ

∏
Hn
h=1 Wh

otherwise (2)
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where Hn is the height of LCA of candidate primary class
and target. For a class node on the path from primary class
to the LCA, Wh is the number of siblings at height h; W1 = 1.

Postulate 3: Prior knowledge of existence of objects in
primary classes independently provides support for the ex-
istence of a specific object (in a room). This postulate works
well in practice. Prior belief of existence of a target in room
k thus sums the evidence from N primary classes:

αk =
N

∑
n=1

ψn,k (3)

The prior belief of existence of the target in the set of
rooms is modeled as a Dirichlet distribution with parame-
ters α , where αk is the cardinality of the set of relevant an-
swer set statements obtained through ASP-based inference.
The probability density function (pdf) of this K-dimensional
Dirichlet distribution is:

D(µ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K

∏
k=1

µ
αk−1
k (4)

where the Γ (Gamma) function is used for normalization;
µk ∈ [0,1] is a distribution of target’s existence in the rooms;
and α0 =∑

K
k=1 αk. The expectation of this Dirichlet distribu-

tion is the prior belief of the target’s existence in each room.
If event Ek represents the target’s existence in room k, the
probability of this event based on the Dirichlet prior is:

p(Ek|D) = E(µk) = αk/α0 (5)

The Dirichlet distribution models the conditional probabil-
ity of target’s existence in each room given it exists in the
domain. To support learning from positive and negative ob-
servations, and reasoning about the target’s non-existence in
a room or domain, α also initialize Beta distributions that
model the existence of the target in each room:

B(φk|αk,βk) =
Γ(αk +βk)

Γ(αk)Γ(βk)
φ

αk−1(1−φ
βk−1) (6)

where βk is the support for target’s non-existence in room
k. The expectation of Beta distribution for room k serves
as prior belief that the target exists in room k. If event E
represents the target’s existence in the domain:

p(Ek|B) = E(φk) =
αk

αk +βk
(7)

The probability that the target does not exist in the domain
can be derived, assuming Ei and E j are independent ∀i 6= j:

p(¬E) = ∏
k

p(¬Ek|B) = ∏
k
(1− p(Ek|B)) (8)

3.4 Using Positive and Negative Observations
Inference based on lack of evidence is a significant chal-
lenge, but negative observations can help identify eventuali-
ties not modeled by the POMDPs. For instance, not observ-
ing a target or related objects in multiple rooms can be used
to reason about the target’s absence in the domain; this is not
computed in the standard POMDP models and introducing a
(special) terminal state invalidates invariance properties ex-
ploited for computational efficiency.

Let D be the event that the target is detected; and FoV
the event that target is in the robot’s field of view. The
objective is to calculate p(¬E|D) and p(¬E|¬D), and thus
p(E|D) and p(E|¬D), given the POMDP belief state B and
action a. To do so, the distribution of target existence and
non-existence (in the domain) are updated along with the
POMDP belief update. The prior beliefs computed in Sec-
tion 3.3 are (re)interpreted as beliefs conditioned on the ex-
istence (or non-existence) of the target in the domain.
Negative Observations: Not detecting a target at a spe-
cific location should not change the probability of target’s
existence outside the robot’s field of view, which is the prod-
uct of the probability that the target exists in the domain, and
the probability that the target exists outside the robot’s view
given its existence in the domain—the latter value can be
computed from POMDP beliefs. The reduction in the prob-
ability of target’s existence in the field of view will be added
to the probability of target’s non-existence in the domain:

p(¬E|¬D) = p(¬E)+ p(E)(p(FoV |E)− p′(FoV |E)) (9)

= p(¬E)+ p(E)( ∑
si∈Λ(a)

B(si)− ∑
si∈Λ(a)

