

Carving Out Evolutionary Paths Towards Greater Complexity

Gene I. Sher
University of Central Florida

GSher@knights.ucf.edu

Abstract
We really know of only a single intelligence abstraction
approach that truly does work, the one based on the
interconnection of spatio-temporal signal integrators in a
vast graph: Neural Network. We also know of only one
method that was able to generate such abstracted
intelligence: Evolution. The proof that this abstraction and
this generative method works is us, you and I, the result of
billions of years of trial and error. There is nothing mystical
about the human brain, it is but a vast graph of signal
integrators, carved out in flesh through billions of years of
evolution. In this paper we discuss: intelligence abstraction
based on neural networks, complex-valued artificial neurons
and their computational potential to be equivalent to
biological ones, the approaches that could result in the
generation of such intelligent graphs of interconnected
complex-valued neurons, an architecture of infomorphs
whose brains are complex-valued neural substrates, and why
an ALife approach on high enough granularity level is our
best chance of evolving organisms that are truly intelligent.

1. Introduction
Thus far, we only know of a single abstraction and a single
method that has resulted in intelligence, neural networks
(NN) and evolution, respectively. The result of this NN
abstraction, and the method for generating and connecting
together these neurons, is us, you and I, the result of
billions of years of trial and error. Our neurocognitive
computers, our brains, have been carved out in flesh
through billions of years of evolution. A computational
approach inspired by just these types of processes is called
Neuroevolution [1,2,3], and it has already yielded a large
number of solutions to different types of problems. The
problems that the neuroevolutionary systems have been
used to solve range from evolving classification systems,
to evolving controllers for robotic systems, to evolving
brains for organisms in ALife simulations [4,5].
 Since one of the grand goals of the research within
computational intelligence is the creation of artificial

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

general intelligence on the level of, or greater than human,
it is important of us to discuss four things: 1. How to
abstract intelligence. 2. Architecture of such intelligence
and infomorphs (A NN with sensors and actuators). 3.
How to evolve such infomorphs. And finally 4. The tool
that would most perfectly fit the problem domain of
designing and developing such infomorphs. Thus in
Section-2 we discuss how fit the artificial complex-valued
neurons and complex-valued artificial NNs are when it
comes to generating intelligence. In Section-3 we discuss
what in general the architecture of an infomorph should be,
covering in particular one of such architectures proposed in
the Handbook of Neuroevolution Through Erlang [1]. But
simply stating that NNs within a particular infomorph
architecture can represent intelligence is not enough, since
what is most important is an evolutionary path towards
such a NN and infomorph architecture in general. Thus in
Section-4 we discuss one such approach, a method inspired
by the path nature took, evolving intelligence inside fine
level granularity artificial life simulations. With this
covered, we note in Section-5 how the most prevalent
programming languages conceptually differ too much from
such problem domains, but there are new emerging
programming languages, like Erlang, that perfectly map to
these type of systems. We briefly discuss Erlang, and its 1-
to-1 conceptual mapping to the problem domain of
concurrent and distributed NN based computational
intelligence. Finally, Section-6 concludes the paper, noting
our current and future work within this research domain.

2. The Neural Network Abstraction
There are two main issues we must consider when it comes
to abstracting a biological NN with an artificial one. The
first deals with signal encoding, frequency versus
amplitude. Second deals with general NN encoding, direct
versus an indirect one based on a generative and artificial
embryogenic approach. What choices must be made such
that the artificial NN has the same computational and
emergent system capabilities as the biological one?

108

How Should Intelligence Be Abstracted in AI Research ...
AAAI Technical Report FS-13-02

