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Abstract

There is general agreement that knowledge plays a key role in
intelligent behavior, but most work on this topic has empha-
sized domain-specific expertise. We argue, in contrast, that
cognitive systems also benefit from meta-level knowledge
that has a domain-independent character. In this paper, we
propose a representational framework that distinguishes be-
tween these two forms of content, along with an integrated ar-
chitecture that supports their use for abductive interpretation
and hierarchical skill execution. We demonstrate this frame-
work’s viability on high-level aspects of extended dialogue
that require reasoning about, and altering, participants’ be-
liefs and goals. Furthermore, we demonstrate its generality by
showing that the meta-level knowledge operates with differ-
ent domain-level content. We conclude by reviewing related
work on these topics and discussing promising directions for
future research.

1 Introduction
Cognitive systems, whether human or artificial, depend on
knowledge for their operation. Studies of expertise in both
psychology and AI have repeatedly shown the power of
domain-specific content. Experts in game playing, medical
diagnosis, physics problem solving, and engineering design
all draw on knowledge about their area to find better solu-
tions, with less effort, than novices. One common inference
is that researchers interested in developing cognitive systems
should focus their energies on constructing domain-specific
encyclopedias, as opposed to finding general principles of
intelligence. Another is that general strategies about how to
use this domain-specific knowledge are best encoded in pro-
cedural rather than declarative terms.

We argue that both conclusions are flawed. We main-
tain that, although domain-specific content plays an impor-
tant role in intelligent behavior, it also relies on meta-level
knowledge that generalizes across many different domains,
and that much of this knowledge encodes strategic informa-
tion. In this paper, we apply these ideas to high-level as-
pects of dialogue, which we hold depend on both domain-
level and meta-level processing. Conversations are always
about some topic, which requires the use of domain exper-
tise, but they also involve more abstract structures that reflect
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the general character of dialogues. We present an integrated
architecture that incorporates this distinction and that uses
it both during conceptual inference to interpret its situation
and during skill execution to achieve its goals.

In the next section, we present a motivating example that
illustrates the basic ideas. After this, we discuss the archi-
tecture’s representation of domain-level and meta-level con-
tent, followed by mechanisms that combine them to draw
abductive inferences and carry out goal-directed activities.
Although we explore these ideas in the context of dialogue,
our system does not attempt to model speech or sentence
processing. Rather, it assumes the logical meanings of ut-
terances as inputs and outputs, supporting both dialogue in-
terpretation and generation at this abstract level. Moreover,
we believe the same approach will prove useful in other set-
tings that involve social cognition, although we do not offer
empirical evidence for that here.

Our main claim is that one can specify meta-level knowl-
edge that is useful across different domain-specific content,
and that dialogue is one area that highlights this idea. To
this end, we demonstrate the architecture’s operation on con-
versations about different topics that involve distinct predi-
cates and domain content, but that use the same meta-level
rules. We also examine related work that separates domain-
specific from general knowledge, including earlier efforts
on dialogue processing. We will not claim that we are the
first to separate domain-level from meta-level knowledge,
even in the area of dialogue, but we will argue that this ap-
proach holds great promise and that it deserves more atten-
tion within the cognitive systems community.

2 A Motivating Example

We can clarify the issues we intend to address with a mo-
tivating example of a task-oriented dialogue in which the
interacting agents adopt and pursue a shared goal. We as-
sume that the participants cooperate because they cannot
achieve the goal individually. Consider a situation in which
one agent (the caller) is confronting a medical emergency
and seeks another’s advice (the advisor). The latter has the
expertise needed to solve the problem, but cannot affect the
environment directly, whereas the caller lacks expertise but
can act if provided with appropriate instruction.
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Caller: I have a medical emergency!
Advisor: Do you need help or someone else?
Caller: It’s my father.
Advisor: Okay. Tell me what happened.
Caller: He just fainted.
Advisor: I understand. Is he conscious now?
Caller: No, he’s not responding.
Advisor: We need to check if he is breathing.
Caller: Okay. What should I do?
Advisor: Check for breathing sounds by placing your

ear near his nose.
Caller: Okay . . . I don’t hear anything.
Advisor: Do you have a mirror in your purse?
Caller: Yes
Advisor: Hold the mirror under his nose, see if it fogs.
Caller: Okay . . . Yes, the mirror is fogging.
Advisor: Good. Now, raise his legs above head level.
Caller: Okay, done.
Advisor: Now wait, the ambulance will arrive soon.
Caller: Okay. Thank you.

