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Abstract 
We really know of only a single intelligence abstraction 
approach that truly does work, the one based on the 
interconnection of spatio-temporal signal integrators in a 
vast graph: Neural Network. We also know of only one 
method that was able to generate such abstracted 
intelligence: Evolution. The proof that this abstraction and 
this generative method works is us, you and I, the result of 
billions of years of trial and error. There is nothing mystical 
about the human brain, it is but a vast graph of signal 
integrators, carved out in flesh through billions of years of 
evolution. In this paper we discuss: intelligence abstraction 
based on neural networks, complex-valued artificial neurons 
and their computational potential to be equivalent to 
biological ones, the approaches that could result in the 
generation of such intelligent graphs of interconnected 
complex-valued neurons, an architecture of infomorphs 
whose brains are complex-valued neural substrates, and why 
an ALife approach on high enough granularity level is our 
best chance of evolving organisms that are truly intelligent. 

1. Introduction   
Thus far, we only know of a single abstraction and a single 
method that has resulted in intelligence, neural networks 
(NN) and evolution, respectively. The result of this NN 
abstraction, and the method for generating and connecting 
together these neurons, is us, you and I, the result of 
billions of years of trial and error. Our neurocognitive 
computers, our brains, have been carved out in flesh 
through billions of years of evolution. A computational 
approach inspired by just these types of processes is called 
Neuroevolution [1,2,3], and it has already yielded a large 
number of solutions to different types of problems. The 
problems that the neuroevolutionary systems have been 
used to solve range from evolving classification systems, 
to evolving controllers for robotic systems, to evolving 
brains for organisms in ALife simulations [4,5]. 
 Since one of the grand goals of the research within 
computational intelligence is the creation of artificial 
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general intelligence on the level of, or greater than human, 
it is important of us to discuss four things: 1. How to 
abstract intelligence. 2. Architecture of such intelligence 
and infomorphs (A NN with sensors and actuators). 3. 
How to evolve such infomorphs. And finally 4. The tool 
that would most perfectly fit the problem domain of 
designing and developing such infomorphs. Thus in 
Section-2 we discuss how fit the artificial complex-valued 
neurons and complex-valued artificial NNs are when it 
comes to generating intelligence. In Section-3 we discuss 
what in general the architecture of an infomorph should be, 
covering in particular one of such architectures proposed in 
the Handbook of Neuroevolution Through Erlang [1]. But 
simply stating that NNs within a particular infomorph 
architecture can represent intelligence is not enough, since 
what is most important is an evolutionary path towards 
such a NN and infomorph architecture in general. Thus in 
Section-4 we discuss one such approach, a method inspired 
by the path nature took, evolving intelligence inside fine 
level granularity artificial life simulations. With this 
covered, we note in Section-5 how the most prevalent 
programming languages conceptually differ too much from 
such problem domains, but there are new emerging 
programming languages, like Erlang, that perfectly map to 
these type of systems. We briefly discuss Erlang, and its 1-
to-1 conceptual mapping to the problem domain of 
concurrent and distributed NN based computational 
intelligence. Finally, Section-6 concludes the paper, noting 
our current and future work within this research domain. 