2.1 Frequency Vs. Complex Valued Encoding
It is uncertain whether frequency or amplitude encoded
NNs are more flexible and can be used for more varied
tasks. It is a fact though that both have been utilized for
everything ranging from classification to robot control
ALife. It is also a fact that both are Turing complete, thus
in the end, both are as powerful when it comes to their
computational and representational capabilities.
 Frequency encoding was not evolved because it is the
best possible encoding, but because it was simply the first
successful encoding that evolution came randomly across.
The simplest encoding that emerged. Individual biological
neurons are highly unreliable; frequency encoding is easier
to make more accurate than an amplitude based one when
it comes to biological signal generators.
 There is no reason why an amplitude encoded artificial
neuron cannot have all the capabilities of a biological one,
with amplitude specifying the average speed of a short
lived spike train. In an artificial neuron, neurotransmitter
receptors are represented by synaptic weights, which can
be increased and decreased in magnitude. And even
plasticity is easy to add, Hebbian, Ojas, or a custom one.
Furthermore, when it comes to an artificial neuron, not just
sigmoid/thresholding, but any activation function can be
used, or a combination of the same, to represent a single
biological neuron's activation function. Finally, if that is
still not enough to make an artificial neuron equivalent to a
biological one, we can use an entire neural circuit, which is
a universal function approximator [7], to represent a single
biological neuron and thus achieve computational and
representational equality.
 It could be argued though that there is one important
thing these amplitude-encoded approaches don't take into
consideration. A biological neuron is a spatio-temporal
signal integrator, where both the shape of the neuron and
spike arrival times within all the incoming spike-trains are
taken into consideration, with the calculations made at
every moment of whether to generate an action-potential or
not at the neuron's axon hillock. For this reason we propose
the utilization of complex-valued neurons and NNs [16,8].
 A complex valued neuron in a complex valued NN can
represent frequency and timing using a complex number.
This gives us the ability to allow our NNs to also posses
spatio-temporal processing capabilities, which is what we
think is currently missing from standard approaches. The
complex valued neurons are also perfectly represented
using optical hardware [9], even more so than their non
complex-valued versions, providing us with enormous
future potential with regards to hardware implementation.
 We see no reason why an amplitude encoded NN,
particularly a complex-valued one, using all the above
noted features, should have a lower representational
capability than a biological one. If anything, we believe

that it is more flexible, has a greater representational
potential, and whether represented in software or hardware,
would provide for a much greater level of reliability and
speed, particularly as our technology continues to progress.
2.2 Direct Vs. Indirect Neural Network Encoding
The human brain has on average 100 billion neurons, and
ten times as many glial cells. Not only the number of
neurons, but the total number of topological permutations
this number of elements presents, poses an enormous
challenge to evolutionary algorithms.
 In a direct encoded NN, the genotype has a 1-to-1
mapping to the phenotype, and when it comes to
neuroevolution, we are evolving the NN with the neuron as
the basic building block. This means that the mutation
operators are usually composed of adding and removing
neurons, splicing neurons, and adding and removing
synaptic connections. Thus it would be no small challenge
to evolve a NN of such vast complexity and scale when
having access only to these basic mutation operators.
 There is another way, an indirect encoding approach.
Analogous to the relation our phenotype has to our
genotype, where the DNA is transcribed to RNA which is
then translated to proteins. In our DNA, the genes encode
and interact with one another to generate in collaboration
and with the use of environmental factors, our phenotype.
But even then, our brains at birth do not contain all the
knowledge an adult human has, instead what has evolved is
a learning algorithm, and a set of neural structures capable
of containing and retaining useful information that the
learning structures and algorithms are capable of gathering
from the environment during the organism's lifetime. The
learning module itself could then indeed be much simpler
in topology and significantly smaller in size, while simply
using the vast NN of the human brain as the substrate on
which it encodes memories, knowledge, cognition...
through environment exposure. This does necessitate that
the NN based agent capable of learning, has the ability to
interact for a number of years with other agents and the
environment in which it exists, and thus develop over time.
In this manner the organism's intelligence is increased and
developed over its lifetime.
 This second approach, the indirect encoding approach,
can be seen to potentially requiring quiet a bit less to
evolve due to being smaller (we need only evolve a
learning function), while at the same time putting a greater
weight on the needed time, and the complexity of the
environment in which the agent develops.
 We believe that it is this second approach that is most
likely to generate intelligence. Thus, though it is NNs that
would represent the abstraction of intelligence, the
approach to putting the vast NNs into topologies needed
for intelligence, and the method of setting all the
parameters and plasticity based algorithms within, would

109

all be done through a generative/embryogenic system. It is
this developmental-system/plasticity-function that we
would evolve, rather than the entire NN itself directly.
 This generated NN would then require a significant
amount of time of interaction with the environment to
develop intelligence. This would require that the NN not be
simply a disembodied system, but have sensors, actuators,
and ability to interact with its environment, and thus
learning and developing over time. A NN with sensors and
actuators, capable of sensing from and acting upon the
environment respectively, is referred to as an infomorph.
An infomorph requires an environment and interaction
with other agents within it, which leads us to the
importance of high level granularity ALife simulation
needed to support this developmental cycle, a subject we
will discuss in Section-4.
 Before getting to the discussion of such an ALife
approach, we must discuss in more detail the indirect NN
encoding, and the infomorph architecture we are exploring
in which such NN would be embedded, giving it the ability
to interact with environment of the ALife simulation.