This idealized 911 call, despite its simplicity, raises many of
the issues that we want to address. Here are some noncon-
troversial observations about the dialogue:

• Behavior is goal-directed and involves joint activity over
time; this activity includes not only domain actions car-
ried out by the caller, but communicative actions, includ-
ing ones for information gathering, by both parties;

• Participants develop a shared model not only of the en-
vironmental situation, but of each others’ beliefs and
goals; this joint model gradually expands as the partici-
pants exchange more information;

• Many of the agents’ beliefs and goals are never stated but
are nevertheless inferred by the other participant; some
inferences involve domain content, but others concern
communication-related goals and beliefs;

• The overall process, from the perspective of either agent,
alternates between drawing inferences, based on the
other’s utterance, to expand their own understanding of
the situation and carrying out goal-directed activities in
response to the resulting model.

These observations act as requirements about the abilities of
any computational system that we might develop to mimic
this behavior. These include the ability to: incrementally
construct an interpretation of both the physical situation and
of others’ goals and beliefs; carry out goal-directed activi-
ties appropriate to this inferred model; and utilize both do-
main knowledge and more abstract structures for both in-
ference and execution. Moreover, it seems likely that the
same abstract content would apply if the domain situation
were different, suggesting the need for generalized meta-
level knowledge and for mechanisms to process it.

In the next section, we describe an integrated architecture
that responds to these requirements. Although we illustrate
its assumptions in the context of task-oriented dialogue, the
framework itself is considerably more general and should
be relevant to any setting that involves social cognition, that
is, reasoning and activity that incorporates models of other
agents’ mental states.

3 An Architecture for Meta-Level Cognition
We desire an architectural framework that supports goal-
directed but informed behavior over time. This should han-
dle the higher levels of task-oriented dialogue but also be
general enough to support other varieties of social cogni-
tion. We take as our role model ICARUS (Langley, Choi, and
Rogers 2009), a cognitive architecture designed for physi-
cal agents. In this section, we describe the new framework’s
memories and mechanisms, noting the ways in which it dif-
fers from ICARUS to incorporate models of other agents’
mental states and to handle meta-level processing.

Working Memory
The new architecture stores beliefs and goals in a dynamic
working memory that contains ground literals. In contrast to
ICARUS, which has distinct memories for beliefs and goals,
the new framework includes both in a single memory, distin-
guishing them with the meta-level predicates belief and goal.
These take the form belief (A, C) and goal(A, C), respec-
tively, where A denotes an agent and C encodes domain-
level content, an embedded belief or goal expression, or an
expression denoting a communicative act.

The architecture also allows meta-level expressions of
the form not(C), which denotes the negation of some be-
lief or goal C, as well as expressions that have the forms
knows if(A, C) and not knows if(A, C), where A refers to an
agent and C to a domain-level expression that A knows
or does not know, respectively. Similarly, for a domain-
level relation R that occurs in triple(R,X, Y )), we use
knows wh(A,R,X) and not knows wh(A,R,X) to denote
that agent A knows what and does not know what, respec-
tively, a corresponding Y for the relation R. For instance,
belief (A, knows wh(B, type, event1)) represents A’s belief
that B knows event1’s type is emergency. Taken together,
these meta-level predicates let the architecture encode not
only its beliefs and goals about the environment, but also its
beliefs and goals about other agents’ mental states, including
things they do and do not know.

Domain-level literals encode information related to
the domain. These always occur as arguments of some
meta-level predicate; they never appear at the top level
of working memory. Although these may be stated in
the notation of predicate logic, here we will assume they
take the form of triples, which lets the architecture access
domain-level predicates as easily as their arguments. For
instance, rather than storing the element belief(Advisor,
holding(caller, mirror)), it would store the three equivalent
elements, belief(Advisor, triple(type, event1, holding)),
belief(Advisor, triple(agent, event1, caller)), and be-
lief(Advisor, triple(object, event1,mirror)). Note that
this encoding also reifies the event or relation.