B′(si))

where B(si) and B′(si) are POMDP beliefs of state si before
and after the update using this observation; Λ is the set of
states that imply that the target is in the robot’s field of view.
Positive Observations: A positive observation should in-
crease POMDP beliefs in the field of view, and decrease:
(a) beliefs outside this region; and (b) probability of target’s
non-existence in domain. The posterior probability of tar-
get’s non-existence is computed using probabilities of the
target being detected given that it exists (or does not exist)
in the domain. The probability of the target being detected
when it does not exist is a fixed probability of false-positive
observations. The probability of target being detected when
it exists depends on whether it is inside or outside the robot’s
field of view. If target is in the field of view, probability of
a positive observation is given by the POMDP observation
functions; if it is outside the field of view, this is the proba-
bility of false-positives:

p(¬E|D) =
p(D|¬E)p(¬E)

p(D|E)p(E)+ p(D|¬E)p(¬E)
(10)

The conditional probability that target is detected given that
it exists (does not exist) is:

p(D|E) = p(D|E,FoV )p(FoV |E) (11)
+ p(D|E,¬FoV )p(¬FoV |E)

= p(D|FoV )p(FoV |E)+ p(D|¬FoV )p(¬FoV |E)
= ∑

si∈Λ(a)
p(D|si,a)B(si)+ ε ∑

si /∈Λ(a)
B(si)

P(D|¬E) = P(D|¬E,FoV )P(FoV |¬E)
+P(D|¬E,¬FoV )P(¬FoV |¬E)

= P(D|¬E,¬FoV ) = ε ∑
si /∈Λ(a)

B(si)

where ε is the probability of detecting a target when it does
not exist; p(D|si,a) is from POMDP observation functions.
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3.5 Belief Merging
The KB contains domain knowledge, including information
not directly relevant to the current task, while the POMDP
belief summarizes all observations directly related to the
current task. Our prior work heuristically generated a be-
lief distribution from answer sets and (weighted) averaged it
with POMDP beliefs (Zhang, Sridharan, and Bao 2012). In
this paper, the use of Dirichlet distribution to extract prior
beliefs from answer sets supports Bayesian merging:

p′(Ek) =
p(Ek|D) · p(Ek)

∑i p(Ei|D) · p(Ei)
(12)

where p(Ek) is the probability that target is in room k based
on POMDP beliefs.

4 Experimental Results
Experiments were designed to evaluate two hypotheses:
(H1) combining ASP and POMDP improves target local-
ization (accuracy and time) in comparison with the individ-
ual algorithms; and (H2) using positive and negative obser-
vations supports early termination of trials that should no
longer be pursued. While evaluating H1, models of positive
and negative observations are not included. When ASP and
POMDPs are used, Bayesian belief merging is compared
with: (a) not using the prior beliefs from ASP KB; (b) using
relative trust factors to merge beliefs (Zhang, Sridharan, and
Bao 2012); and (c) using weights drawn from the Dirichlet
distribution to merge beliefs.

Since it is a challenge to run many trials on robots, the
architecture was also evaluated extensively in simulation,
using learned object models and observation models to re-
alistically simulate motion and perception. For instance, a
simulated office domain consisted of four rooms connected
by a surrounding hallway in a 15× 15 grid. Fifty objects
in 10 primary classes (of office electronics) were simulated,
and some objects were randomly selected in each trial as
targets whose positions were unknown to the robot. The
robot revises the KB, including the basic object hierarchy
mined from repositories, during experimental trials. Each
data point in the results described below is the average of
5000 simulated trials. In each trial, the robot’s location,
target objects and their locations are chosen randomly. A
trial ends when belief in a grid cell exceeds a threshold (e.g.,
0.80). Some trials include a time limit, as described below.

To evaluate hypothesis H1, we measured the target lo-
calization accuracy and time when the robot used: (a) only
ASP; (b) only POMDPs; and (c) ASP and POMDPs. First,
the robot used domain knowledge and Equations 1-4 to in-
fer the target objects’ locations. ASP can only infer object
existence in rooms and cannot infer specific locations of ob-
jects in rooms. Figure 4(a) shows that when the robot has all
the domain knowledge (except the target), i.e., 100 along
x-axis, it can correctly infer the room containing the ob-
ject. The accuracy decreases when the domain knowledge
decreases, e.g., with 50% domain knowledge, the robot can
correctly identify the target’s (room) location with 0.7 ac-
curacy. However, even with 50% domain knowledge, the
correct room location is in the top two choices in 95% of the

trials. One key benefit of using ASP-based inference is thus
the significant reduction in target localization time.