2. The Neural Network Abstraction 
There are two main issues we must consider when it comes 
to abstracting a biological NN with an artificial one. The 
first deals with signal encoding, frequency versus 
amplitude. Second deals with general NN encoding, direct 
versus an indirect one based on a generative and artificial 
embryogenic approach. What choices must be made such 
that the artificial NN has the same computational and 
emergent system capabilities as the biological one? 
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2.1 Frequency Vs. Complex Valued Encoding 
It is uncertain whether frequency or amplitude encoded 
NNs are more flexible and can be used for more varied 
tasks. It is a fact though that both have been utilized for 
everything ranging from classification to robot control  
ALife. It is also a fact that both are Turing complete, thus 
in the end, both are as powerful when it comes to their 
computational and representational capabilities. 
 Frequency encoding was not evolved because it is the 
best possible encoding, but because it was simply the first 
successful encoding that evolution came randomly across. 
The simplest encoding that emerged. Individual biological 
neurons are highly unreliable; frequency encoding is easier 
to make more accurate than an amplitude based one when 
it comes to biological signal generators. 
 There is no reason why an amplitude encoded artificial 
neuron cannot have all the capabilities of a biological one, 
with amplitude specifying the average speed of a short 
lived spike train. In an artificial neuron, neurotransmitter 
receptors are represented by synaptic weights, which can 
be increased and decreased in magnitude. And even 
plasticity is easy to add, Hebbian, Ojas, or a custom one. 
Furthermore, when it comes to an artificial neuron, not just 
sigmoid/thresholding, but any activation function can be 
used, or a combination of the same, to represent a single 
biological neuron's activation function. Finally, if that is 
still not enough to make an artificial neuron equivalent to a 
biological one, we can use an entire neural circuit, which is 
a universal function approximator [7], to represent a single 
biological neuron and thus achieve computational and 
representational equality.  
 It could be argued though that there is one important 
thing these amplitude-encoded approaches don't take into 
consideration. A biological neuron is a spatio-temporal 
signal integrator, where both the shape of the neuron and 
spike arrival times within all the incoming spike-trains are 
taken into consideration, with the calculations made at 
every moment of whether to generate an action-potential or 
not at the neuron's axon hillock. For this reason we propose 
the utilization of complex-valued neurons and NNs [16,8].  
 A complex valued neuron in a complex valued NN can 
represent frequency and timing using a complex number. 
This gives us the ability to allow our NNs to also posses 
spatio-temporal processing capabilities, which is what we 
think is currently missing from standard approaches. The 
complex valued neurons are also perfectly represented 
using optical hardware [9], even more so than their non 
complex-valued versions, providing us with enormous 
future potential with regards to hardware implementation. 
 We see no reason why an amplitude encoded NN, 
particularly a complex-valued one, using all the above 
noted features, should have a lower representational 
capability than a biological one. If anything, we believe 

that it is more flexible, has a greater representational 
potential, and whether represented in software or hardware, 
would provide for a much greater level of reliability and 
speed, particularly as our technology continues to progress. 
2.2 Direct Vs. Indirect Neural Network Encoding 
The human brain has on average 100 billion neurons, and 
ten times as many glial cells. Not only the number of 
neurons, but the total number of topological permutations 
this number of elements presents, poses an enormous 
challenge to evolutionary algorithms. 
 In a direct encoded NN, the genotype has a 1-to-1 
mapping to the phenotype, and when it comes to 
neuroevolution, we are evolving the NN with the neuron as 
the basic building block. This means that the mutation 
operators are usually composed of adding and removing 
neurons, splicing neurons, and adding and removing 
synaptic connections. Thus it would be no small challenge 
to evolve a NN of such vast complexity and scale when 
having access only to these basic mutation operators. 
  There is another way, an indirect encoding approach. 
Analogous to the relation our phenotype has to our 
genotype, where the DNA is transcribed to RNA which is 
then translated to proteins. In our DNA, the genes encode 
and interact with one another to generate in collaboration 
and with the use of environmental factors, our phenotype.  
But even then, our brains at birth do not contain all the 
knowledge an adult human has, instead what has evolved is 
a learning algorithm, and a set of neural structures capable 
of containing and retaining useful information that the 
learning structures and algorithms are capable of gathering 
from the environment during the organism's lifetime. The 
learning module itself could then indeed be much simpler 
in topology and significantly smaller in size, while simply 
using the vast NN of the human brain as the substrate on 
which it encodes memories, knowledge, cognition... 
through environment exposure. This does necessitate that 
the NN based agent capable of learning, has the ability to 
interact for a number of years with other agents and the 
environment in which it exists, and thus develop over time. 
In this manner the organism's intelligence is increased and 
developed over its lifetime. 
 This second approach, the indirect encoding approach, 
can be seen to potentially requiring quiet a bit less to 
evolve due to being smaller (we need only evolve a 
learning function), while at the same time putting a greater 
weight on the needed time, and the complexity of the 
environment in which the agent develops. 
 We believe that it is this second approach that is most 
likely to generate intelligence. Thus, though it is NNs that 
would represent the abstraction of intelligence, the 
approach to putting the vast NNs into topologies needed 
for intelligence, and the method of setting all the 
parameters and plasticity based algorithms within, would 
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all be done through a generative/embryogenic system. It is 
this developmental-system/plasticity-function that we 
would evolve, rather than the entire NN itself directly. 
 This generated NN would then require a significant 
amount of time of interaction with the environment to 
develop intelligence. This would require that the NN not be 
simply a disembodied system, but have sensors, actuators, 
and ability to interact with its environment, and thus 
learning and developing over time. A NN with sensors and 
actuators, capable of sensing from and acting upon the 
environment respectively, is referred to as an infomorph. 
An infomorph requires an environment and  interaction 
with other agents within it, which leads us to the 
importance of high level granularity ALife simulation 
needed to support this developmental cycle, a subject we 
will discuss in Section-4. 
 Before getting to the discussion of such an ALife 
approach, we must discuss in more detail the indirect NN 
encoding, and the infomorph architecture we are exploring 
in which such NN would be embedded, giving it the ability 
to interact with environment of the ALife simulation. 