Because our current application involves dialogue, we
will also assume meta-level predicates for speech acts
(Austin 1962; Searle 1969), although they are not strictly
part of the architecture. These denote conversational actions
that a participant performs to produce certain effects on
others. Different researchers have proposed alternative tax-
onomies of speech acts, but here we adopt a minimal set of
seven types that appear sufficient for our purposes:
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• inform(S,L,C): speaker S asks L to believe content C;
• acknowledge(S,L,C): S tells L it has received and now

believes content C;
• question wh(S,L,C): S asks L a ‘wh’ question C;
• question if (S,L,C): S asks L an ‘if’ question C;
• propose(S,L,C): S asks L to adopt goal C;
• accept(S,L,C): S tells L it has adopted goal C;
• reject(S,L,C): S tells L it has rejected goal C.

In working memory, speech act expressions always appear
as the content of beliefs or goals. For instance, the literal
belief (A, inform(B,A,Content)) denotes A’s belief that a
speech act occurred in which B conveyed Content to A.

Conceptual and Skill Knowledge
Like ICARUS, the new architecture incorporates generic
knowledge that lets it interpret and alter the contents of
working memory. This includes concepts supporting infer-
ence and skills enabling goal-directed activity. We can par-
tition this into domain-level and meta-level knowledge.

Domain-level concepts are specified by rules in which
the head comprises the conceptual predicate and its argu-
ments, and the body describes a relational pattern which
that concept denotes. The head may include multiple literals,
which is required by the triples representation. Domain-level
concepts do not mention an agent, since they are always rel-
ative to a single agent’s beliefs or goals. As in ICARUS, con-
ceptual knowledge takes the form of a hierarchy, with more
abstract predicates defined in terms of more basic ones.

Domain-level skills describe the effects of an agent’s
activities under certain conditions. Like concepts, they are
specified by rules with a head that includes the skill’s pred-
icate and arguments, along with a body that includes condi-
tions that must be satisfied for it to execute and its expected
effects. The bodies of primitive skills refer to executable
actions, whereas nonprimitive skills include a sequence of
lower-level skills. For example, the nonprimitive skill

skill(handle medical emergency(EM))←
triple(type,EM,medical),
skill(ask wh question(patient, EM)),
skill(determine if conscious).

states that, to handle a medical emergency, one should first
ask about the identify of the patient and then determine if
he or she is conscious. Different rules with the same head
denote alternative ways to decompose a skill. Thus, as in
the ICARUS architecture, the set of skills is equivalent to a
hierarchical task network.

A third type of domain-level knowledge consists of goal-
generating rules. These differ from concepts and skills in
that they do not define new predicates, but rather describe the
conditions under which the agent should establish a top-level
goal. For example, an agent might have a rule that, when it
believes a person is in a life-threatening condition, causes
the agent to establish a goal of stabilizing that person. Choi
(Choi 2010) has reported an extension of ICARUS that uses
similar knowledge, although his approach proposed goals

about desired states, whereas ours generates desired activ-
ities.

However, the new architecture’s support for meta-level
knowledge is another major departure from ICARUS. In the
context of dialogue, the key meta-level concepts are the dif-
ferent speech act rules. For example, the conceptual rule for
propose, from the speaker’s perspective, can be stated:

propose(S,L,C)← goal(S,C),
goal(S, goal(L,C)),
belief (S, goal(L,C)).

which means that the act of speaker S proposing content C
to listener L is associated with S having C as a goal, S hav-
ing a goal for L to adopt C as a goal, and S believing that
S has adopted C as a goal.1 Different speech acts involve
different patterns of goals and beliefs, but none refer to any
domain predicates, since the content of the speech act does
not alter the abstract relations. Our dialogue system incor-
porates 14 rules of this sort, one for each type of speech act
for the speaker’s perspective and one for the listener.

