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Abstract

There is no denying the fact that AI’s original aim of
reproducing human-level intelligence has taken a back
seat in favor of the development of practical and effi-
cient systems for important but narrow domains under
numerous umbrellas. While the importance of percep-
tion for intelligence is now well-understood, a major
hurdle is to discover the appropriate representation and
processes that can seamlessly support low-level percep-
tion and high-level cognition in a computational archi-
tecture. There is no shortage of cognitive architectures
(see Samsonovich 2010 for a catalog), however, princi-
pled design is scarce. In this paper, we explicate our po-
sition and report on our ongoing investigations on rep-
resentation and processes for developing an intelligent
agent from first principles.

The Goal
We posit that the world is composed of interactions be-
tween spatiotemporal objects in space and time at multi-
ple levels of abstraction, where an object is defined as a set
of transformation-invariant signals repeatedly coincident in
space and time. The extent of this coincidence in space/time
determines the spatial/temporal size of the object. The sig-
nals might emanate from sensors in any perceptual modality
as well as from multiple modalities. Examples of spatiotem-
poral objects include visuospatial objects (e.g., chair, hu-
man), actions (e.g., running), events (e.g., party, exam, war),
audio objects (e.g., phonemes, spoken words), and so on.
Then, in order to live in this world, the primary goal of an
intelligent agent is to be able to discover coherent spatiotem-
poral objects at the highest level of abstraction from sensory
data in different modalities using all available resources. Ex-
amples of resources include, but not limited to, sensors, ac-
tuators, short- and long-term memory, sensory data, data la-
bels, rewards and punishments.

As a concrete example, consider an agent responsible for
the surveillance of a multi-story university building compris-
ing of different kinds of spaces, such as, classrooms, labs,
offices, restrooms, storerooms, corridors, elevators and stair-
cases. In order for the agent to detect any abnormality in any
space, it is imperative for it to know the norm in each of these
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spaces. To realize the difficulty of the problem, note that
each classroom is different; in fact, the same classroom is
different at different times of the day with different students
sitting in different locations, different instructors teaching in
different ways, and so on. How would the agent discover
the invariance or norm across all these different scenarios,
many of which it has never perceived before, with minimal
supervision? That is the crux to discovering coherent spa-
tiotemporal objects at the highest level of abstraction from
sensory data. It is noteworthy that a typical human at a young
age, possibly even higher animals, can recognize an envi-
ronment very quickly; the tricks to attain such expertise are
never taught explicitly in school or at home.

Our Approach
The story of six blind men who went to “see” an elephant
and ended up in complete disagreement as each touched a
different part of its body, is well-known. They will be able
to “see” the elephant if they can assimilate their perceptions
of the different parts into a coherent whole. One way of
achieving this is by crudely assuming the important func-
tions of an elephant and explaining how each of their per-
ceived parts contribute to performing those functions. The
presumed functions then becomes a crucial factor, hence it
is of utmost importance to select them judiciously. Our re-
search on understanding how the brain works, keeping the
goal stated in the last section in perspective, follows a simi-
lar vein, where different aspects of the brain circuitry is anal-
ogous to the different parts of the elephant.

A natural language captures in an unpremeditated fashion
the many, if not all, thoughts that arise in the collective hu-
man minds intent on communicating in that language. Nat-
ural languages have evolved over a long time and are con-
tinuously evolving. All languages have lexical categories or
parts of speech (e.g., noun, verb) with different variations
that classifies all words in the language. These lexical cate-
gories are our presumed functions. We want to understand,
in a principled way, how each of these lexical categories
might be implemented in the brain networks such that they
may be perceived from raw signals in different modalities.
In particular, we are interested in five lexical categories in
English – noun, verb, adjective, adverb and preposition. Be-
ing successful in this endeavor will enable us to build intel-
ligent agents that can learn a large vocabulary of words as
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percepts from raw signals where each percept represents the
invariance for a class of spatiotemporal objects. If these per-
cepts are labeled with words, such an agent will be able to
understand the words in an embodied and grounded manner,
and perform beyond symbol manipulation. In the rest of this
paper, we present our framework, including representations
and processes, guided by this approach, along with selected
results and some intriguing issues.