3. The Architecture Of An Infomorph 
Having now discussed our perspective that a complex-
valued artificial neuron, or an artificial neural-circuit can 
offer the same computational and representational potential 
as a biological neuron, and thus an artificial NN composed 
of such nodes can result in an emergence of intelligence 
given the right topology and nodes composing the 
infomorph, we now discuss more concretely the 
architecture of the indirect encoded NN based infomorph. 
 The human brain is a 3d substrate, with each neuron 
having a coordinate. There is actually a significant amount 
of axonal and dendritic pruning that occurs over the 
human's first few years. And this is also why the first few 
years are so important for an animal with regards to 
learning. There is a substantial amount of plasticity, which 
decreases and anneals over the first few years. The 
memory formation is the result of the activities of:  
hippocampus, amygdala, striatum, and mammillary bodies, 
each of which is responsible for a certain type of memory 
formation (spatial, emotional, etc.). Each neuron on its own 
also has certain plasticity rules that it follows, further 
modulated by the before noted memory specializing 
structures. This separation of tasks, and the distinction 
between the genotypically encoded and life-time developed 
elements of our brain is summarized as follows: 

1. Initially Present: Initial connectivity is mostly 
genetically encoded, it is a substrate with 
numerous rough regions prepared to acquire more 
distinction, be fine tuned, and store new memories 
(a just born animal starts off without having the 

ability to balance, or make high level logical and 
rational decisions, nor does it have memories and 
experience to draw upon, all of these are 
developed over its lifetime due to the plasticity 
and learning rules). 

2. Initially Present: The neural plasticity rules are 
present from the start, defined by genotype, each 
neuron having a plasticity rule which lets it 
change through its interaction with other neurons. 

3. Initially Present: Structures like the amygdala, 
hippocampus, striatum... are also all functional 
from the start, ready to modulate various parts of 
the NN, and promote memory formation by 
modulating plasticity rules, triggered by certain 
environmental and particularly important events 
(We tend to remember important events in our life 
very clearly, this is an evolutionary adaptation). 

4. Life-time developed: The NN substrate, ready to 
be imprinted with memories and changed through 
plasticity rules. The neural tissue is there from the 
start, and through numerous plasticity rules, the 
biological NN begins storing retrievable memory, 
and change over the organism's lifetime, acquiring 
more refined cognitive abilities. Our rationality, 
ability to draw upon the memories and make 
conclusions... these are all skills developed over  
lifetime, due to plasticity, learning, and interaction 
with the environment. 