Another form of meta-level knowledge is a dialogue
grammar that specifies relations among speech acts. This
includes recursive rules: for instance, a dialogue may con-
sist of S asking L a question Q, followed by S answering L
with A, followed by another dialogue. Of course, to ensure a
coherent conversation, the system must examine the domain
content to check that it makes sense. To this end, the sys-
tem includes another four meta-level predicates that indicate
‘conceptual agreement’ between the arguments of different
pairs of speech acts, along with 13 meta-level rules that de-
termine whether they are satisfied. For example, the rules
for wh questions ensure that answers are consistent with the
agent’s beliefs. As with speech act rules, those for the dia-
logue grammar make no reference to any domain predicates.

This completes our description of the architecture’s repre-
sentational commitments and their use in the context of di-
alogue. Next we turn to the computational mechanisms that
operate over these structures, including their mapping onto
dialogue interpretation and generation.

Conceptual Inference and Skill Execution
Following ICARUS, the new architecture operates in distinct
cognitive cycles, with the first stage of each cycle involving
conceptual inference over the agent’s observations. Because
ICARUS dealt only with physical environments, it could rely
on deduction to draw conclusions about its situation. How-
ever, social cognition, including dialogue, requires making
plausible assumptions about unobserved mental states.

For this reason, the architecture utilizes an abductive in-
ference module that attempts to explain the observations to
date in terms of available knowledge. This process operates
incrementally, in that it extends the explanation produced on
the previous cycle, adding new elements to working mem-
ory monotonically.2 The abductive mechanism prefers the

1A more complete rule would include temporal constraints
which specify that some relations hold before the speech act and
that others hold afterward.

2The current implementation does not yet support belief revi-
sion, which is clearly needed in cases of misunderstanding.
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explanation that requires the fewest default assumptions,
which it finds through an iterative process.

The module first attempts to prove some top-level relation
(e.g., that the observed speech acts form a dialogue) with
no assumptions, then considers accounts that require one as-
sumption, then two assumptions, and so on, continuing until
it finds a complete proof or it exceeds a limit. Once the ar-
chitecture finds an explanation, it adds the default assump-
tions to working memory, making these elements givens on
the next round, so that typically it must introduce only a few
new assumptions per cycle.

When applied to dialogue, the abduction mechanism at-
tempts to incorporate ‘observed’ speech acts that are added
to working memory after each participant has taken his turn
speaking. The system is able to introduce beliefs and goals
of the two agents as default assumptions, with rules for
speech acts providing the lower layer of the proof tree and
dialogue grammar rules generating the higher levels. Omit-
ted speech acts, such as implicit acknowledgements, cause
no difficulty, since they are also introduced as default as-
sumptions. These become working memory elements and
thus can serve as terminal nodes in the expanded explana-
tion on successive cycles.

Once the architecture has completed the conceptual infer-
ence stage, it matches the conditions of all goal-generation
rules against the updated contents of working memory. Each
rule that matches adds a new top-level goal to working mem-
ory, instantiating the arguments of its predicate with bind-
ings obtained during the match process. These goals de-
scribe not a desired state, but rather a desire to carry out
some action or activity. In addition, abductive inference may
introduce new top-level goals, as when the agent adopts an
objective that another has proposed.

The new architecture also shares with ICARUS a skill ex-
ecution stage that immediately follows conceptual inference
and goal generation. The execution process selects some
top-level goal and finds a skill clause with this goal in its
head and with conditions that match working memory. The
module repeats this step recursively to select a path down
through the skill hierarchy that is relevant to achieving the
top-level goal. Upon reaching a primitive skill, the architec-
ture carries out its associated actions after replacing vari-
ables with their bindings.

On the next cycle, if the system selects the same top-level
goal, it repeats this process. However, if the conditions of
some skills along the previous path are no longer satisfied,
the execution module may follow a slightly different route.
This can lead the agent to carry out subskills in sequence,
from left to right, as each one completes its activity. As
in ICARUS, this gives the architecture a reactive flavor, al-
though the influence of the top-level goal also provides it
with continuity. The result is behavior similar to that of a hi-
erarchical task network, with the system traversing different
branches of an AND tree across successive cycles.