Framework
In our framework, an object O(`), at any level of abstrac-
tion `, is composed of a finite set of invariant features
{O(k1)

1 ,O(k2)
2 , ...O(kn)

n } where each feature O(ki)
i is an ob-

ject at a lower level, i.e. ki < ` ∀i, i 6= j ; ki 6= kj . In
order to design a minimalist model for discovering such ob-
jects, we speculate two hypotheses.

Horizontal hypothesis: The objectives of learning algo-
rithms operating in the different perceptual cortices are sim-
ilar. This common cortical algorithm hypothesis is sup-
ported by neuroscience evidence (Constantine-Paton and
Law 1978; Metin and Frost 1989; von Melchner, Pallas, and
Sur 2000; Bach-y-Rita and Kercel 2003).

Vertical hypothesis: The brain implements a small set of
computations that are recursively executed at multiple stages
of processing, from low-level perception (suited for tasks
such as numeral recognition, speech recognition) to high-
level cognition (suited for tasks such as medical diagno-
sis, criminal investigation). Besides being a useful design
constraint, it helps identify canonical computations in the
brain, existence of which has been indicated by research in
sensory systems (Rust et al. 2005; Kouh and Poggio 2008;
David et al. 2009; Douglas and Martin 2010).

Architecture
Our model is implemented in a neural network architec-
ture consisting of a hierarchy of layers of canonical com-
putational units called nodes (see Fig. 1a) where each layer
corresponds to a level of abstraction (Banerjee and Dutta
2013c). Each layer ` consists of two sublayers – simple
neurons in the lower sublayer S(`) and complex neurons
in the higher sublayer C(`) (see Fig. 1b).1 Thus, our ar-
chitecture is a cascade of alternating simple and complex
sublayers, similar to a number of multilayered neural mod-
els, such as Neocognitron (Fukushima 2003), HMAX (Serre
et al. 2007) and convolutional neural networks (LeCun and
Bengio 1995), though they do not necessarily have a node
structure. Neurons in a node are connected to those in the
neighboring nodes in the same layer, one layer above and
one layer below by lateral, bottom-up and top-down connec-
tions respectively. The lowest layer in the hierarchy receives
input from external stimuli varying in space and time.

Each neuron has a spatial receptive field (RF) and a tem-
poral RF, both of fixed sizes. The size of a stimulus it op-
timally responds to may be less than or equal to its spatial

1The terms “simple” and “complex” neurons are used due to
their functional resemblance to simple and complex cells in V1.
Our architecture is not designed to model any part of the brain;
however, similarities, in particular with neocortex, are inevitable.

and temporal RF sizes. All neurons in a sublayer have same
sized RFs. The size of spatial RF of a simple neuron in S(`)

is defined by the number of nodes in its lower layer, C(`−1),
reporting to it at any time instant. A neuron in layer ` sam-
ples the input stream every τ (`) instants of time, where τ (`)
is referred to as the temporal RF size of the neuron. Complex
neurons in C(`) sample the input at a lower frequency than
simple neurons in S(`), i.e. τ (C

(`)) > τ (S
(`)). Conceptually,

a neuron in C(`) fails to distinguish the temporal sequence
of events occurring within τ (C

(`)) instants of time, and hence
considers all of those events to occur simultaneously (Dutta
and Banerjee 2013). However, a neuron in S(`) can keep
track of the temporal sequence of events occurring within
τ (C

(`)) time instants due to its higher sampling frequency.
The feedforward weights leading to a neuron encode a set.
For a simple neuron, such a set comprises a feature while
for a complex neuron, the set comprises a transformation.
Optimal response of a simple neuron indicates the existence
of the feature in the input while that of a complex neuron
indicates the existence of the transformation in the input.
Functionally, a node is a set of spatial/temporal filters, all
of which are applied to the same location in the input data.