3. The Architecture Of An Infomorph
Having now discussed our perspective that a complex-
valued artificial neuron, or an artificial neural-circuit can
offer the same computational and representational potential
as a biological neuron, and thus an artificial NN composed
of such nodes can result in an emergence of intelligence
given the right topology and nodes composing the
infomorph, we now discuss more concretely the
architecture of the indirect encoded NN based infomorph.
 The human brain is a 3d substrate, with each neuron
having a coordinate. There is actually a significant amount
of axonal and dendritic pruning that occurs over the
human's first few years. And this is also why the first few
years are so important for an animal with regards to
learning. There is a substantial amount of plasticity, which
decreases and anneals over the first few years. The
memory formation is the result of the activities of:
hippocampus, amygdala, striatum, and mammillary bodies,
each of which is responsible for a certain type of memory
formation (spatial, emotional, etc.). Each neuron on its own
also has certain plasticity rules that it follows, further
modulated by the before noted memory specializing
structures. This separation of tasks, and the distinction
between the genotypically encoded and life-time developed
elements of our brain is summarized as follows:

1. Initially Present: Initial connectivity is mostly
genetically encoded, it is a substrate with
numerous rough regions prepared to acquire more
distinction, be fine tuned, and store new memories
(a just born animal starts off without having the

ability to balance, or make high level logical and
rational decisions, nor does it have memories and
experience to draw upon, all of these are
developed over its lifetime due to the plasticity
and learning rules).

2. Initially Present: The neural plasticity rules are
present from the start, defined by genotype, each
neuron having a plasticity rule which lets it
change through its interaction with other neurons.

3. Initially Present: Structures like the amygdala,
hippocampus, striatum... are also all functional
from the start, ready to modulate various parts of
the NN, and promote memory formation by
modulating plasticity rules, triggered by certain
environmental and particularly important events
(We tend to remember important events in our life
very clearly, this is an evolutionary adaptation).

4. Life-time developed: The NN substrate, ready to
be imprinted with memories and changed through
plasticity rules. The neural tissue is there from the
start, and through numerous plasticity rules, the
biological NN begins storing retrievable memory,
and change over the organism's lifetime, acquiring
more refined cognitive abilities. Our rationality,
ability to draw upon the memories and make
conclusions... these are all skills developed over
lifetime, due to plasticity, learning, and interaction
with the environment.

Having divided cognition into roughly 4 parts, 3 of which
are primarily genotypically encoded, and 1 developed over
the organism's life-time, we can now also decide on how to
construct the architecture of an infomorph containing such
structures, which parts would be directly encoded, and
which based on organism's development over its lifetime
due to interaction with its environment.
 Given that a NN is a universal function approximator,
we can use direct encoded NNs whose output function
would then be used either to define the above noted
initially present structures, or used as learning/plasticity
rules affecting the organism's NN over its lifetime. Thus:

1. The general structure and connectivity of the NN,
the neural substrate, the presence and connectivity
of each complex-valued neurode based on its
coordinate in 3d space, can then be defined by an
evolved, smaller direct encoded NN (an approach
to some extent inspired by the popularized
Hypercube encoding [10]). The brain is composed
of numerous regions, which to some extent are
specialized. This can either be achieved by using
multiple interconnected substrates, or a single
substrate whose regions are differentiated due to
the connectivity pattern an evolved NN paints on
it. Over time, as the function generated by this NN
increases in complexity, the density of the NN

110

structure it paints on the 3d neural substrate would
itself become more dense, and more intricate. We
think that spatio-temporal signal integration is
essential, thus unlike in standard hypercube-
encoding, we use a setup where each embedded
neurode is complex-valued [9].

2. The second independent and directly encoded NN
can then be evolved to define the general
plasticity rule for each neurode in this substrate.