In the context of dialogue, the execution mechanism
produces different behavior depending on whether the se-
lected top-level goal was produced by abductive infer-
ence or by domain-level goal generation. In the former
case, the agent may have adopted a new goal such as

goal(caller, belief (advisor, breathing(patient))), which
could lead the architecture to access a meta-level skill that
invokes the inform speech act. However, obtaining this an-
swer might in turn require domain-level activities for infor-
mation gathering. This operating style is common when an
incoming speech act requires some response. In contrast, a
domain-level goal can, in the process of executing domain-
specific skills, lead to situations in which the agent requires
assistance. In response, execution may invoke a meta-level
skill for asking a question or otherwise obtaining aid.

We have implemented the new architecture in Prolog,
which supports the embedded structures that are central
to our extended formalism, as well as the pattern match-
ing needed during abductive inference, goal generation, and
skill execution. However, the control mechanisms them-
selves diverge substantially from those built into Prolog. For
instance, the abductive inference module constructs expla-
nations that depend on default assumptions, whereas skill
execution halts after traversing a single path per cycle, rather
than expanding an entire AND tree. The resulting behavior
is much closer to that of ICARUS, as seems appropriate for
an architecture that carries out activities over time.

4 Generality of the Approach
Our main claim is that meta-level knowledge is useful
across distinct domain-specific knowledge bases, and that
our new architecture’s mechanisms operate effectively over
both forms of content. In this section, we show evidence for
this generality by demonstrating its behavior on dialogues
that involve different domain predicates but use the same
meta-level knowledge. In the process, we provide more de-
tails about the architecture’s operation on task-oriented dia-
logues. We focus on two domains, one involving 911 calls
like the one discussed earlier and the other involving a sce-
nario in which the system3 helps an elderly person track her
medications.

Our experimental protocol provides the system with ac-
cess to a text file that contains a sequence of speech acts
for the person who needs assistance. These are instances of
the speech act types described in Section 3, interleaved with
two special speech acts, over and out, that we use to indi-
cate when the speaker has completed his turn and ended the
conversation, respectively. The system reads the contents of
this file, adding to working memory all speech acts before
the next over. It runs for a number of cycles, continuing un-
til it executes its own speech acts, and then accesses the file
again. Of course, this protocol only makes sense if our agent
responds in reasonable ways to the listed speech acts, but it
provides a reliable way of testing in such cases.

In the 911 call scenario, the system acts as an agent, the
advisor, who is helping another agent, the caller, deal with
a medical emergency situation. The domain is described us-
ing a dozen conceptual predicates like breathing and emer-
gency. The domain knowledge includes one goal-generating
rule (to handle any reported emergency) and two conceptual
rules. The latter two rules infer that a patient is breathing

3By ‘system’, we mean the architecture plus the meta-level and
domain-level knowledge that we provide it.
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given that a mirror fogs when placed under his nose or that
certain sounds are heard. The domain knowledge also in-
cludes 15 skills, including:

skill(determine if breathing(Patient))←
not knows if (Listener, breathing(Patient)))),
skill(ask if question(Listener, has mirror))),
skill(check breathing with mirror(Patient)).

This skill encodes one way of finding out if a patient is
breathing. The condition states that the speaker believes the
listener does not know if the patient is breathing. If the con-
dition is satisfied, the skill invokes two subskills: one that
asks the listener it she is in possession of a mirror (see di-
alogue in Sec. 2) and another that invokes a skill to check
for breathing using the mirror. This example is interesting
because a domain skill uses a meta-level skill to ask a ques-
tion, providing a point of interaction between the two levels.

Let us examine the system’s behavior on the previous sce-
nario. Upon observing a speech act that informs it the caller
has an emergency, the system applies abductive inference
and updates its working memory by adding a belief that the
caller has an emergency, that she has a goal for the advisor
to believe this, and a belief that she believes the advisor now
believes she has an emergency. The system also generates
and adds to working memory the top-level goal of handling
the emergency. Next, the skill execution process responds
with an acknowledge speech act, after which it invokes a
high-level skill for handling emergencies. This leads it to
produce a question speech act that asks the caller to state the
type of emergency.