Having divided cognition into roughly 4 parts, 3 of which 
are primarily genotypically encoded, and 1 developed over 
the organism's life-time, we can now also decide on how to 
construct the architecture of an infomorph containing such 
structures, which parts would be directly encoded, and 
which based on organism's development over its lifetime 
due to interaction with its environment. 
 Given that a NN is a universal function approximator,  
we can use direct encoded NNs whose output function 
would then be used either to define the above noted 
initially present structures, or used as learning/plasticity 
rules affecting the organism's NN over its lifetime. Thus:  

1. The general structure and connectivity of the NN, 
the neural substrate, the presence and connectivity 
of each complex-valued neurode based on its 
coordinate in 3d space, can then be defined by an 
evolved, smaller direct encoded NN (an approach 
to some extent inspired by the popularized 
Hypercube encoding [10]). The brain is composed 
of numerous regions, which to some extent are 
specialized. This can either be achieved by using 
multiple interconnected substrates, or a single 
substrate whose regions are differentiated due to 
the connectivity pattern an evolved NN paints on 
it. Over time, as the function generated by this NN 
increases in complexity, the density of the NN 
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structure it paints on the 3d neural substrate would 
itself become more dense, and more intricate. We 
think that spatio-temporal signal integration is 
essential, thus unlike in standard hypercube-
encoding, we use a setup where each embedded 
neurode is complex-valued [9]. 

2. The second independent and directly encoded NN 
can then be evolved to define the general 
plasticity rule for each neurode in this substrate. 

3. The third independent and directly encoded NN 
can then be connected to the plasticity NN, 
affecting and modulating its plasticity function. 

 In this manner we have 3 different NNs co-evolving and 
shaping the substrate and the within embedded complex-
valued neurodes, for each infomorph. We thus provide the 
agent with a neural substrate through NN-1, give each 
neurode the ability to change over lifetime through some 
steady plasticity rule defined by NN-2, with the plasticity 
itself being modulated by the NN-3. The architecture of 
such an infomorph is shown in Fig-1. 

Fig-1. Architecture of an infomorph. NN-1 defines the 
existence and connectivity of complex-valued 

neurodes at each particular coordinate. NN-2 defines 
plasticity rule for each neurode in the substrate. NN-
3 modulates NN-2 based on signals from substrate. 

In this diagram, the substrate represents the 3d slab of 
neurodes, where the expression and connectivity of each to 
other neurodes, is defined by NN-1. NN-2 takes in as input 
the pre-synaptic and post-synaptic neurode coordinate for 
each connection, producing the change in weights for it, 
inspired by the approach in [11]. Finally, NN-3 evolves 
presynaptic connections to neurodes within the substrate, 
with its output modulating NN-2, affecting its behavior and 
thus plasticity rule for the substrate it modulates. Each of 
these 3 NNs has its own distinct objective function. 
 Each infomorph also has sensors and actuators. An 
infomorph starts with a few simple sensors and actuators 

for some basic simple body plan, but through mutation 
operators can add new sensors and actuators, and connect 
to and from the substrate respectively, as was for example 
demonstrated in Ch-16 of [1]. The avatar of the infomorph 
within a simulation could then have some easily evolvable 
modular morphology, such that sensors and actuators have 
a finite number of areas they can be attached at, producing 
morphological designs based on setups we know work 
(quadropods, bipeds...). In this manner, we can evolve an 
infomorph whose morphology can also evolve with it over 
time in some simulated environment. This environment 
could be a 3d fine-granularity based simulation, 
particularly if our goal is to evolve general computational 
intelligence through ALife, as is discussed next. 