3. The third independent and directly encoded NN
can then be connected to the plasticity NN,
affecting and modulating its plasticity function.

 In this manner we have 3 different NNs co-evolving and
shaping the substrate and the within embedded complex-
valued neurodes, for each infomorph. We thus provide the
agent with a neural substrate through NN-1, give each
neurode the ability to change over lifetime through some
steady plasticity rule defined by NN-2, with the plasticity
itself being modulated by the NN-3. The architecture of
such an infomorph is shown in Fig-1.

Fig-1. Architecture of an infomorph. NN-1 defines the
existence and connectivity of complex-valued

neurodes at each particular coordinate. NN-2 defines
plasticity rule for each neurode in the substrate. NN-
3 modulates NN-2 based on signals from substrate.

In this diagram, the substrate represents the 3d slab of
neurodes, where the expression and connectivity of each to
other neurodes, is defined by NN-1. NN-2 takes in as input
the pre-synaptic and post-synaptic neurode coordinate for
each connection, producing the change in weights for it,
inspired by the approach in [11]. Finally, NN-3 evolves
presynaptic connections to neurodes within the substrate,
with its output modulating NN-2, affecting its behavior and
thus plasticity rule for the substrate it modulates. Each of
these 3 NNs has its own distinct objective function.
 Each infomorph also has sensors and actuators. An
infomorph starts with a few simple sensors and actuators

for some basic simple body plan, but through mutation
operators can add new sensors and actuators, and connect
to and from the substrate respectively, as was for example
demonstrated in Ch-16 of [1]. The avatar of the infomorph
within a simulation could then have some easily evolvable
modular morphology, such that sensors and actuators have
a finite number of areas they can be attached at, producing
morphological designs based on setups we know work
(quadropods, bipeds...). In this manner, we can evolve an
infomorph whose morphology can also evolve with it over
time in some simulated environment. This environment
could be a 3d fine-granularity based simulation,
particularly if our goal is to evolve general computational
intelligence through ALife, as is discussed next.

4. Fine-Level Granularity Artificial Life
All the technology and algorithms we discussed until this
point already exist. For example the infomorph architecture
is currently being explored using the Topology and
Parameter Evolving Universal Learning Network system
called DXNN. The substrate type based indirect encoding
was inspired by [11]. We opted to use DXNN as the
neuroevolutionary algorithm with substrate encoding due
to its superior performance on benchmarks and real world
applications in our experience, and a more general
distributed architecture, allowing us to more easily
transition to the use of complex-valued neurodes. With all
this, what is necessary is to find a way to actually utilize
evolution to evolve and put all these elements together, to
guide evolution towards evolving general intelligence.
 Using DXNN and this type but slightly simpler
infomorphs controlling avatars in 2d environments in food
gathering, dangerous food gathering, and predator versus
prey simulations, we have already been able to evolve
interesting emergent behavior. For example in the predator
versus prey [12] simulation, the predators can push food
around and gain energy by eating prey, while the prey can
only gain energy by eating food particles, a very organic
behavior evolved. In this ALife simulation, the predators
learned how to hoard food particles, and also hide behind
them. At some point the prey would become hungry
enough to finally approach and eat the food particle, at
which point the predator hiding behind it would eat the
prey immediately afterwards, thus absorbing the energy the
prey agent got by eating. More complicated behavior can
not be expected in such a barren 2d environment composed
of only predator and prey avatars. Indeed it is this
environmental simplicity, and low level of malleability
and granularity within the majority of ALife simulations
that we think is the main barrier to evolving more complex
behavior. The complexity of the evolving agent within the
environment reflects the complexity of its environment.