The dialogue then continues with an exchange of simi-
lar questions and answers about the patient and the nature
of the problem. From the caller’s answers, the system in-
fers that she does not know if the patient is breathing, which
triggers execution of skills to find out. After further ques-
tions and instructions to the caller that, eventually, determine
that she believes the patient is breathing, the advisor issues
a final instruction to wait for the ambulance and ends the
interaction. Throughout the conversation, the system uses
its dialogue grammar to update its beliefs and goals, and it
draws on its meta-level rules about speech acts and concep-
tual agreement to generate responses. The contents of the
working memory influences the direction the dialogue takes
by affecting which skills are applicable. For instance, if the
caller answers the advisor’s early question about breathing
in the affirmative, then the system does not execute its skills
for addressing it, changing the path of the conversation.

Our second domain involves an elderly person who the
system attempts to assist in keeping track of medication.
This setting is somewhat less complex, involving only five
domain predicates. Here we provide the system with one
goal-generating rule related to getting the elder to take his
meds, along with 12 domain-level skills. In this scenario, the
system initially believes that it is time for elder to take his
medicine, so the goal-generation process immediately adds
a top-level goal to this end, which in turns leads to execution
of a relevant skill. The dialogue starts with the system taking
the initiative to inform the elder it is time to take his meds,

which the elder acknowledges, after which it informs him he
needs a glass of water and proposes getting one.

Next the system informs the elder that he needs his pills
and asks whether he knows their location. The Elder informs
the system that he left the pills in the living room, so it pro-
poses that he get them. Finally, the system reminds elder to
take his pills, the elder responds that he has done so, and
the dialogue ends. At an abstract level, this conversation in-
volves the same types of speech acts, abductive reasoning,
and skill execution as occurred in the previous scenario. The
system repeatedly infers the elder’s mental state and takes
his imputed goals and beliefs into account when selecting
its own speech acts. However, there is no overlap in domain
predicates or domain knowledge with the prior example.

To further demonstrate generality, we have run the archi-
tecture on two sequences of speech acts for both the 911 and
elder assistance domains. We held the domain-level knowl-
edge constant within each domain and used the same meta-
level rules for all of the runs. In each case, the system op-
erated successfully over the input files that contained the
partner’s speech acts. Although additional runs would offer
further support for our claims of generality, the existing re-
sults provide encouraging evidence that the architecture can
interleave domain-level and meta-level knowledge to carry
out extended interactions, and that our meta-level rules for
dialogue generalize across domain content. In summary, the
results suggest that our framework is viable and worth fur-
ther study and elaboration.

We also maintain that our approach to reasoning about
other agents’ mental states is not limited to dialogue. Similar
meta-level rules, combined with our mechanisms for abduc-
tive inference, goal generation, and skill execution, should
apply equally well to other situations that involve social in-
teraction among goal-directed agents. Scenarios that involve
cooperation and competition are prime candidates for com-
putational studies of social cognition, as are reasoning about
emotions and moral judgements. Whether our new architec-
ture can operate successfully in these arenas remains an open
question, but our initial results give cause for optimism.

5 Related Research
As noted earlier, our work makes three main contributions.
First, it provides a representational framework that cleanly
separates domain-level from meta-level content. Second, it
offers an architecture that integrates conceptual inference for
situation interpretation with skill execution for goal achieve-
ment, with these processes operating at both levels. Third, it
demonstrates both ideas in the context of a high-level di-
alogue system that operates across multiple domain pred-
icates. Although none of these is entirely novel by them-
selves, together they constitute an innovative contribution to
cognitive systems. However, for the sake of completeness,
we should review related work on each of these topics.