Once ASP identifies likely locations of target objects,
POMDPs focus the robot’s sensing and navigation to iden-
tify specific locations of objects. Figure 4(b) summarizes
these experiments as a function of the amount of domain
knowledge included and used to generate prior beliefs—the
specific domain knowledge to be added is selected randomly
in the simulation trials. These trials have a time limit of
100 units. Trials corresponding to 0 on the x-axis repre-
sent the use of only POMDPs. Combining prior beliefs ex-
tracted from answer sets with POMDP beliefs significantly
increases target localization accuracy—the robot uses prior
knowledge to recover from incorrect observations, and uses
observations to revise existing knowledge. As the robot
acquires and uses more knowledge, localization accuracy
steadily improves—with all relevant domain knowledge (ex-
cept the target), accuracy is 0.96, and errors correspond to
trials with objects at the edge of cells.

Next, to compare the Bayesian approach of generating
and merging beliefs with other strategies, the KB is initial-
ized with 20% domain knowledge. Periodically, information
about some randomly chosen objects is added to simulate
learning. Inference in ASP produces new answer sets that
provide prior beliefs to be merged with POMDP beliefs to
guide subsequent actions. Results are summarized in Fig-
ure 5(a)—x-axis represents the localization error in units of
grid cells in the simulated domain, while y-axis represents
% of trials with errors below a value. For instance, with our
approach, more than 80% of the trials report an error of ≤ 5
units. These results indicate that our belief generation and
merging strategy results in much lower localization errors
than: not using ASP, our previous approach that used “trust
factors” to merge beliefs, and the Dirichlet-based weight-
ing scheme that assigns weights to ASP and POMDP beliefs
based on the degree of correspondence with the Dirichlet
distribution. Similar results were observed with different
levels of (initial) knowledge—assigning undue importance
to ASP or POMDP beliefs can hurt performance even when
significant domain knowledge is available.

Experiments were then conducted to evaluate hypothesis
H2. The KB is fixed, and in each target localization trial,
the target is randomly selected to be present or absent. A
baseline policy (for comparison) is designed to use ASP and
POMDP beliefs (similar to experiments described above);
this policy claims absence of target if it cannot be found
within the time limit. Figure 5(b) shows that exploiting pos-
itive and negative observations results in much higher target
localization accuracy while significantly lowering localiza-
tion time. If positive and negative observations are not ex-
ploited, comparable localization accuracy is only obtained
by allowing a much larger amount of time for localization.

We also evaluated the architecture on a physical (wheeled)
robot deployed in an office domain with multiple offices,
corridors, labs and kitchen. The robot learns the domain map
and localizes target object(s) by processing sensor inputs.
Videos are available online:
http://youtu.be/EvY Jt-5BqM
http://youtu.be/DqsR2qDayGQ
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(a) ASP-based target localization. (b) ASP+POMDP target localization.
Figure 4: (a) Target localization accuracy using only ASP; (b) Target localization accuracy as a function of % of domain
knowledge in the KB. Combining ASP and POMDP significantly increases accuracy in comparison with just using POMDPs.

(a) Belief merging strategies. (b) Using positive and negative observations.
Figure 5: (a) Using Dirichlet distribution for extracting prior beliefs from answer sets, and Bayesian belief merging result in
lowest localization errors; (b) Using positive and negative observations results in higher accuracy and lower localization time.

5 Conclusions
This paper described an architecture that integrates the
knowledge representation and reasoning capabilities of ASP
with the probabilistic uncertainty modeling capabilities of
hierarchical POMDPs. Experimental results in the context
of a mobile robot localizing target objects in indoor domains
indicates that the architecture enables robots to: (a) repre-
sent, revise and reason with incomplete domain knowledge
acquired from sensor inputs and human feedback; (b) gen-
erate and merge ASP-based beliefs with POMDP beliefs to
tailor sensing and navigation to the task at hand; and (c) fully
utilize all observations. Future work will further explore the
planning and diagnostics capabilities of ASP, and investigate
the tighter coupling of declarative programming and proba-
bilistic reasoning towards reliable and efficient human-robot
collaboration in real-world domains.
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