111

4.1 Importance Of Environmental Complexity In ALife
Consider the following two thought experiments: 1. Simple
3d environment with flat scape, gravity, and spherical food
particles. This environment is inhabited by agents capable
of evolving their morphology and NNs. 2. Highly granular
environment, simulated on the level of molecules but with
the world starting of as flat initially, with the infomorphs
able to interact with every element of this environment.
 In the first simulation scenario, there is nothing for the
agents to do other than learn to move around and consume
food particles. Once these two problems are solved, there
is nothing new and no new niches that the agents can
uncover. Even if an agent can for example in a single or
very few evolutionary steps be able to evolve the ability to
consume other agents rather than food particles, the most
this will result in is the predator vs. prey scenario. At this
point, equilibrium is reached, and there is simply no
evolutionary push to evolve communication, or other types
of complex behaviors.
 Now let us consider the second scenario, where the
environment is malleable and simulated on a chemical or
micro level, where the agents can effect and interact with
it. Initially the environment is still flat, the agents first
learn how to move on it and consume the spherical food
particles. And as before they can, if the mutation operators
allow it, evolve the ability to consume each other (for
example if we allow for a mutation operator to add a new
actuator called “mouth”, which then transforms the avatar
into one of a predator, a simulation setup of which is
available in the open source DXNN [13]), from which the
predator vs. prey behavior would then emerge. But now the
agents can also interact with the environment and move
and change it. If we assume that at the beginning this flat
environment is like a flat surfaced sandbox, then the agents
will have the ability to move some sand particles around.
Just this simple action, which is done simply by moving
around, over time will change the landscape from very
simple flat like world, to one with geometrical and other
patterns on the sand, hills and valleys. This in itself will
push towards evolving the ability to navigate better, and
locomote better through the no longer flat surface. This
pushes for more complex neural setup to emerge. Predators
might begin taking advantage of certain valleys, and use
them to hide and ambush from. This would push the
evolution for prey to evolve better visual analysis, and
again more complex neural structures. This further would
push predators to for example begin digging or increasing
the depth or shape of existing valleys...
 As we can see, a malleable environment allows the
agents to become more complex. The agents change the
environment, slowly, which pushes the agents to change as
well. The environment also represents a one way
complexity function, because it can only become more
complex over time, and thus we do not get cyclical

evolution. The environment acts as memory of complexity,
pushing the agents towards ever more complex scenarios,
but very slowly, at the speed of the agent's own ability to
modify that same environment. This environment
generated fitness function towards greater neural and
morphological complexity is neither too high nor too low,
because the agents themselves carve out these evolutionary
paths towards greater complexity by modifying the
environment. And that is the difference and advantage that
environments simulated on a higher granularity level
provide. In such environments, the informorphs do have
the ability to evolve more and more complex, and arms-
race is supported, with the environment allowing the
agents to complexify at their own pace.
 This is exactly how the organisms in the natural world
evolved, and the reason for the supported higher and higher
complexity. We augmented our environment, and in
response had to change as well. The pace of
compexification was just right, because we set that pace
ourselves as we evolved and became more complex.
 When it comes to ALife, we do not have to start on the
molecular level when evolving the agents, because our
building blocks are neurons, and discrete set of sensors,
actuators, and morphologies we know work. Thus this
approach will not take billions of years. Furthermore, we
have the ability to guide evolution, we can also effect such
simulated environments, and decide what particular actions
get rewarded and punished. In this manner, we can both,
use this natural complexification effect, and also inject
some guidance. The only limit is the computational power
at our disposal. If we can create simulations on this level of
granularity, and allow the infomorphs the abilities noted in
the previous section, evolution will lead to greater
complexity naturally in such an ALife setup. The agents
will carve out their own evolutionary paths. It is this area
of research that we are currently pursuing, and it is this
approach that we believe will result in the evolution and
generation of general computational intelligence.

5. Neural Network Programming Language
 Finally, we would like to briefly mention a tool we
believe to be particularly appropriate for the development
of such systems. Standard programming languages like
Java, C++, Python, etc. have architectures very different
from NNs, which are naturally concurrent and distributed
multi-agent based systems. The smaller the conceptual gap
between the programming language and the problem, the
more complex the problems that can be tackled with it.
Thus, if you could design a NN programming language
from scratch, what features would it need to support? One
such list was made by Bjarne Däcker [14]:

112

“1. The system must be able to handle very large
numbers of concurrent activities.
2. Actions must be performed at a certain point in
time or within a certain time.
3. Systems may be distributed over several computers.
4. The system is used to control hardware.
5. The software systems are very large.
6. The system exhibits complex functionality such as,
feature interaction.
7. The systems should be in continuous operation for
many years.
8. Software maintenance (reconfiguration, etc) should
be performed without stopping the system.
9. There are stringent quality, and reliability
requirements.
10. Fault tolerance”