Nearly all AI research distinguishes between domain-
specific content and strategies for operating over it, but the
vast majority encodes strategies in procedural form. Our
framework differs by representing the latter as domain-
independent, meta-level rules. Although this approach is
seldom practiced, the idea of meta-level knowledge has a
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long history in AI. Two well-known cognitive architectures,
Soar (Laird, Newell, and Rosenbloom 1987) and Prodigy
(Carbonell, Knoblock, and Minton 1990), incorporate meta-
level rules to guide problem solving; these typically encode
domain-specific content, but both frameworks also support
domain-independent rules. Logical analyses of action (e.g.
(Gelfond and Lifschitz 1998; Reiter 2001)) often include
meta-level knowledge about causal influences, and work in
the BDI tradition (Rao and Georgeff 1991) also incorporate
this idea. Nevertheless, this approach remains rare in cogni-
tive systems research and it deserves far more attention.

Most AI work focuses on components of intelligent be-
havior, whereas our research offers an integrated architec-
ture for cognition that combines conceptual inference for in-
terpretation with skill execution for goal-directed activity.
Again, this is a well-established idea that has been explored
in the context of both cognitive architectures and robotic
architectures. However, most work on these topics has em-
phasized either understanding-oriented inference (e.g., (Cas-
simatis 2006)) or activity-oriented execution (e.g., (Ander-
son and Lebiere 1998)). On this dimension, our frame-
work comes closest to ICARUS (Langley, Choi, and Rogers
2009), which has modules for both conceptual inference
and skill execution. But again, previous work in these tradi-
tions has focused on interpretation and execution of domain-
level knowledge, with little if any content being stated at
the meta-level. One important exception is Meta-Aqua (Cox
2007), which incorporates domain-independent rules to sup-
port meta-cognitive detection of errors and to drive learning.

Dialogue has received increased attention in recent years,
but much of the research has emphasized spoken-language
systems. These raise enough challenges at the speech level
that most efforts utilize relatively simple dialogue models.
One of the most advanced dialogue managers, RavenClaw
(Bohus and Rudnicky 2009), encodes strategies in proce-
dural terms. Another recent system, FORRSooth (Epstein
et al. 2012), uses a modular set of advisors, to guide dia-
logue, but these do not appear to be stated in terms of meta-
level knowledge. In contrast, a coherent body of research
in the 1980s and 1990s (e.g., (Allen and Perrault 1980;
Carberry and Lambert 1999; Litman 1985; McRoy and Hirst
1995)) explicitly distinguished domain-level from dialogue-
level knowledge. This work, including its analysis of speech
acts, has strongly influenced our own approach, which dif-
fers mainly in embedding these ideas in an integrated archi-
tecture and in its emphasis on complete dialogues.

6 Concluding Remarks
In this paper, we presented a new architecture that encodes,
and reasons about, the beliefs and goals of other agents us-
ing a mixture of domain-level and meta-level knowledge.
We described the architecture in terms of its memories and
their contents, along with mechanisms for abductive infer-
ence, goal generation, and skill execution. Using this archi-
tecture, we developed systems that carry out, at the level of
speech acts, extended dialogues about goal-directed activi-
ties. We demonstrated that the same meta-level knowledge
about dialogue operates with different domain content, sug-
gesting that the approach has considerable generality.

Despite these encouraging results, there remain many
open issues that we should address in future research. Our
analysis of dialogue processing, even at the high level, is
less complete than some earlier treatments. A fuller anal-
ysis would utilize a finer-grained taxonomy of speech acts,
add explicit support for subdialogues (Carberry and Lambert
1999), and incorporate methods for recovering from misun-
derstandings (McRoy and Hirst 1995). Moreover, the archi-
tecture itself remains in the preliminary stages. The abduc-
tive inference module is unable to revise faulty assumptions,
skill execution lacks the ability to carry out skills in paral-
lel, and the framework does not yet incorporate a problem-
solving module to handle unfamiliar problems.

Finally, we have argued that, although we have demon-
strated the new architecture’s operation on task-oriented di-
alogues, its representations and mechanisms should carry
over to other settings that involve social cognition. Thus,
we should test the framework in cooperative scenarios that
involve agents who help each other without verbal commu-
nication, as well as competitive settings in which they have
differing goals. The latter in particular will let us model sce-
narios in which issues like ignorance and deception (e.g.,
(Bridewell and Isaac 2011)) influence social interactions.
We predict that meta-level knowledge and reasoning play
key roles in such cases, but that remains an empirical ques-
tion for future research.
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