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Abstract 
Quantitative symbolic process models are proposed as a 
high-level model representation for probabilistic causal 
knowledge and know-how. These representations have suit-
able expressive power and mathematical foundation to serve 
as an abstraction of intelligence in much of AI research. 

Extended Abstract   
The symposium question “How should intelligence be ab-
stracted in AI research?” is an attractive one for anyone 
with a favorite Artificial Intelligence representation 
framework to propagate. The success of graphical models 
in machine learning provides one example of how influen-
tial such paradigms can be. Others include neural net-
works, Lisp programming, logic, semantic networks, 
search algorithms, partially observable Markov decision 
processes, and so on. Even so there is no basis for a single 
approach to be adopted exclusively. Here we look to some 
less familiar abstractions developed mainly for quantitative 
scientific modeling of complex biological systems, that 
merge symbolic computer algebra with predictive numeri-
cal computing. These process-modeling abstractions could 
provide an encompassing framework that enables model 
reduction and other model-centric approaches to some of 
the classic topics of AI. 
 In AI, a language for representing processes in general 
could be applied to representing causal knowledge, such as 
embodied for example in the differential equations of me-
chanics; generative statistical models for pattern recogni-
tion; and procedural knowledge: knowledge of how to do 
something, including recipes, control laws and game strat-
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egies. On the other hand declarative knowledge is not en-
tirely omitted, since the valid inferences of any logic can 
also be represented as elementary steps in a symbolic logi-
cal deduction process. A first desideratum for an AI-
adequate process-modeling language is that all these dis-
parate kinds of processes should be concisely representa-
ble. A second desideratum, best motivated from scientific 
applications, is closure under foreseeable multiscale model 
reductions (discussed in (Mjolsness 2012)). A third desid-
eratum, clearest from the point of view of programming 
language theory, is a compositional language structure with 
a correspondingly compositional semantics. 
 All of these desiderata for a general-purpose quantitative 
process-modeling language can be met (for example) by 
starting with “Dynamical Grammars” (Mjolsness and Yo-
siphon 2006) (Yosiphon 2009), recursively structured 
grammars that specify hybrid deterministic/stochastic dy-
namical systems by using discrete rewrite rules modulated 
by continuous-valued algebraic expressions for rates. The 
compositional semantics of Dynamical Grammars (DGs) is 
given in terms of an operator algebra, so that each rule in a 
grammar determines a linear time-evolution operator on 
probability distributions over a state space, and if time is 
modeled continuously then the various operators just sum 
up. Though a different name was used in (Mjolsness 2012), 
here I will call the general class of models in such lan-
guages “Quantitative symbolic process models” (QSPMs). 
 The ontology of this kind of modeling language is, coin-
cidentally, grammatical. Just as there are verbs, nouns, and 
prepositions in natural language, so there are processes, ob-
jects, and relationships in DGs or QSPMs. Processes have 
the semantics of time-evolution operators in a ring of oper-
ators. Objects are represented as grammatical terms bear-
ing parameters, starting with integer- and real-valued base 
types. These operators can define either continuous or dis-
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crete changes of state, the former represented in the lan-
guage by differential equations and the latter by rewrite-
rule firings corresponding to discrete events. Variable-
binding in rules is an emergent property of summation or 
more generally integration of operators over object param-
eter values, in the operator semantics of grammar rules. 
Relationships between objects can be specified concretely 
by shared values of discrete-valued parameters. Meta-rules 
can operate symbolically on rules, allowing symbolic DG 
rules (including their algebraic rate expressions) to be 
treated as another data type and enabling metamodels in-
spired by biological development. These features have all 
been implemented within a computer algebra system (Yo-
siphon 2009). Potential generalizations of the allowable set 
of object types (nouns) are described in (Mjolsness 2010). 
 For example, a Markov chain on a sparse set of transi-
tions could be represented by the single rule 
 

{state(j), M=transition(i, j, r)→state(i), M with r}. 
 

Likewise a fixed Hopfield-style continuous-time analog 
neural network could be represented by two (unordered) 
rules: 

 
{in=neuron(uin, vin), out=neuron(uout, vout), 

   C= connection(in, out, T)  
  → in, C, out=neuron (uout +duout, vout)  

 solving duout/dt = T vin , 
 neuron(u, v) → neuron(u, v+dv)  
 solving dv/dt= kfast (g(u)-v)} . 

 
Similar encodings could be given for genetic algorithms, 
logical inference, network graph grammars, visual gram-
mars (Mjolsness 1992), and structural graph matching. A 
more complex scientific application example is the detailed 
biochemical/biomechanical plant root development model 
of (Mironova et al. 2010) (Mjolsness 2013). 
 Alternatively, relationships between DG objects could 
be formulated more abstractly with graphs and graph 
grammar rule syntax. DGs themselves could be given an 
explicitly graphical representation similar to Petri nets: Ob-
ject terms would be red nodes and process rules are blue 
nodes in a directed bipartite labelled graph. Object nodes 
would be labelled with the parameter type signature, and 
process nodes with the required binding constraints (per-
haps represented as a graph) and symbolic-algebra rate ex-
pressions. So far these more graphical representations of 
DGs have not been explicitly implemented. 
 As the foregoing simple examples show, QSPMs are ex-
pressive both for models of the natural world and for other 
AI frameworks. Maximum likelihood parameter estimation 
from data is also possible, at least for a much-simplified 
version of the operator algebra semantics in stochastic 
chemical kinetics (Wang  et al. 2010). 

 One additional concept is essential to the present vision: 
model reduction. As practiced eg. in (Johnson 2012), a re-
duced model can be trained to roughly predict, out-of-
sample and under some well-defined conditions, the time 
course of selected observables in a much larger dynamical 
stochastic process model. With model reduction, develop-
mentally-inspired metamodels, and subgrammar calls (Yo-
siphon 2009), an entire ecology of semantically interrelated 
high-level models could be usefully evolved. Or so we may 
expect – only future experiment can tell. If so, QSPMs 
have the potential to translate many external, application-
specific problems into internal, AI-general problems whose 
technical solution will thereby gain wider impact. 
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