4. Fine-Level Granularity Artificial Life 
All the technology and algorithms we discussed until this 
point already exist. For example the infomorph architecture 
is currently being explored using the Topology and 
Parameter Evolving Universal Learning Network system 
called DXNN. The substrate type based indirect encoding 
was inspired by [11]. We opted to use DXNN as the 
neuroevolutionary algorithm with substrate encoding due 
to its superior performance on benchmarks and real world 
applications in our experience, and a more general 
distributed architecture, allowing us to more easily 
transition to the use of complex-valued neurodes. With all 
this, what is necessary is to find a way to actually utilize 
evolution to evolve and put all these elements together, to 
guide evolution towards evolving general intelligence. 
 Using DXNN and this type but slightly simpler 
infomorphs  controlling avatars in 2d environments in food 
gathering, dangerous food gathering, and predator versus 
prey simulations, we have already been able to evolve 
interesting emergent behavior. For example in the predator 
versus prey [12] simulation, the predators can push food 
around and gain energy by eating prey, while the prey can 
only gain energy by eating food particles, a very organic 
behavior evolved. In this ALife simulation, the predators 
learned how to hoard food particles, and also hide behind 
them. At some point the prey would become hungry 
enough to finally approach and eat the food particle, at 
which point the predator hiding behind it would eat the 
prey immediately afterwards, thus absorbing the energy the 
prey agent got by eating. More complicated behavior can 
not be expected in such a barren 2d environment composed 
of only predator and prey avatars. Indeed it is this 
environmental  simplicity, and low level of malleability 
and granularity within the majority of ALife simulations 
that we think is the main barrier to evolving more complex 
behavior. The complexity of the evolving agent within the 
environment reflects the complexity of its environment. 
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4.1 Importance Of Environmental Complexity In ALife 
Consider the following two thought experiments: 1. Simple 
3d environment with flat scape, gravity, and spherical food 
particles. This environment is inhabited by agents capable 
of evolving their morphology and NNs. 2. Highly granular 
environment, simulated on the level of molecules but with 
the world starting of as flat initially, with the infomorphs 
able to interact with every element of this environment. 
 In the first simulation scenario, there is nothing for the 
agents to do other than learn to move around and consume 
food particles. Once these two problems are solved, there 
is nothing new and no new niches that the agents can 
uncover. Even if an agent can for example in a single or 
very few evolutionary steps be able to evolve the ability to 
consume other agents rather than food particles, the most 
this will result in is the predator vs. prey scenario. At this 
point, equilibrium is reached, and there is simply no 
evolutionary push to evolve communication, or other types 
of complex behaviors. 
 Now let us consider the second scenario, where the 
environment is malleable and simulated on a chemical or 
micro level, where the agents can effect and interact with 
it. Initially the environment is still flat, the agents first 
learn how to move on it and consume the spherical food 
particles. And as before they can, if the mutation operators 
allow it, evolve the ability to consume each other (for 
example if we allow for a mutation operator to add a new 
actuator called “mouth”, which then transforms the avatar 
into one of a predator, a simulation setup of which is 
available in the open source DXNN [13]), from which the 
predator vs. prey behavior would then emerge. But now the 
agents can also interact with the environment and move 
and change it. If we assume that at the beginning this flat 
environment is like a flat surfaced sandbox, then the agents 
will have the ability to move some sand particles around. 
Just this simple action, which is done simply by moving 
around, over time will change the landscape from very 
simple flat like world, to one with geometrical and other 
patterns on the sand, hills and valleys. This in itself will 
push towards evolving the ability to navigate better, and 
locomote better through the no longer flat surface. This 
pushes for more complex neural setup to emerge. Predators 
might begin taking advantage of certain valleys, and use 
them to hide and ambush from. This would push the 
evolution for prey to evolve better visual analysis, and 
again more complex neural structures. This further would 
push predators to for example begin digging or increasing 
the depth or shape of existing valleys...  
 As we can see, a malleable environment allows the 
agents to become more complex. The agents change the 
environment, slowly, which pushes the agents to change as 
well. The environment also represents a one way 
complexity function, because it can only become more 
complex over time, and thus we do not get cyclical 