A multitude of functions have been attributed to lateral
connections in the cerebral cortex. They run both within a
particular cortical area and between different cortical areas
(Gilbert and Wiesel 1983), and may be divergent or con-
vergent (Rockland and Lund 1983). Lateral connections in
the visual cortex interconnect columns of orthogonal orien-
tation specificity (Matsubara, Cynader, and Swindale 1987)
as well as similar orientation specificity (Gilbert and Wiesel
1989), and produce both excitation and inhibition (Hirsch
and Gilbert 1991).

In our architecture, lateral connections among simple neu-
rons within a node encode temporal transition probabili-
ties (see Fig. 1c). A simple layer encodes temporal corre-
lations of spatial changes; such strong correlations may be
abstracted as causal knowledge. For example, start button in
remote is pressed at time t1 (spatial change encoded by a
simple neuron), TV turned on at t2 (spatial change encoded
by another simple neuron). This correlation is directional in
time (t1 < t2). The lateral connections among complex neu-
rons across nodes encode spatial transition probabilities (see
Fig. 1a). A complex layer encodes spatial correlations of
temporal changes; for example, backrest of chair is moved
at location x1 (temporal change encoded by a complex neu-
ron), seat of chair is moved at x2 (temporal change encoded
by another complex neuron). Their strong correlation may
be abstracted as structural knowledge that the backrest and
seat belong to the same object called “chair”. This corre-
lation is non-directional. Without lateral connections, each
neuron will merely learn a set of features without their rela-
tive locations in space or time.

Processes
The processes include algorithms for learning, from data, the
neural architecture and inferring from it. We posit that the
brain runs a relentless cycle of Surprise → Explain →
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Figure 1: The neural network architecture used to implement our model. Reproduced from (Banerjee and Dutta 2013c). (a)
Each layer Li is a pair of simple and complex sublayers. Circles denote nodes. (b) Feedforward connections from a simple to a
complex sublayer node. Circles denote neurons. W (I,S) are learned to encode spatial sets or features in S. W (S,C) are learned
to encode temporal sets or transformations in C. (c) Lateral connections in S within a node. These lateral weights W (S,S) in
conjunction with W (S,C) are modeled to learn sequences.

Learn → Predict involving the real external world and
its internal model. Our perceptual organs sample the envi-
ronment at regular intervals of time. To maintain a true cor-
respondence between the real world and its internal model,
the stimulus obtained at any sampled instant must be ex-
plained. By learning from explanation, the internal model
is kept up-to-date with the nonstationary data distribution
of the external world. An accurate internal model facilitates
correct predictions (or expectations), thereby allowing us to
act proactively and efficiently in the real world. When an
expectation is violated, surprise occurs.

We use a general-purpose computational model, called
SELP, for learning the neural architecture from space- and
time-varying data in an unsupervised and online manner
from surprises in the data (Banerjee and Dutta 2013c).
Given streaming data, this model learns invariances using
four functions – detect any unexpected or Surprising event,
Explain the surprising event, Learn from its explanation,
Predict or expect the future events – and hence the name.
In accordance with our vertical hypothesis, these four com-
prise the set of computations recursively carried out layer by
layer. However, the relative amount of time spent on them
might vary between layers (see Fig. 2). Typically, in lower
layers, the explanation cycle runs within the prediction cy-
cle at a faster time scale while it is the opposite in higher
layers. Explanation in the lower perceptual levels can be
crude as pixel-level accuracy in reconstructing a scene is
seldom required. In contrast, higher cognitive levels have to
explain and reason with complex scenarios which often re-
quire deliberation involving distal knowledge that cannot be
executed quickly. On the other hand, accurate longer term
predictions in the higher levels are seldom required. Since
transformations in the lower levels are learned through pre-
dictions, hence predictive accuracy is crucial. Task require-

ments can always override these typical behaviors.
The prediction cycle in our model bears resemblance to

predictive coding (Rao and Ballard 1999; Lee and Mumford
2003; Jehee et al. 2006; Bar 2007; Friston 2008; Spratling
2011; Chalasani and Principe 2013) which has been claimed
to be employed in different parts of the brain, such as
retina (Srinivasan, Laughlin, and Dubs 1982; Hosoya, Bac-
cus, and Meister 2005), visual pathway (Fenske et al. 2006;
Bar and others 2006; Hesselmann et al. 2010), auditory
pathway (Vuust et al. 2009; Denham and Winkler 2006;
Hesselmann et al. 2010; Winkler et al. 2012; Wacongne,
Changeux, and Dehaene 2012), mirror neuron system (Kil-
ner, Friston, and Frith 2007), and even in multisensory areas
(van Wassenhove, Grant, and Poeppel 2005).