 Surprisingly enough, Däcker was not thinking about NN
systems, but telecom switching systems. A language that
was created from start for the development of just such
systems is: Erlang. Erlang is a concurrency oriented
message passing paradigm programming language whose
basic units are Processes, concurrent micro server/clients,
communicating with each other by message passing. With
fault tolerance, concurrency & distributed computing, and
code hot-swapping, being some of its key features. Due to
these and other features of the language, there is almost no
conceptual gap between it and the NN based CI problem
domain, as is discussed in more detail in [1,15].
 Though a full discussion of all Erlang's features is
outside the scope of this paper. It is essential to note this
perfect mapping between the tool and the problem allows
us to create more complex and more robust systems. It
makes it easier for us to reason about the problem domain,
and transfer the algorithms and architectures directly to the
implementation. Erlang, when it comes to research within
the domain of Neuroevolution and in general distributed
computational intelligence, we believe is a force multiplier.

6. Conclusion
In this paper we discussed and gave reasons for why a
modular indirect encoded NN using complex-valued based
substrate is a viable intelligence abstraction which could
lead towards more general computational intelligence. We
also discussed one possible architecture of a NN based
infomorph, where the environment is simulated on a high
enough granularity level (chemical), such that it allows the
infomorphs to modify the environment and evolve with it.
Finally, we also noted and suggested the use of Erlang for
this particular research domain, due to the language's 1-to-
1 mapping to this problem domain, with essentially zero

conceptual gap between the two. Our current and future
research deals with further exploration of the different
approaches to complex-valued neurode encoding for a
more accurate representation of spatio-temporal signal
integration occurring within a biological neurons and NNs,
exploration of compelx-valued neuroevolution, and further
exploration of advanced infomorph architectures.

References
[1] Sher, G. I. (2013). Handbook of Neuroevolution Through
Erlang. Springer.
[2] Kassahun Y, Sommer G (2005) Efficient Reinforcement
Learning Through Evolutionary Acquisition of Neural
Topologies. In Proceedings of the 13th ESANN 2005 (ACM
Press), 259-266.
[3] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural
networks through augmenting topologies. Evolutionary
computation, 10(2), 99-127.
[4] Sher, G. (2011, July). DXNN: Evolving complex organisms in
complex environments using a novel tweann system. In
Proceedings of the 13th annual conference companion on Genetic
and evolutionary computation (pp. 149-150). ACM.
[5] Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving mobile
robots in simulated and real environments. Artificial life, 2(4),
417-434.
[6] Maass, W. (1997). Networks of spiking neurons: the third
generation of neural network models. Neural networks, 10(9),
1659-1671.
[7] Cybenko., G. (1989) "Approximations by superpositions of
sigmoidal functions", Mathematics of Control, Signals, and
Systems, 2 (4), 303-314
[8] Amin, F., & Murase, K. (2009). Single-layered complex
valued neural network for real-valued classification problems.
Neurocomputing, 72(4), 945-955.
[9] Michel, H. E., Awwal, A. A. S., & Rancour, D. (2006, July).
Artificial neural networks using complex numbers and phase
encoded weights—electronic and optical implementations. In
Neural Networks, 2006. IJCNN'06. International Joint
Conference on (pp. 486-491). IEEE.
[10] Stanley, K. O., D'Ambrosio, D. B., & Gauci, J. (2009). A
hypercube-based encoding for evolving large-scale neural
networks. Artificial Life, 15(2), 185-212.
[11] Risi, S., & Stanley, K. O. (2010). Indirectly encoding neural
plasticity as a pattern of local rules. In From Animals to Animats
11 (pp. 533-543). Springer Berlin Heidelberg.
[12] ALife: http://www.youtube.com/watch?v=HzsDZt8EO70
[13] https://github.com/CorticalComputer/DXNN
[14] Däcker, B. (2000). Concurrent functional programming for
telecommunications: A case study of technology introduction.
Master's thesis, KTH Royal Institute of Technology Stockholm.
[15] Gene Sher (2012) “The Quintessential Neural Network
Programming Language”, Draft Proceedings of the 24th
Symposium on Implementation and Application of Functional
[16] Aizenberg, I., Aizenberg, N. N., & Vandewalle, J. P. (2000).
Multi-Valued and Universal Binary Neurons: Theory, Learning
Applications. Springer.

113