evolution. The environment acts as memory of complexity, 
pushing the agents towards ever more complex scenarios, 
but very slowly, at the speed of the agent's own ability to 
modify that same environment. This environment 
generated fitness function towards greater neural and 
morphological complexity is neither too high nor too low, 
because the agents themselves carve out these evolutionary 
paths towards greater complexity by modifying the 
environment. And that is the difference and advantage that 
environments simulated on a higher granularity level 
provide. In such environments, the informorphs do have 
the ability to evolve more and more complex, and arms-
race is supported, with the environment allowing the 
agents to complexify at their own pace. 
 This is exactly how the organisms in the natural world 
evolved, and the reason for the supported higher and higher 
complexity. We augmented our environment, and in 
response had to change as well. The pace of 
compexification was just right, because we set that pace 
ourselves as we evolved and became more complex. 
 When it comes to ALife, we do not have to start on the 
molecular level when evolving the agents, because our 
building blocks are neurons, and discrete set of sensors, 
actuators, and morphologies we know work. Thus this 
approach  will not take billions of years. Furthermore, we 
have the ability to guide evolution, we can also effect such 
simulated environments, and decide what particular actions 
get rewarded and punished. In this manner, we can both, 
use this natural complexification effect, and also inject 
some guidance. The only limit is the computational power 
at our disposal. If we can create simulations on this level of 
granularity, and allow the infomorphs the abilities noted in 
the previous section, evolution will lead to greater 
complexity naturally in such an ALife setup. The agents 
will carve out their own evolutionary paths. It is this area 
of research that we are currently pursuing, and it is this 
approach that we believe will result in the evolution and 
generation of general computational intelligence. 

5. Neural Network Programming Language 
 Finally, we would like to briefly mention a tool we 
believe to be particularly appropriate for the development 
of such systems. Standard programming languages like 
Java, C++, Python, etc. have architectures very different 
from NNs, which are naturally concurrent and distributed 
multi-agent based systems. The smaller the conceptual gap 
between the programming language and the problem, the 
more complex the problems that can be tackled with it. 
Thus, if you could design a NN programming language 
from scratch, what features would it need to support? One 
such list was made by Bjarne Däcker [14]: 
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“1. The system must be able to handle very large 
numbers of concurrent activities.  
2. Actions must be performed at a certain point in 
time or within a certain time.  
3. Systems may be distributed over several computers.  
4. The system is used to control hardware.  
5. The software systems are very large.  
6. The system exhibits complex functionality such as, 
feature interaction.  
7. The systems should be in continuous operation for 
many years.  
8. Software maintenance (reconfiguration, etc) should 
be performed without stopping the system.  
9. There are stringent quality, and reliability 
requirements.  
10. Fault tolerance” 

 Surprisingly enough, Däcker was not thinking about NN 
systems, but telecom switching systems. A language that 
was created from start for the development of just such 
systems is: Erlang. Erlang is a concurrency oriented 
message passing paradigm programming language whose 
basic units are Processes, concurrent micro server/clients, 
communicating with each other by message passing. With 
fault tolerance, concurrency & distributed computing, and 
code hot-swapping, being some of its key features. Due to 
these and other features of the language, there is almost no 
conceptual gap between it and the NN based CI problem 
domain, as is discussed in more detail in [1,15].  
 Though a full discussion of all Erlang's features is 
outside the scope of this paper. It is essential to note this 
perfect mapping between the tool and the problem allows 
us to create more complex and more robust systems. It 
makes it easier for us to reason about the problem domain, 
and transfer the algorithms and architectures directly to the 
implementation. Erlang, when it comes to research within 
the domain of Neuroevolution and in general distributed 
computational intelligence, we believe is a force multiplier. 

6. Conclusion 
In this paper we discussed and gave reasons for why a 
modular indirect encoded NN using complex-valued based 
substrate is a viable intelligence abstraction which could 
lead towards more general computational intelligence. We 
also discussed one possible architecture of a NN based 
infomorph, where the environment is simulated on a high 
enough granularity level (chemical), such that it allows the 
infomorphs to modify the environment and evolve with it. 
Finally, we also noted and suggested the use of Erlang for 
this particular research domain, due to the language's 1-to-
1 mapping to this problem domain, with essentially zero 

conceptual gap between the two. Our current and future 
research deals with further exploration of the different 
approaches to complex-valued neurode encoding for a 
more accurate representation of spatio-temporal signal 
integration occurring within a biological neurons and NNs, 
exploration of compelx-valued neuroevolution, and further 
exploration of advanced infomorph architectures. 
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