Salient properties of SELP. They are as follows:
1. Learns efficiently. Predictive coding is a very efficient

paradigm for learning from streaming data as it learns se-
lectively in time. It learns only when a prediction error or
surprise occurs, unlike traditional learning algorithms that
continue to learn from data all the time. However, predictive
coding models, like traditional learning algorithms, learn
from data in the entire space. Our model learns from spa-
tiotemporal data selectively in time and space (Banerjee and
Dutta 2013a). At any instant, it operates on input which is
the change in the state of data between the current and last
sampling instants as opposed to the entire state of data. This
allows the model to concentrate on spatial regions of most
significant changes and ignore those with minimal changes,
thereby allowing all computational resources to be deployed
for learning from a small but most interesting space of the
data at any instant. Pursuit of efficiency leads to emergence
of attention, inhibition of return, fixations and saccades in
our model.
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Figure 2: The SELP cycles. See text for details. Reproduced
from (Banerjee and Dutta 2013c).

2. Learns the relations in the input. Our generative model
does not generate the input but the relations in the input
both in space and time. Higher level features are abstracted
from correlations of lower layer neuronal activations (Dutta
and Banerjee 2013). Such features are invariant to the abso-
lute nature of the input. Since temporal (spatial) correlations
of spatial (temporal) changes may be abstracted as causal
(structural) knowledge, SELP is intrinsically designed to
discover such knowledge. Learning from correlations leads
to emergence of iconic and echoic memories and neural
adaptation (Banerjee and Dutta 2013c).

3. Learns shallow first, inferences deep first. If higher
layer features are abstracted from lower layer ones, the for-
mer will be unstable if the latter are. Thus, learning features
layer-by-layer starting with the lowest or most shallow layer
is widely followed in deep architectures. The higher fea-
tures have a more global view of the world compared to their
lower counterparts. Hence, inference from a higher level is
expected to be more robust. In our model, the activations are
propagated to the higher layers until a layer emerges as the
winner. Since activations are due to surprises, the layer with
the sparsest activations is considered the winner. This layer
then dictates its lower layers to explain the input, if required.

4. Learns discriminative features by explanation. Features
that discriminate between two objects or two classes of ob-
jects are learned in our model by first seeking them out
through the process of explanation. Often discriminative fea-

tures are salient, as in dog vs. man. However, when discrim-
inative features are not so salient, as in identical twin sib-
lings, a compute-intensive search in the space of features is
required which is achieved by the SELP explanation cycle.
This search may be implemented using orthogonal matching
pursuit (OMP) (Pati, Rezaiifar, and Krishnaprasad 1993), an
iterative algorithm widely used to compute the coefficients
for the features in a generative model. OMP is a general-
ization of coefficient computation in spherical clustering as,
for an input, the latter requires only one feedforward pass of
OMP to determine the coefficient. Thus, the same algorithm
can support a single feedforward pass to identify salient dis-
criminative features as well as an iterative process to seek
out the not-so-salient ones.

5. Gets over the blind faith of supervised learning. The
implicit assumption in supervised learning is that data labels
are generated from a source with no unreliability or noise.
If the source is noisy, which is often the case in real world,
the result of training with blind faith on the labels is worse
than learning with no label. Our model treats labels as in-
formation in just another modality which may (or may not)
provide consistent cues towards discovering an object.

Our algorithms for a simple layer are briefly described
here. Details are in (Banerjee and Dutta 2013a; 2013b;
2013c). At each sampling instant, our model predicts the
change in the data. If X(t) is the state of the data at time
t, the input to the model at t is:

∆X(t) = X(t)−X(t− 1) (1)

The model’s predicted input is ∆X̂(t) = X̂(t)−X(t− 1).
Hence, the predicted state of the data X̂(t) can be computed
given the predicted input and the state of the data at the last
time instant.

Neuron. Activation of ith simple neuron in L1 at time t is:

A
(S)
i (t) =

∑
j

A
(I)
j (t)×W (I,S)

ji (t) (2)

where W
(I,S)
ji (t) is the weight or strength of connection

from the jth neuron in input layer I (or L0) to the ith neu-
ron in simple sublayer S at t, andA(I)

j is the activation of jth
neuron in I . Activation of a S neuron denotes the strength
of the feature, encoded by the feedforward weights leading
to it, in the input. A simple neuron acts as a suspicious coin-
cidence detector in space.

A complex neuron integrates activations from presynap-
tic simple neurons over its temporal RF and fires if the in-
tegrated input crosses its threshold. Activations of complex
neurons in sublayer C at time t are:

A(C)(t) =

t∑
h=t0

A(S)(h)×W (S,C)(h) (3)

where t0 is a time instant from when the complex neurons
start integrating, t− t0 ≤ τ (C). A complex neuron acts as a
temporal coincidence detector. Each column in W (I,S) and
W (S,C) is normalized to have unit norm. Operation in the
complex layer is detailed in (Dutta and Banerjee 2013).
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Surprise. A surprise is evoked when the actual input does
not match the model’s expected or predicted input. The input
layer neurons are activated as a direct response to surprise
which is computed as follows:

A(I)(t) = ∆X(t)−∆X̂(t) (4)

Note that this expression is the same asX(t)−X̂(t), i.e. the
difference between the actual and predicted states of data. It
has been conjectured that responding to a class of surprises
is a basic function of individual neurons (Fiorillo 2008; Gill
et al. 2008; Egner, Monti, and Summerfield 2010). Meyer
and Olson (2011) have shown that inferotemporal neurons
respond much more strongly to unpredicted transitions than
to predicted ones. Gill et al. (2008) have shown that auditory
neurons encode stimulus surprise as opposed to intensity or
intensity changes.

Explain. At any sampling instant, the final activationA(S)

of simple neurons is the sum of predicted activations Â(S)

and the activations A
(S)

required to explain the surprise or
prediction error. In general, explanation may be construed
as constructing a story or composite hypothesis that best ac-
counts for the surprise. Here a simpler case is considered
where explanation is construed as reconstruction of the sur-
prise A(I) using the learned features and their activations
A

(S)
, by minimizing the following loss function:

Erecon(A(I)|W (I,S)) ≡ 1

2
‖A(I) −W (I,S) ×A(S)‖22 (5)

s.t. ‖A(S)‖0 ≤ n

where ‖A(S)‖0 ≡ #{i : A
(S)

i 6= 0}, n is a positive integer,
and each column of W (I,S) is a feature that has been nor-
malized to have unit norm. The condition onA

(S)
constrains

the maximum number of features used in the reconstruction,
thereby inducing sparsity. Since n is less than the number of
available features, A

(S)
may be computed using OMP.

Therefore, the final activation A(S) at time t is:

A(S)(t) =


Â(S)(t), if there is no surprise

i.e., A(I)(t) = 0

Â(S)(t) +A
(S)

(t), otherwise
(6)

If there is no surprise, explanation is not required and the
SELP cycle turns fast. If the surprise is large, the explanation
might require longer time. Thus, the speed of execution of
the SELP cycle is data dependent.

Predict. At any sampling instant, our model predicts the
activation of the ith simple neuron for the next instant:

Â(S)(t+ 1) = W (S,S)(t)×A(S)(t) (7)

where W (S,S) is the transition matrix encoded by the lateral
weights in S. Then, the predicted change in input is:

∆X̂(t+ 1) = W (I,S)(t)× Â(S)(t+ 1) (8)

The predicted input is: X̂(t + 1) = X(t) + ∆X̂(t + 1),
though it is not required to be computed in our model.

Learn. There are two sets of weights,W (I,S) andW (S,S),
to learn in a simple layer. The former is learned to minimize
the reconstruction error while the latter to minimize predic-
tion error. The prediction loss function is:

Epred(A(S)|W (S,S)) ≡ 1

2
‖A(S) − Â(S)‖22 (9)

where Â(S) is computed as in equation 7. Learning in the
simple layer amounts to minimizing the explanation and pre-
diction errors in conjunction, i.e. Erecon + Epred subject to

‖A(S)‖0 ≤ n. There are different ways of computing this,
see for example (Rao 1999; Chalasani and Principe 2013).

Discussions
Our model was exposed to spatiotemporal data in different
modalities. To illustrate how it learns from surprise, the fol-
lowing experiment was performed. Two images, that of Bar-
bara and Lena, were presented to the input layer I for t=1
through 49 and 50 through 100 iterations respectively. Dur-
ing the presentations, spatial structure in the images were
learned by the lateral connections across nodes while the
temporal pattern of presentation of the same image (t=1–
49, 50–100) was learned by the lateral connections in each
node. At any iteration, the current spatial and temporal struc-
tures learned in the network can be viewed from its expec-
tations, as shown in Fig. 3. Learning of the new structure is
noteworthy as image of Barbara was suddenly changed to
that of Lena at t=50. The ghost of Barbara gradually disap-
pears via a damped oscillatory behavior in the background of
Lena. This phenomenon, akin to iconic memory, is due to the
inability of lateral connections to forget the existing corre-
lations immediately. The analogous phenomenon of echoic
memory is observed when the same experiment is performed
with audio stimuli.

To test feature learning in simple layer, as stimuli we used
17 videos recorded at different natural locations with a CCD
camera mounted on a cat’s head exploring its environment
(Betsch et al. 2004). These videos provided a continuous
stream of stimuli similar to what the cat’s visual system is
naturally exposed to, preserving its temporal structure. Us-
ing the objective in equation 5, the features learned in the
feedforward connections by the simple layer is shown in
Fig. 4. Qualitatively, the features belonged to three distinct
classes of RFs – small unoriented features, localized and ori-
ented Gabor-like filters, and elongated edge-detectors. Such
features have been observed in macaque V1. Some transfor-
mations learned in the complex layer are shown in Fig. 5.

A generative model can be learned with weights con-
strained to be non-negative (see Fig. 4). We observe, learn-
ing with unconstrained weights often gives rise to comple-
mentary features, such as on-center-off-surround and off-
center-on-surround, which raises the question – do we need
to perceive instances and their complements in order to learn
from both, or does an intrinsic mechanism allow our brains
to learn the complementary features by perceiving only the
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Figure 3: Learning from surprise by the input layer of our model. Emergence of iconic memory is noteworthy. Reproduced
from (Banerjee and Dutta 2013c).

(a) (b)

Figure 4: 256 features learned in simple layer from natural
images with non-negative (a) and unconstrained (b) weights.
Reproduced from (Banerjee and Dutta 2013c).

instances? Consider this higher level example: All birds Tom
has seen can fly. One day he sees a car run over a bird.
While trying to explain this incident, he realizes it can be
best explained by assuming some birds cannot fly. So, even
though he has never seen a bird that could not fly, he learned
that fact by explaining some input. We are not aware of any
experiment in the literature that sheds light on this issue.

In conclusion, we presented a multilayered neural archi-
tecture learned by the SELP cycles. The feedforward con-
nections to simple and complex neurons encode spatial and
temporal sets which correspond to spatiotemporal objects
(nouns) and their transformations (adjectives) respectively.
Such a transformation over time, encoded by the lateral con-
nections within a simple node in conjunction with the feed-
forward connections to a complex layer, may be conceived
as a mental action on the object it is associated with, thereby
performing the function of a verb. The spatial and temporal
transformations of these actions, learned by the higher layer

Figure 5: Eight transformations learned by complex neurons
from natural videos. All weights were constrained to be non-
negative. Reproduced from (Dutta and Banerjee 2013).

neurons, correspond to adverbs. Lateral connections within
a node and across nodes associate objects temporally and
spatially respectively, corresponding to prepositions.
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